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On the annihilating ideal for trace forms
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Abstract. We give several examples of classes of trace forms
for which the ideal of annihilating polynomials is principal.
We prove, that in general, the annihilating ideal is not a
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1. Introduction


Let K be a field of characteristic different from 2. Since the Witt
ring W (K) over K is an integral ring we may consider polynomials
in Z[X] evaluated at an element φ of W (K). We say a polynomial
p(X) ∈ Z[X] annihilates φ if p(φ) = 0 in W (K).


Definition 1. Let M be any class of quadratic forms. Then the
annihilating ideal IM of M is defined to be


IM := {f(X) ∈ Z[X] | f(φ) = 0 ∈W (K) for all φ ∈M}.


During the last 15 years several examples of annihilating polyno-
mials of quadratic forms have appeared in the literature. Let us
first recall some of these results and present them in the context of
annihilating ideals. D. Lewis [11] gives an annihilating polynomial
for quadratic forms of dimension n.
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Theorem 1 (Lewis). Let Qn be the class of all quadratic forms of
dimension n. Then IQn


is a principal ideal generated by the Lewis
polynomial


pn(X) :=


{


X(X2 − 22)(X2 − 42) · · · (X2 − n2), if n ≡ 0 mod 2,
(X2 − 12)(X2 − 32) · · · (X2 − n2), if n ≡ 1 mod 2.


As usual, (a) = aR denotes the principal ideal generated by the
element a ∈ R.


Example 1. Let Pn be the class of all n-fold Pfister forms. Then
IPn = (X2 − 2nX).


Now let us recall the definition of the trace form. Let A be a finite
dimensional étale K-algebra. With it we associate the quadratic
form


< A/K >: A→ K : x 7→ traceA/K(x
2),


which is called the trace form of A/K. From some unpublished
result of P.E. Conner [2] we get the following theorem.


Theorem 2 (Conner). Let Tn be the class of trace forms of all sep-
arable field extensions of degree n of fields of characteristic 6= 2.
Then ITn = (Cn(X)), where Cn(X) =


∏


k≥0,pn(k)=0(X − k).


In a certain sense, the result of P.E. Conner has been improved first
by P. Beaulieu and T. Palfrey [1] and later on by D. Lewis and S.
McGarraghy [12]. Consider a separable field extension L/K of de-
gree n and let N/K be a normal closure of L/K. Let f(X) ∈ K[X]
be the minimal polynomial of a primitive element α of L/K. Then
Beaulieu and Palfrey introduced the notion of the Galois number


of a polynomial f(X). This number is defined to be the smallest
number gf such that any gf roots of f(X) generate a splitting field
of f(X). In a group theoretical context the Galois number of a
G-set is defined to be the smallest natural number G such that any
group element σ ∈ G with g fixed points acts as the identity. This
number is also called the minimal degree of a permutation represen-
tation. See [9] for the determination of Galois numbers of doubly
transitive groups. Now the polynomial of Beaulieu and Palfrey is
defined to be


Bf (X) := (X − n) ·


g−1
∏


k=0,k≡nmod2


(X − k).
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Theorem 3 (Beaulieu-Palfrey). The polynomial Bf (X) has the
property that Bf (φ) = 0 ∈W (K), where φ is isometric to the trace
form of the field extension given by the separable and irreducible
polynomial f(X) ∈ K[X].


Denote the Galois group of N/K by G(N/K). Then the action
of G(N/K) on the left cosets of G(N/K)/G(N/L) defines a G-
set. For any G-set S of cardinality n and any subgroup U < G
let invU(S) := ]{s ∈ S | sσ = s for all σ ∈ U} be the number of
fixed points of the restricted action. Set inv(S) := {invU(S) | U <
G}. The definition of the following polynomial is due to Lewis and
McGarraghy (see [12] corollary 3.5). For any G-set S set


ϕ(S) := {invU(S) | U < G, invU(S) ≡ n mod 2}.


Now set


pG,S :=
∏


k∈ϕ(S)


(X − k).


Theorem 4 (Lewis-McGarraghy). Let L/K be a finite and sepa-
rable field extension and let pG,S(X) be defined as above. Then
pG,S(X) annihilates the trace form of L/K.


Note, that the result above can be generalized to trace forms of étale
algebras. Using Springer’s theorem on the lifting of quadratic forms
according to odd degree extensions, we get annihilating polynomials
of lower degree (see [8][Theorem 2.10]).
Now we come to the definition of the class of quadratic forms we
like to discuss in this paper.


Definition 2. Let G be a finite group and let H < G be a subgroup
with ∩σ∈GσHσ


−1 = 1. Then the class M(G,H) consists of those
quadratic forms φ such that


1. there exists an irreducible and separable polynomial f(X) ∈
K[X] with Galois group Gal(f) isomorphic to G;


2. the action of Gal(f) on the roots of f(X) and the action of G
on the left cosets G/H are equivalent;


3. φ and the trace form < (K[X](f(X)))/K > are isometric.


Note, that the condition on H guarantees, that G acts faithfully
on G/H. The work of Lewis [11] and Conner [2] give annihilating
polynomials for quadratic forms, resp. trace forms of dimension n.
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To finish the determination of the annihilating ideal, we have to
consider signatures. The zeros of pn(X), resp. Cn(X) are exactly
those integers, which occur as signature values of quadratic forms
in Qn, resp. Tn.


Definition 3. Let M be a class of quadratic forms. Then the set of
signatures of M is denoted


sign(M) := {s ∈ Z | s = signφ for some φ ∈M}.


If sign(M) is finite, the signature polynomial of M is given by


SignM(X) :=
∏


k∈sign(M)


(X − k).


Since the signature is a ring homomorphism we get


Proposition 1. Let M be a class of quadratic forms. If sign(M) is
a finite set, then


IM ⊂ (SignM(X)).


Otherwise, we get IM = (0).


The signature of a trace form < L/K > equals the number of real
embeddings of L into R, which is the number of real roots of a
polynomial f(X) with L ' K[X]/(f(X)) [13]. This observation
gives rise to the definition of a signature in a group theoretical
setting.


Definition 4. Let S be a finite G-set and σ ∈ G with σ2 = 1. Then


signσ(S) := ]{s ∈ S | sσ = s}


is called the signature of S according to σ.


sign(S) := {signσ(S) | σ ∈ G, σ
2 = 1}


is the set of signatures of S.


Observe, that signσ(S) = inv<σ>(S). From proposition 3 in [6] we
conclude


Proposition 2. Let G be a finite group and let H be a subgroup of
G with ∩σ∈GσHσ


−1 = 1. Then


Sign(M(G,H)) = Sign(G/H).
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2. Burnside rings


The proofs of Conner, Beaulieu-Palfrey and Lewis-McGarraghy are
based on certain identities in the Burnside ring B(G) of G and
translated into identities in the Witt ring by applying a homomor-
phism given by Dress [5] (see also [7] proposition 3).
Let B(G) denote the Burnside ring of G-sets (for more details see
[4][chapter 11 §80]). Let χGH denote the G-set given by the action
of G on the set of left cosets G/H. Let S = S(G) be a full set of
nonconjugate subgroups of G. By corollary 80.6 in [4]


B(G) = ⊕H∈SZ · χGH .
For any σ ∈ G, σ2 = 1, the definition of signatures given in defini-
tion 4 gives rise to a signature homomorphism


signσ : B(G)→ Z.
Let L(G) := ∩σ∈G,σ2=1ker(signσ) be the kernel of the total signa-
ture homomorphism. For any Galois extension N/K with Galois
group G(N/K) isomorphic to G there is a ring homomorphism
hN/K : G → W (K). Let T (G) := ∩ker(hN/K) denote the trace
ideal of G (see [6],[7],[8] for more details). Here N/K runs over all
Galois extensions of fields of characteristic 6= 2 with Galois group
G(N/K) ' G. Then T (G) ⊂ L(G). Theorem 16 in [7] states


Theorem 5. Let G be a finite group. Then L(G)/T (G) is a finite
2-group.


(B(G)/T (G))tor = L(G)/T (G)


and the only torsions in B(G)/T (G) are 2-torsions.


Together with proposition 1 we conclude


Corollary 1. Let G be a finite group and let H be a subgroup with
∩σ∈GσHσ


−1 = 1. Then there is an integer l ∈ N0 such that


(2lqG,H(X)) ⊂ IM(G,H) ⊂ (qG,H(X)).


We can choose 2l to be the exponent of the finite abelian 2-group
L(G)/T (G).


Let (a : b) := {x ∈ R | xb ⊂ a} be the ideal quotient of the ideals
a, b in the ring R. Then


IM(G,H) = (IM(G,H) : (qG,H(X))) · (qG,H(X)).
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Since IM(G,H) contains monic polynomials, we get


Corollary 2. IM(G,H) is principal ideal if and only if IM(G,H) =
(qG,H(X)).


We introduce some more notations. For any subgroup H of G let
resGH : B(G) → B(H) denote the restriction homomorphism (see
[7]). Let < a1, . . . , an > denote the diagonal matrix with diagonal
entries a1, . . . , an. For n ∈ N and a matrix A denote the n-fold
orthogonal sum by n× A := ⊕n


i=1A.


Proposition 3. Let e(G) denote the exponent of L(G)/T (G). If any
subgroup of a 2-Sylow subgroup G2 of G is a normal subgroup in
G2, then


(e(G)/2) · qG,H ∈ IM(G,H).


Proof. The proof of proposition 4.3 in [8] implies resGG2
(qG,H(χ


G
H)) ∈


2 ·B(G). Since qG,H(χ
G
H) ∈ L(G) we are done by corollary 1. ¤


The following theorem gives an affirmative answer to a question
asked in [7]. With it we are able to translate certain problems
on annihilating polynomials to the corresponding problems over 2-
groups.


Theorem 6. Let G be a finite group with 2-Sylow subgroup G2.
Then for any element χ ∈ B(G) we get


χ ∈ T (G)⇔ resGG2
(χ) ∈ T (G2).


Hence the restriction homomorphism induces an injection


L(G)/T (G) ↪→ L(G2)/T (G2).


Proof. From lemma 4.2a in [6] we know resGG2
(χ) ∈ T (G2) implies


χ ∈ T (G).
Let n := ord(G) and let N/K be a Galois extension with Galois
group G(N/K) ' G2. Set L := K(X1, . . . , Xn), where X1, . . . , Xn


are algebraically independent indeterminates. The regular repre-
sentation of G defines a monomorphism G ↪→ S({X1, . . . , Xn}),
where S({X1, . . . , Xn}) denotes the symmetric group of the set
{X1, . . . , Xn}. Hence G is a subgroup of the group of automor-
phisms AutK(L). Set F := LG and F2 := LG2 .
Since G acts transitively on {X1, . . . , Xn}, the polynomial f(X) :=
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(X −X1) · · · (X −Xn) is irreducible over F . Hence X1 is a primi-
tive element of L/F and of L/F2. Assume, that X1, . . . , Xm,m :=
ord(G2) are the conjugates of X1 over F2.
For any H < G2 we can choose a primitive element αH of LH/F2


of the form
∑m−1


i=0 giX
i
1 with gi ∈ L[X1, . . . , Xn] ∩ F2 =: R.


Let χ ∈ T (G). Then hL/F (χ) = 0 implies resGG2
(χ) =


∑


H∈S mHχH ∈ ker(hL/F2
), where H runs over a full set S of non-


conjugate subgroups of G2.
For any H ∈ S calculate a matrix MH of < NH/F2 > with respect


to the F2-basis 1, αH , . . . , α
[G2:H]−1
H . Hence MH ∈ Gl(nH , R) with


nH := [G2 : H]. Since hL/F2
(resGG2


(χ)) = 0 ∈ W (F2), there is a
matrix A ∈ Gl(t, R) and a non-zero polynomial g ∈ R with


A · [⊕H∈SmHMH ] · A
T = g2 · (t/2× < 1,−1 >).


Let α ∈ N be a primitive element of N/K and let α1 :=
α, α2, . . . , αm be the conjugates of α over NG2 . Label these
elements according to the action of G2 on {X1, . . . , Xm}.
Now we choose algebraically independent indeterminates
Y1, . . . , Ym and set Z1 := Y1+α1Y2+α


2
1Y3+. . .+α


m−1
1 Ym, . . . , Zm :=


Y1 +αmY2 +α2
mY3 + . . .+αm−1


m Ym. By looking at the Vandermonde
determinant we see that Z1, . . . , Zm are algebraically independent.
Replace X1, . . . , Xm by Z1, . . . , Zm. Denote the new polynomials
resp. matrices by g, resp. MH . Hence


A · [⊕H∈SmHMH ] · A
T
= g2 · (t/2× < 1,−1 >),


and g 6= 0. Since the set of primitive elements of a separable field
extension is a non-empty Zariski-open subset, there is an n-tuple
a = (a1, . . . , an) ∈ Kn, such that g(a1, . . . , an) 6= 0 and for any
H ∈ S the element


∑m−1
i=0 gi(a)α


i
1 is a primitive element of NH/K.


We get


A(a) · [⊕H∈SmHMH(a)] · A(a)
T = g(a)2 · (t/2× < 1,−1 >),


and g(a) ∈ K,A(a) ∈M(t,K),MH(a) ∈M(nH , K).
Hence hN/K(res


G
G2
(χ)) = 0 ∈ W (K). ¤
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3. Groups with quaternion 2-Sylow subgroups


This section contains a class of examples, where IM(G,H) is not a
principal ideal.


Proposition 4. Let G be a finite group with 2-Sylow subgroup a
quaternion group of order 8. Let H < G be a subgroup of G with
∩σ∈GσHσ


−1 = 1. Then


1.


IM(G,H) = (qG,H(X)), if


(a) ord(H) ≡ 1 mod 2,
(b) ord(H) ≡ 2 mod 4,
(c) ord(H) ≡ 0 mod 4 and the permutation representation of


G on G/H contains only even permutations.
2. Let ord(H) ≡ 0 mod 4 and suppose, that the permutation


representation of G on G/H contains an odd permutation.
(a) Then G is a semidirect product of G2 and a normal sub-


group A of odd order. The conjugation of G2 on A induces
a monomorphism Φ : G2 ↪→ Aut(A).


(b) Let n := [G : H] and s := signσχH with σ ∈ G2 the unique
involution of G2. Then


IM(G,H) =


{


(X, 2) · ((X − n)(X − s)), if n ≡ 4 mod 8,
(X − 1, 2) · ((X − n)(X − s)), if n ≡ 0 mod 8.


Proof. 1) see proposition 5.2 in [8]. 2(a) follows from lemma 5.2 in
[8].
2(b): We use the notation of §5 in [8]. By proposition 6 and [6]
proposition 7 we get 2(X − n)(X − s) ∈ IM(G,H).
Assertion. X(X − n)(X − s) ∈ IM(G,H) if 8 - n.
By proposition 7 in [6] we have to determine the coefficients mi


of χHi
in resGG2


(χGH(χ
G
H − nχGG)(χ


G
H − sχGG)). Since a = 0 we get


mi = a′bi + 2b2i (2bi − n − s). Observe, that a′ = ns ≡ 0 mod 4
and n + s ≡ 2a ≡ 0 mod 4. Hence mi ≡ 0 mod 4. We conclude
(2, X) ⊂ (IM(G,H) : (qG,H(X))). By the preceeding theorem and by
proposition 5.5 in [8] qG,H(X) 6∈ IM(G,H). Since (2, X) is a maximal
ideal in Z[X], we are done.
The case 8 | n is left to the reader. ¤


The smallest example is as follows. The automorphism group of
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A = Z/3Z × Z/3Z is a double cover of S4, which contains Q8 as
a subgroup. Set G := A o Q8 and let H be a subgroup of order 4
in G. Then IM(G,H) = (X, 2) · ((X − 18)(X − 2)) (see [8][Example
5.6]).


4. Some more 2-groups


Lemma 1. Let G be a finite 2-group and let H =< τ > be a sub-
group of order 2 in G with ∩σ∈GσHσ


−1 = 1. Then


qG,H = X(X − signτχH)(X − ord(G)/2);


signτχH = ord(CG(τ))/2;


IM(G,H) = (qG,H).


Here CG(τ) denotes the centralizer of τ in G.


Proof. Set n := [G : H] = ord(G)/2. Since τ is not contained in
the non-trivial center of G, we get X | qG,H(X) by lemma 3.3(2) in
[8]. Now proposition 10 and corollary 11 in [7] gives the result on
qG,H(X) and the signature value.


We easily calculate χ2
H = signτ (χH) · χH + n−signτχH


2
· χ1. Hence


qG,H(χH) = (χ2
H − signτ (χH) · χH)(χH − nχG)


=
n− signτχH


2
· χ1 · (χH − nχG)


=
n− signτχH


2
· (nχ1 − nχ1) = 0.


¤


5. Examples


Finally, let us summarize some examples, where IM(G,H) is a prin-
cipal ideal.


Theorem 7. In the following cases we get


IM(G,H) = (qG,H(X))


1. G has odd order. Then IM(G,H) = (X − n).
2. G2 is elementary abelian or cyclic.
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3. G2 is a dihedral group of order 2m ≥ 8.
4. H = 1.
5. G is abelian.
6. G is a Frobenius group.
7. G is a Zassenhaus group 6= PML(2, q).
8. G = 2G2(q), q = 32m+1,m ≥ 1 the Ree group in its doubly


transitive permutation representation of degree q3 + 1 and H
a one point stabilizer.


9. G a group of order ≤ 31.
10. G = Q2l ,M(2l), QD2l .


There exists four groups of order 2l+1 ≥ 8, which contain an element
of order 2l. Beside the dihedral group D2l there are the generalized
quaternion group Q2l , the quasidihedral group QD2l and the group
M(2l) (see [10][I. Satz 14.9]).


Proof. For (1) see [3] corollary 1.6.5, resp. proposition 17 in [7].
Use proposition 3 and [6] proposition 5 and 6 to prove (2).
(3) follows from proposition 5.1 in [8].
4) If H = 1, then qG,H(X) = BG,H(X) = X−n, resp. = X(X−n).
5) The condition on H implies H = 1.
(6), (7) and (8) follow from [8] proposition 6.1, 6.3 and 3.4.
9) By (1), (2), (3) and (5) it remains to consider non-abelian groups
of order n = 8, 16, 24 and the case n = 24, G2 ' Z/2Z× Z/4Z.
n = 8. Apply (3), resp. (5) in the case of the quaternion group.
n = 16. Any subgroup H < G of order ≥ 4 has a non-trivial
intersection with the center of G (see [14]). Now use lemma 1.
n = 24. The result for G2 ' Z/2Z × Z/4Z follows from some
unpublished determination of the exponent of L(G)/T (G) for
G = Z/2Z× Z/2lZ.
Since there is no injection Q8 ↪→ Aut(Z/3Z), we are done by
proposition 4.
(10) follows from lemma 1, since any subgroup H of G of order ≥ 4
has a non-trivial intersection with the center of G. ¤
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