
A SECOND DESCENT PROBLEM FOR QUADRATIC
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Abstract. Let F be a field of characteristic different from 2. We
discuss a new descent problem for quadratic forms, complement-
ing the one studied in [19] and [30]. More precisely, we conjecture
that for any quadratic form q over F and any ϕ ∈ Im(W (F ) −→
W (F (q))), there exists a quadratic form ψ ∈ W (F ) such that
dimψ ≤ 2 dimϕ and ϕ ∼ ψF (q), where F (q) is the function field
of the projective quadric defined by q = 0. We prove this conjec-
ture for dimϕ ≤ 3 and any q, and get partial results for dimϕ ∈
{4, 5, 6}. We also give other related results.
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1. Introduction

Let F be a field of characteristic different from 2 and K/F an exten-
sion. Let ϕ be a quadratic form over K. We say that ϕ is defined over
F if there exists a quadratic form ψ over F such that ϕ ' ψK , where
' denotes isometry of quadratic forms.
1.1. Problem. Under which conditions is ϕ defined over F?

This problem is studied in [19] and [30] when K is the function field
of a quadric: Conjecture 1 below predicts sufficient conditions for a
positive answer in that case. In the present paper, our aim is to study
a complementary problem, which we now explain.
If we replace ' by ∼ (Witt equivalence), we say that ϕ is defined

over F up to Witt equivalence: this means that ϕ ∈ Im(W (F ) −→
W (K)). Clearly, if ϕ is defined over F , it is defined over F up to Witt
equivalence. We then may ask:

1.2. Problem. Suppose that ϕ is defined over F up to Witt equivalence.

(1) What is the smallest dimension of an F -form ψ such that ϕ ∼
ψK?

(2) Can one describe those ψ which have this smallest dimension?

Conjecture 2 below tackles this issue again when K is the function
field of a quadric; still in that case, Theorem 7.3 will provide a very
detailed answer to Problem 1.2 for low-dimensional ϕs, and prove part
of Conjecture 2 as a consequence.
More generally, suppose K/F finitely generated and regular: this

means that K is the function field of a geometrically irreducible F -
variety. The condition that ϕ ∈ Im(W (F ) −→ W (K)) implies that ϕ
belongs to the unramified Witt group of K/F

Wnr(K/F ) = Ker
(
W (K)

(∂2
v)−→

⊕

v

W (Kv)
)

where v runs through all discrete valuations of K which are trivial on
F , Kv and ∂

2
v denote respectively the residue field of v and the second

residue homomorphism at v (associated to a local uniformiser). This
condition is sufficient in the following cases, in which ϕ is even defined
over F :

• K/F is purely transcendental.
• K/F is quadratic.
• K is the function field of a conic or a quadric defined by a 2-fold
Pfister form ([4, Lemma 3.1], [5, Appendix], [37], [40]).
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In general, however, the homomorphism W (F )→ Wnr(K/F ) is not
surjective (cf. Theorem 6.4 d)). When K = F (q) is the function field
of the projective quadric with equation q = 0, one has the following
conjecture [19]:

Conjecture 1. Let q be a quadratic form over F , K = F (q) and ϕ a
quadratic form over K such that:

(1) ϕ ∈Wnr(K/F ),
(2) dimϕ < 1

2
dim q.

Then ϕ is defined over F .

This conjecture was proved in certain cases where dimϕ is small ([19]
and [30]).
In this paper, we study the following complementary conjecture to

Conjecture 1, and prove it in certain cases:

Conjecture 2. Let q be a quadratic form over F , K = F (q) and ϕ
an anisotropic quadratic form over K. Suppose that ϕ ∈ Im(W (F )→
W (K)). Then there exists a quadratic form ψ over F such that ψK ∼ ϕ
and dimψ ≤ 2 dimϕ.
In order to state our results, it is convenient to introduce some no-

tation. For (q, ϕ) as in Conjecture 2, define

CF (q, ϕ) = inf{dimψ | ψ ∈ W (F ) and ϕ ∼ ψF (q)}.
Note that CF (q, ϕ) and dimϕ have the same parity. Moreover, de-

fine:

CF (q, n) = sup{CF (q, ϕ) | dimϕ = n} ≤ +∞
C(m,n) = sup{CF (q, n) | F a field and dim q = m} ≤ +∞

C(n) = sup{C(m,n) | m ≥ 2} ≤ +∞.

A reformulation of Conjecture 2 in terms of these constants is as
follows:

1.3. Reformulation. For any integer n ≥ 1, one has C(n) ≤ 2n. In
particular, C(n) ≤ 2n− 1 for n odd.

(When n is odd, the inequality C(n) ≤ 2n−1 follows from C(n) ≤ 2n
and the fact that C(n) has the same parity as n.)
These bounds are best possible: indeed, we shall show in Section 5:

Theorem 1. For any n ≥ 1, one has

C(n) ≥ C(4, n) ≥
{
2n if n is even

2n− 1 if n is odd.
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The appearance of C(4, n) in the formulation of this theorem suggests
that the case dim q = 4 is the most difficult to study: this is amply
vindicated by our computations below.
Here are now the main results of this paper.

Theorem 2. a) Conjecture 2 holds if

(i) dimϕ ≤ 3.
(ii) ϕ is similar to a 2-fold Pfister form.
(iii) ϕ is a Pfister neighbour of dimension 5.

b) For all m 6= 4, C(m, 4) ≤ 8 and C(m, 5) ≤ 9.
c) C(4, 4) ≤ 10. In particular, C(4) ≤ 10.

For n = 5 or 6, we also get the following partial results, which overlap
with Theorem 2 b):

Theorem 3. Let q,K, ϕ be as in Conjecture 2; let D be a central sim-
ple F -algebra such that [DK ] = c(ϕ).
a) If dimϕ = 5 and ϕ is not a Pfister neighbour, Conjecture 2 holds, ex-
cept perhaps when dim q = 4, d±q 6= 1 and ind(D) = ind(D⊗C0(q)) =
4.
b) If dimϕ = 6 and ϕ is an Albert form, Conjecture 2 holds and one
even has CF (q, ϕ) ≤ 8, except perhaps in the same exceptional case as
in a).

Observe that in Theorem 2 and Theorem 3, the only instances where
we cannot fully conclude are when dim q = 4 (and d±q 6= 1), confirming
that this case is particularly difficult.
Theorems 2 and 3 follow from more precise results, which will be

stated in Theorem 7.3. Roughly, we are able not only to prove the ex-
istence of the forms ψ appearing in Conjecture 2, but also to determine
exactly those of smallest dimension, provided ϕ is not too complicated.
(When ϕ is defined over F , ψ is usually unique, cf. [19, Lemma 3].
This is not the case in general, but all ψ of minimal dimension are at
least of the same shape). It turns out that one is often in a “standard”
situation, of the same type as the one in Proposition 4.5 below. Con-
versely, the fact that the exceptional case of Theorem 3 is the same as
the one showing up in [15] is not a coincidence.
Unfortunately the proofs are not as simple as one might hope, and

we are forced to go through tedious discussions involving cases and
subcases. As in [19] for Conjecture 1, we hope that a more geometric
understanding of Conjecture 2 will lead to a direct and general proof.
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2. Notation and rappels

Most of the notations and definitions that we use are well-established
(cf. inter alia [31], [42], [25, 26]). Let us only specify those which may
not be standard:

(1) For i ≥ 0, we denote by H iF the Galois cohomology group
H i(F,Z/2).

(2) We denote by d±ϕ = ((−1)n(n−1)/2 detϕ) ∈ H1F the signed
discriminant of a quadratic form ϕ of dimension n (where detϕ
is the usual discriminant of ϕ), and by c(q) ∈ H2F its Clifford
invariant. We also write d± = e1 and c = e2.

(3) For ϕ ∈ I3F , we denote by e3(ϕ) ∈ H3F its Arason invariant
[2].

(4) We denote by D(ϕ) (resp. G(ϕ)) the set of values (resp. the
group of similarity factors) of an anisotropic form ϕ.

(5) For two quadratic forms ϕ and ψ, we write ϕ ∼ ψ if ϕ ⊥ −ψ is
hyperbolic (Witt equivalence), and ψ ≤ ϕ if ψ is isometric to a
sub-form of ϕ.

(6) We denote by ϕan the anisotropic part of a quadratic form ϕ.
(7) For a1, . . . , an ∈ F ∗, we denote by 〈〈a1, . . . , an〉〉 the n-fold Pfis-

ter form 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉.
(8) We write Pn(F ) for the set of n-fold Pfister forms, GPn(F ) =

F ∗Pn(F ) and GP (F ) =
⋃
n≥1GPn(F ).

(9) We shall usually abbreviate the expression Pfister neighbour
[26, Def. 7.4] into neighbour.

(10) An Albert form is a 6-dimensional quadratic form with trivial
signed discriminant. An Albert form may be isotropic.

(11) A virtual Albert form is an anisotropic 6-dimensional quadratic
form which remains anisotropic on the quadratic extension given
by its signed discriminant.

(12) For any quadratic form ϕ of dimension ≥ 2, we denote by Xϕ

the projective quadric of equation ϕ = 0 (dimXϕ = dimϕ− 2)
and by F (ϕ) the function field of Xϕ (if dimϕ = 2 and ϕ is
isotropic, one therefore has F (ϕ) = F × F ).

(13) For any finite-dimensional central simple F -algebra A, we write
ind(A) for the Schur index of A; [A] for the class of A in H2F ;
SB(A) for the Severi-Brauer variety of A and F (A) for the
function field of SB(A).

(14) If ϕ and ϕ′ are two quadratic forms, we denote by F (ϕ, ϕ′) the
function field of the product variety Xϕ×FXϕ′ . If A is a central
simple F -algebra and ϕ is a quadratic form, we write F (A,ϕ)
for the function field of SB(A) ×F Xϕ. We have F (ϕ, ϕ

′) =
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F (ϕ)(ϕ′) = F (ϕ′)(ϕ), F (A,ϕ) = F (A)(ϕ) = F (ϕ)(A). Simi-
larly for more quadratic forms or more algebras.

(15) If ϕ and ψ are two anisotropic F -quadratic forms, we say that
ϕ is dominated by ψ if ψF (ϕ) is isotropic. Notation: ϕ 4 ψ or
ψ < ϕ. This is a preorder relation. One has: (ϕ ≤ aψ for a
scalar a ∈ F ∗) ⇒ (ϕ 4 ψ).

(16) If ϕ 4 ψ and ψ 4 ϕ, we say that ϕ and ψ are stably birationally
equivalent1. Notation: ϕ ³ ψ. This is an equivalence relation.

(17) If ϕ is an F -quadratic form, we denote by (ϕ0, ϕ1, . . . , ϕh) the
sequence of its “higher kernel forms” in the sense of Knebusch
[25, 26]. In particuliar, ϕ0 = ϕan and ϕ1 = (ϕF (ϕ0))an. We write
(i0(ϕ), i1(ϕ), . . . , ih(ϕ)) for the sequence of the “higher Witt
indices” of ϕ (this is sometimes called the splitting pattern of
ϕ): in particular, i0(ϕ) = iW (ϕ) (the classical Witt index) and
i1(ϕ) = iW (ϕF (ϕ0)). The integer h is the height of ϕ; if ϕ ∈ IF ,
the unique integer d such that ϕh−1 ∈ GPd(Fh−1) is the degree
of ϕ, and the unique Pfister form which is determined by ϕh−1

is called the leading form of ϕ. The height and degree are
respectively denoted by h(ϕ) and deg(ϕ).

(18) [11, Def. 3.4] Let 1 ≤ m < n. We say that an anisotropic
form ϕ of dimension 2n is a twisted (n,m)-fold Pfister form if
there exists σ ∈ Pn(F ) − {0} and π ∈ Pm(F ) − {0} such that
ϕ ∼ σ ⊥ −π. The form π is called the twist of ϕ. Notation:
ϕ ∈ Pn,m(F ). We write GPn,m(F ) = F ∗Pn,m(F ).

The Arason-Pfister Hauptsatz will be of constant use in the proofs.
Recall its content:

2.1. Theorem (Arason-Pfister [3]). If ϕ ∈ InF is anisotropic, then
dimϕ ≥ 2n. Moreover, if dimϕ = 2n, then ϕ ∈ GPn(F ).
Recall also that, for n ≤ 3, the cohomological invariant en induces

an isomorphism

(2.1) InF/In+1F
∼−→ HnF

(Kummer for n = 1, Merkurjev [33] for n = 2, Rost [41] and Merkur-
jev-Suslin [35] for n = 3). We shall not need the fact that this result
extends to all n in characteristic zero (Orlov-Vishik-Voevodsky [36]).
Finally, let us recall the statement of the index reduction theorems

of Merkurjev [34], [45] and Schofield-van den Bergh [43]:

2.2. Theorem.

1Strictly speaking, this terminology should rather apply to Xϕ and Xψ.
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(1) Let q be an F -quadratic form, and D a division central F -
algebra. Then ind(DF (q)) < ind(D) if and only if there exists a
homomorphism C0(q)→ D.

(2) Let D,A be two central simple F -algebras, and letK = F (SB(A)).
Suppose that D is division. Then

ind(DK) = inf{ind(D ⊗F A
⊗i) | i ∈ Z}.

3. Cohomological kernels

Certain cohomological results will play a central rôle in the proofs.
For any extension K/F and any integer n ≥ 0, define

Hn(K/F ) = Ker(HnF → HnK).

In degree 2, one has:

3.1. Theorem.

(1) (Amitsur [1]) For any central simple F -algebra A of exponent
2, H2(F (A)/F ) = {0, [A]}.

(2) (Witt, Arason [2]) For any F -quadratic form q of dimension
≥ 4, one has H2(F (q)/F ) = 0, except if q ∈ GP2(F ); in this
case the kernel is generated by e2(q).

In degree 3, there is a general theorem due to Peyre [39] concerning
the function fields of projective homogeneous varieties. We shall only
need special cases of this theorem, first of all for quadrics and Severi-
Brauer varieties. In the first case, there is a previous, more precise
result, due to Arason:

3.2. Theorem (Arason [2, Satz 5.6]). Let q be an F -quadratic form
of dimension ≥ 3, and α ∈ H3(F (q)/F ) − {0}. Then there exists
τ ∈ GP3(F ) such that

(i) e3(τ) = α,
(ii) q ≤ τ .

One deduces from this:

3.3. Lemma. Let q be an anisotropic F -quadratic form of dimension
4 and discriminant d. Write E = F (

√
d) and let N : E∗ → F ∗ be the

norm map. Then

H3(F (q)/F ) = {e3(〈〈N(x) 〉〉⊗q) | x ∈ E∗}.
Proof. For x ∈ E∗, the form 〈〈N(x) 〉〉⊗q has trivial Clifford invari-
ant, hence belongs to GP3(F ). So {e3(〈〈N(x) 〉〉⊗q) | x ∈ E∗} ⊂
H3(F (q)/F ). Conversely, let α ∈ H3(F (q)/F )−{0} and τ be as in the
conclusion of Theorem 3.2. If one writes τ ' q ⊥ ψ, ψE is similar to qE,
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hence ψ ' −aq for a suitable a ∈ F ∗ by a theorem of Wadsworth [47].
But the form q ⊥ −aq is in I3F if and only if c(q ⊥ −aq) = (a, d) = 0,
that is, a ∈ N(E∗).

3.4. Lemma. Keep the same notation as in Lemma 3.3, and suppose
q 6∈ GP2(F ). Let ρ be a quadratic form such that ρF (q) ∼ qF (q). Then
ρ ≡ N(x)q (mod I4F ) for some x ∈ E∗.

Proof. Since H i(F (q)/F ) = {0} for i = 1, 2, one has q ⊥ −ρ ∈ I3F
and therefore e3(q ⊥ −ρ) ∈ H3(F (q)/F ). By Lemma 3.3, there exists
x ∈ E∗ such that

q ⊥ −ρ ≡ 〈〈N(x) 〉〉⊗q (mod I4F ).

Hence the result.

3.5. Theorem (Peyre [38]). Let A be a central simple F -algebra of
exponent 2. Then

(1) There is an injection
H3(F (A)/F )

[A] ·H1F
↪→ 2CH

2(SB(A)), where

CH2(X) is the codimension 2 Chow group of a smooth variety
X.

(2) For ind(A) ≤ 4, 2CH
2(SB(A)) = 0.

3.6. Theorem (Karpenko [23]). One also has 2CH
2(SB(A)) = 0 if A

is a tensor product of three quaternion algebras.

3.7. Corollary. H3(F (A)/F ) = [A] ·H1F if A is a tensor product of
at most three quaternion algebras.

We shall also need the case of a product of a quadric by a Severi-
Brauer variety:

3.8. Theorem (Izhboldin-Karpenko [16, Prop. 2.1]). Let A be a central
simple F -algebra of exponent 2 and q an F -quadratic form of dimension
≥ 3. Then there is an isomorphism

H3(F (q, A)/F )

H3(F (q)/F ) +H3(F (A)/F )
' CH2(Xq × SB(A))tors
CH2(Xq)tors + CH2(SB(A))tors

.

Unfortunately, the results of the next theorem cannot always be
derived directly from this general statement.

3.9. Theorem. Let A and q be as in Theorem 3.8.
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(1) (Izhboldin-Karpenko [14, Theorem 4]) Suppose that A is a di-
vision algebra of degree 8, and that dim q ≥ 5. If ind(AF (q)) <
ind(A), then

H3(F (q, A)/F ) = [A] ·H1F.

(2) (Izhboldin-Karpenko [16, Th. 4.1 and Prop. 6.8]) Suppose

ind(A) ≤ 4 and dim q = 4, d = d±q 6= 1. Let E = F (
√
d).

Then

CH2(Xq × SB(A))tors = 0

and thus

H3(F (q, A)/F ) = H3(F (q)/F ) +H3(F (A)/F )

except perhaps if ind(C(qE) ⊗ AE) = 2 or 4. In the first case,

the quotient
H3(F (q, A)/F )

H3(F (q)/F ) +H3(F (A)/F )
is generated by e3(ρ)

for any form ρ ∈ I3F of type

ρ = kq + q′′ + lγ

where γ is an Albert form verifying c(γ) = [A], k, l ∈ F ∗ and
q′′ is a 4-dimensional form verifying d±q

′′ = d, c(q′′E) = c(qE) +
[AE].

(3) (Izhboldin-Karpenko [15, Theorem 3.1]) Suppose that q =
〈−a,−b, ab, d〉 with d 6= 1 and that A = (a, b)⊗F (u, v)⊗F (d, s)
is a division algebra. Then

H3(F (q, A)/F ) = H3(F (q)/F ) + [A] ·H1F.

4. Conjugate forms

4.1. Definition ([26, Def. 8.7]). Two anisotropic F -forms ϕ and ϕ′

are conjugate if dimϕ = dimϕ′ and ϕ ⊥ −ϕ′ ∈ GP (F ). We denote
this relation by ϕ ≈ ϕ′.

If two forms are conjugate, their common dimension is a power of 2.

4.2. Lemma. Let ϕ, ψ be two anisotropic F -forms, with ϕ 6' ψ and
dimψ ≤ dimϕ. Suppose that (ψ ⊥ −ϕ)F (ϕ) ∼ 0. Then, either ϕ
is a Pfister neighbour with complementary form ψ, or ϕ and ψ are
conjugate.

Proof. We have the inequality dim(ψ ⊥ −ϕ) − 2deg(ψ⊥−ϕ) < 2 dimϕ.
Therefore, we are in the position to apply Fitzgerald’s theorem [8, Th.
1.6], which states that ψ ⊥ −ϕ ∈ GP (F )−{0}. The conclusion follows
immediately.
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4.3. Proposition. a) For two anisotropic F -forms ϕ, ϕ′ of dimension
2n, the following conditions are equivalent:

(i) ϕ ≈ ϕ′.
(ii) ϕ ⊥ −ϕ′ ∈ In+1F .
(iii) (ϕ ⊥ −ϕ′)F (ϕ) ∼ 0.
(iv) ϕ ³ ϕ′ and ϕK ∼ ϕ′K for any extension K/F such that ϕK and

ϕ′K are isotropic.

b) The relation of conjugation is an equivalence relation.

Proof. a) (i) ⇒ (ii) is clear. (ii) ⇒ (iii) follows from the Hauptsatz.
(iii) ⇒ (i) follows from Lemma 4.2. (i) ⇐⇒ (iv) is [26, Th. 8.8].
b) follows from the equivalence between (i) and (ii) in a).

4.4. Proposition. Let ϕ ∈ GPn,n−1(F ), of twist π. For another F -
quadratic form ϕ′, the following conditions are equivalent:

(i) ϕ ≈ ϕ′.
(ii) ϕ′ ' aϕ with a ∈ G(π).

Proof. One has ϕ ≡ −π (mod InF ). (ii) ⇒ (i) Since 〈〈 a 〉〉⊗π ∼ 0,
one has 〈〈 a 〉〉⊗ϕ ∈ In+1F , that is, ϕ ⊥ −ϕ′ ∈ In+1F . By Proposition
4.3, one has ϕ ≈ ϕ′. In the other direction, one has ϕ′ ' aϕ by [12,
Cor. 3.4, Th. 3.4] (see [27, Th. 3] for n = 3). Hence

ϕ ⊥ −ϕ′ ≡ 〈〈 a 〉〉⊗ϕ ≡ −〈〈 a 〉〉⊗π (mod In+1F ).

By the Hauptsatz, 〈〈 a 〉〉⊗π ∼ 0.

4.5. Proposition. Let q be an anisotropic F -quadratic form, K = F (q)
and q1 = (qF (q))an. Then,

CF (q, q1) =

{
dim q1 if q is a neighbour

dim q otherwise.

In the first case, the complementary form of q is the unique F -form ψ
of dimension < dim q such that ψK ' −q1. In the second case, the set
of those F -forms ψ such that dimψ ≤ dim q and ψK ∼ q1 is reduced to
{q} if dim q is not a power of 2, and equals the set of F -forms conjugate
to q otherwise.

Proof. If q is a neighbour of complementary form ψ, then q1 is defined
over F by the form −ψ by a theorem of Hoffmann [10, Theorem 1].
Moreover, let ψ′ be another F -form such that ψ′K ' q1. Then (ψ ⊥
ψ′)K ∼ 0; if ψ ⊥ ψ′ ¿ 0, one has dim(ψ ⊥ ψ′) ≥ dim q + dim q1 by [19,
Lemma 2]. This implies dimψ′ ≥ dim q.
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Suppose now that q is not a neighbour. Let ψ be an anisotropic F -
form of minimal dimension such that ψK ∼ q1. One has dimψ ≤ dim q
and (ψ ⊥ −q)K ∼ 0. If dim q is not a power of 2, then q ' ψ by Lemma
4.2. Otherwise, one reapplies Lemma 4.2 to deduce that ψ is conjugate
to q; conversely, any F -form conjugate to q is a solution, thanks to the
equivalence between (i) and (iii) in Proposition 4.3 a).

5. Lower bounds

5.1. Lemma. a) For any m ≥ 2 and n ≥ 1, C(m,n) ≥ n.
b) For any n ≥ 1, C(2, n) = C(3, n) = n. If q ∈ GP2(F ), then
CF (q, n) = n.
c) One has C(m,n) = n for any m > 2n as soon as Conjecture 1 is
verified.

Proof. a) and c) are obvious; b) follows from the excellence of the
function field of a quadratic form of dimension ≤ 3 or of a 2-fold Pfister
form.

5.2. Proposition. Let m ≥ 2 and k, l ≥ 1 be integers. Then C(m, k+
l) ≥ C(m, k) + C(m, l) and C(k + l) ≥ C(k) + C(l).

Proof. Let q be an F -quadratic form of dimension m, K = F (q) and
ϕ′, ϕ′′ ∈ Im(W (F ) −→ W (K)) be anisotropic of respective dimensions
k and l. Let L = F ((t)) be the field of formal power series in t over F .
Set ϕ = ϕ′ ⊥ tϕ′′. By Springer’s theorem, ϕ is anisotropic. The

statement will therefore follow from the inequality

(5.1) CL(qL, ϕ) ≥ CF (q, ϕ
′) + CF (q, ϕ

′′).

We have ϕ ∈ Im(W (L) −→ W (K ·L)). Let η ∈W (L) be anisotropic
and such that ϕ ∼ ηK·L. Write η ' η′ ⊥ tη′′ with η′, η′′ ∈ W (F ).
Taking residue forms, we get:

ϕ′ ∼ η′K and ϕ′′ ∼ η′′K .

The forms η′ and η′′ are anisotropic. Therefore

dim η′ ≥ CF (q, ϕ
′)

dim η′′ ≥ CF (q, ϕ
′′)

and

dim η ≥ CF (q, ϕ
′) + CF (q, ϕ

′′).

But this is true for any form η verifying ϕ ∼ ηK·L, hence (5.1).
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5.3. Lemma. We have
a) C(m, 1) = 1 for any m ≥ 2.
b) C(4, 2) ≥ 4.
Proof. a) follows from [19, Theorem 2 (a)] for m > 2 and from Lemma
5.1 b) for m = 2. b) Let F, q be such that q is anisotropic over F ,
dim q = 4 and d±q 6= 1. Then q is not a neighbour: the statement
therefore follows from Proposition 4.5.

Proof of Theorem 1. For n = 1 the statement is trivial. Suppose
n ≥ 2. If n is even, write it n = 2k; the statement then follows from
Lemme 5.3 iterated k times and Proposition 5.2. If n is odd, write it
n = n′ + 1; the statement follows from the even case and Proposition
5.2.

6. The homomorphism W (F )→ Wnr(K/F )

6.1. Proposition. Let q, q′ be two anisotropic F -quadratic forms of
dimension ≥ 3 such that q 4 q′, and let K = F (q), K ′ = F (q′).
a) There is a commutative diagram

Wnr(K/F )

↗
W (F )

x

↘
Wnr(K

′/F ).

If moreover q′ 4 q, the vertical arrow in this diagram is an isomor-
phism.
b) Let ϕ′ ∈ Wnr(K

′/F ), and let ϕ be an anisotropic representative of
the image of ϕ′ inWnr(K/F ) by the map of a). Let ψ be an F -quadratic
form such that ϕ ∼ ψK. Then ϕ

′ ∼ ψK′ in the following cases:

(i) q′ ³ q (cf. Notation 2.16).
(ii) The following inequality holds:

dimϕ+ dimψ < 2(dim q − i1(q)).

Proof. a) can be proven as [20, Prop. 2.5 c)] by noting that the
composite extension K ·K ′/K is purely transcendental.
b) Observe that dimϕ ≤ dimϕ′. If ϕ ∼ ψK , then (ψK′ ⊥ −ϕ′)K·K′

is hyperbolic. In the first case, the extension K · K ′/K ′ is purely
transcendental, hence ψK′ ⊥ −ϕ′ is hyperbolic. In the second case this
form is still hyperbolic, as one sees by applying [19, Lemma 2].
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6.2. Corollary. Conjectures 1 and 2 only depend on the stable bira-
tional equivalence class of q.

6.3. Remark. The integer dim q− i1(q) = 1
2
(dim q+dim q1) is a stable

birational invariant of q, by a result of Vishik and Karpenko [46, Cor.
A.18], [24, Th. 8.1].

6.4. Theorem. Let q be an F -quadratic form and K = F (q).
a) If dim q = 3, the homomorphism W (F )→ Wnr(K/F ) is surjective.
This is also true if q is similar to a 2-fold Pfister form.
b) If F is of characteristic 0 and if q is a neighbour, the homomorphism
W (F )→ Wnr(K/F ) is surjective.
c) Suppose that q is an Albert form: (qK)an is therefore of the form
ατ , with α ∈ K∗ and τ ∈ P2(K). Then τ ∈ Wnr(K/F ), but τ /∈
Im(W (F )→ Wnr(K/F )).

Proof. The first statement of a) is due to Parimala (cf. [4, Lemma
3.1]); the second one follows from Proposition 6.1 a). b) is [22, Th. 4].
Finally, c) is stated in [18, Remark 3 p. 249]: since this reference is
sparing with details, let us give a proof for the reader’s convenience.
Since c(τ) = c(q)K , τ is unramified (its residues are binary forms with

trivial discriminants). It is now sufficient to show that ϕ = 〈〈α 〉〉⊗τ 6∈
Im(W (F ) → Wnr(K/F )), since ατ is in this image. Suppose that
ϕ ∼ ψK for some F -form ψ. As ϕ ∈ I3K and H i(K/F ) = {0} for
i = 1, 2 (since dim q > 4), necessarily ψ ∈ I3F . Then e3(ϕ) = e3(ψ)K .
But this contradicts the fact that e3(ϕ) ∈ H3K is not defined on F (cf.
[18, proof of Th. 2 d), middle p. 249]).

6.5. Question. For K = F (q), is it true that W (F ) → Wnr(K/F ) is
surjective if dim q ∈ {4, 5}?

At least W (F )→ Wnr(K/F )

I5K ∩Wnr(K/F )
is surjective in these cases: this

follows from [20, Th. 4, 5 and 9] and [21, Th. 3].

7. Detailed statements of results

7.1. Definition. Let q,K, ϕ be as in Conjecture 2. We write

Desc(ϕ) = {ψ ∈W (F ) | ψK ∼ ϕ}
Desc0(ϕ) = {ψ ∈ Desc(ϕ) | dimψ = dimϕ}.

An element of Desc(ϕ) is called a Witt descent of ϕ; an element of
Desc0(ϕ) is called a descent of ϕ.
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By definition, ϕ is defined over F if and only if Desc0(ϕ) 6= ∅. Any
element of Desc(ϕ) of minimal dimension is automatically anisotropic.
By Lemma 5.1 b), ϕ is always defined over F if dim q ≤ 3 or q ∈

GP2(F ). This allows us to limit ourselves to dim q ≥ 4, q /∈ GP2(F )
to prove Theorems 2 and 3. We shall make this assumption henceforth
without further comments.

7.2. Lemma. Let ψ, ψ′ ∈ Desc(ϕ). Then d±ψ = d±ψ
′ and c(ψ) =

c(ψ′).

Proof. The form ψ ⊥ −ψ′ belongs to W (K/F ). Since the extension
K/F is regular, the first claim is obvious. The assumption on q implies
that Br(F ) → Br(K) is injective (Theorem 3.1), hence the second
claim.

Let q,K, ϕ be as in Conjecture 2. We choose ψ ∈ Desc(ϕ) of minimal
dimension. We denote by D the central division F -algebra such that
[DK ] = c(ϕ). Moreover, we set

L = F (D), n = dimϕ, d = d±ψ, d
′ = d±q,

q1 = (qF (q))an, E = F (
√
d) and E ′ = F (

√
d′).

By Lemma 7.2, d and D are independent of the choice of ψ.
When q ∈ GP2,1(F ) or GP3,2(F ), we denote its twist by π. In the

tableaux below, the expression “Other ψ” means the other members of
Desc(ϕ) of minimal dimension.

7.3. Theorem. Suppose that ϕ is not defined over F . Then
a) One has n > 1.
b) For n = 2, we are in the following situation:

0 1 2 3 4 5

dim q conditions on q conditions on ϕ value of ψ other ψ CF (q, ϕ)

4 q ∈ GP2,1(F ) ϕ ' aq1, a ∈ F ∗ aq abq, b ∈ G(π) 4

c) For n = 3, we are in one of the following situations:

0 1 2 3 4 5

dim q conditions on q conditions on ϕ value of ψ other ψ CF (q, ϕ)

4 q ∈ GP2,1(F ) ϕ ' aq1 ⊥ 〈c〉, a, c ∈ F ∗, aq ⊥ 〈c〉 abq ⊥ 〈c〉, 5

−ac /∈ G(π)D(q) b ∈ G(π)

5 not a neighbour ϕ ' aq1, a ∈ F ∗ aq no 5

d) For n = 4, ϕ ∈ GP2(K), we are in one of the following situations:
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0 1 2 3 4 5

dim q conditions on q conditions on ϕ value of ψ other ψ CF (q, ϕ)

4 q ∈ GP2,1(F ) ϕ ∼ aq1 ⊥ θK , aq ⊥ θ conjugate or 8 if −a

a ∈ F ∗, dim θ = 4 Witt-equivalent to 6∈ G(π)D(q)D(θ)

abq ⊥ θ, b ∈ G(π) 4 or 6 else

4 or 5 q ≤ γ, γ Albert ϕ ∼ aγK , aγ abγ, 6

anisotropic a ∈ F ∗ b ∈ G(ϕ)

6 Albert ϕ ' aq1, aq no 6

a ∈ F ∗

5, 7 or 8 not a neighbour, q ≤ q′, ϕ ∼ aq′K , a ∈ F ∗, aq′ abq′, 8

q′ ∈ GP3,2(F ) ψL 6∈ I
4L if b ∈ G(π)

anisotropic dim q = 5

e) For n = 4 and ϕ /∈ GP2(K), we have ind(DE) ∈ {2, 4}, and we are
in one of the following situations:

0 1 2 3 4 5

dim q conditions on q conditions on ϕ value of ψ other ψ CF (q, ϕ)

4 q ∈ G2,1F , ind(DE) = 2 a 〈1,−d〉 ⊥ τ , or ? ≤ 10

a 〈1,−d〉 ⊥ bq ⊥ δ,

a, b ∈ F ∗, τ ∈ GP2(F )

dim δ = 4

4 q ∈ GP2,1(F ), ind(DE) = 4, aγ = aq ⊥ θ, abq ⊥ θ, 6

q ≤ γ, ϕ ∼ aγK , a ∈ F ∗ dim θ = 2 b ∈ G(π)

γ virtual Albert

5 not a neighbour ϕ ' aq1 ⊥ 〈b〉, aq ⊥ 〈b〉 no 6

a, b ∈ F ∗,

−ab 6∈ D(q)

6 neither Albert ϕ ' aq1, aq no 6

nor neighbour a ∈ F ∗

f) For n = 5, ϕ a neighbour, we have ϕ ' τ ⊥ 〈d〉 with τ ∈ GP2(K).
Then we are in one of the following situations2:

2In column 4 of rows 1 and 4, we only give those other forms ψ representing
d±ϕ.
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0 1 2 3 4 5

dim q conditions on q conditions on ϕ value of ψ other ψ CF (q, ϕ)

4 q ∈ GP2,1(F ) τ ∼ aq1 ⊥ θK , aq ⊥ θ ⊥ 〈d〉 q′ ⊥ 〈d〉, 7 or 9

a ∈ F ∗, dim θ = 4, q′ ≈ abq ⊥ θ or

−a 6∈ G(π)D(q)D(θ) q′ ∼ abq ⊥ θ,

b ∈ G(π)

4 or 5 γ := q ⊥ ξ τ ∼ aγK , a ∈ F ∗ aγ ⊥ 〈d〉 abq ⊥ aξ ⊥ 〈d〉, 7

anisotropic Albert −ad /∈ D(γ) if b ∈ G(π) if

dim q = 5; −ad 6∈ dim q = 4; no

D(bq ⊥ ξ) ∀ b ∈ G(π) if dim q = 5

if dim q = 4

6 Albert τ ' aq1, aq ⊥ 〈d〉 no 7

−ad /∈ D(q)

5, 7 or 8 not a neighbour, q ≤ q′, τ ∼ aq′K , aq′ ⊥ 〈d〉 q′′ ⊥ 〈d〉, 7 or 9

q′ ∈ GP3,2(F ) a ∈ F ∗, q′′ ≈ abq′,

anisotropic (ψ ⊥ 〈−d〉)L 6∈ I
4L b ∈ G(π)

if dim q = 5

g) For n = 5, ϕ not a Pfister neigbour, γ = ϕ ⊥ 〈−d〉 is an anisotropic
Albert form. If ind(D) = 4, let γ ′ be an Albert form such that c(γ ′) =
[D].

g.1) Suppose that γ is defined over F , and let γ0 ∈ Desc0(γ). Then:

(1) −d 6∈ D(γ0), hence γ0 ⊥ 〈d〉 is a descent of ϕ of minimal
dimension, and CF (q, ϕ) = 7.

(2) If dim q ≥ 5, then γ0 ⊥ 〈d〉 is the unique descent of ϕ of minimal
dimension.

(3) If dim q = 4 and d±q 6= 1, then a descent ψ of ϕ of minimal
dimension satisfies γ0 ⊥ 〈d〉 ' ψ or there exists ρ ∈ GP3(F )−
{0} such that q 4 ρ, ρ ' ρ1 ⊥ ρ2 and γ0 ⊥ 〈d〉 ' ρ1 ⊥ ρ3 with
dim ρ1 = 4, and ψ ' ρ2 ⊥ −ρ3. In the case d ∈ D(ψ), one has
ψ ' aγ0 ⊥ 〈d〉 for some a ∈ F ∗.

g.2) Suppose that γ is not defined over F . Then, we are in one of the
following situations 3:

3In column 4 we only give those other forms ψ representing d±ϕ.
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0 1 2 3 4 5

dim q conditions on q conditions on ϕ value of ψ other ψ CF (q, ϕ)

4 not a neighbour ind(C0(q)⊗D) = ? ? ?

ind(D) = 4

4 q ∈ GP2,1F γ ∼ aq1 ⊥ θK , aq ⊥ θ ⊥ 〈d〉 q′ ⊥ 〈d〉, 7 or 9

a ∈ F ∗, ind(D) = 4, q′ ≈ acq ⊥ θ,

ind(C0(q)⊗D) = 2, c ∈ G(π)

c(θE′) = c(qE′ ) + [DE′ ],

dim θ = 4,

−a 6∈ G(π)D(q)D(θ)

4 q ∈ G2,1(F ) γ ' aq1 ⊥ θK , aq ⊥ θ ⊥ 〈d〉 q′ ⊥ 〈d〉, 7 or 9

a ∈ F ∗, dim θ = 4 q′ ≈ acq ⊥ θ,

ind(C(aq ⊥ θ)) = 8 c ∈ G(π)

5 to 8 not a neighbour, q ≤ q′, γ ∼ aq′K , a ∈ F ∗ aq′ ⊥ 〈d〉, q′′ ⊥ 〈d〉, 7 or 9

q′ ∈ I2F , dim q′ = 8, ind(D) = 4, q′′ ≈ aq′

qL anisotropic e3(ψ ⊥ −γ′)L 6= 0

indC(q′) = 4

5 to 8 not a neighbour, q ≤ q′, γ ∼ aq′K , a ∈ F ∗ aq′ ⊥ 〈d〉, q′′ ⊥ 〈d〉, 7 or 9

q′ ∈ I2F , dim q′ = 8, q′′ ≈ aq′

indC(q′) = 8

h) For n = 6, ϕ an Albert form, we have ind(D) ∈ {4, 8}. If ind(D) =
4, let γ be an Albert form such that D ∼ C(γ). Then we are in one of
the following situations:
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0 1 2 3 4 5

dim q conditions on q conditions on ϕ value of ψ other ψ CF (q, ϕ)

4 not a neighbour ind(C0(q)⊗D) = ? ? ?

ind(D) = 4

4 q ∈ GP2,1F ϕ ∼ aq1 ⊥ bq′′K aq ⊥ bq′′ conjugate to 8

a, b ∈ F ∗, ind(D) = 4, acq ⊥ bq′′,

ind(C(qE′)⊗DE′ ) = 2, c ∈ G(π)

c(q′′
E′) = c(qE′) + [DE′ ],

dim q′′ = 4,

−ab /∈ G(π)D(q)D(q′′)

4 q ∈ G2,1(F ) ϕ ' aq1 ⊥ θK , aq ⊥ θ conjugate to 8

a ∈ F ∗, dim θ = 4, abq ⊥ θ,

ind(C(aq ⊥ θ)) = 8 b ∈ G(π)

5 to 8 not a neighbour, q ≤ q′, ϕ ∼ aq′K , a ∈ F ∗ aq′ conjugate to 8

q′ ∈ I2F , dim q′ = 8, e3(ψ ⊥ −γ)L 6= 0 aq′

qL anisotropic,

ind(C(q′)) = 4

5 to 8 not a neighbour, q ≤ q′, ϕ ∼ aq′K , a ∈ F ∗ aq′ conjugate 8

q′ ∈ I2F , dim q′ = 8, to aq′

indC(q′) = 8

7.4. Remarks. a) In column 2 of row 4 in the tableau of g.2), the
condition given on ψ amounts to saying that ψ 6≡ bγ ′ (mod I4F ) for
any b ∈ F ∗, thanks to Corollary 3.7. Moreover, this condition is inde-
pendent of the choice of ψ, because for ψ′ ∈ Desc(ϕ) we get ψ ≡ ψ′

(mod I4F ) since q is not a Pfister neighbour of dimension ≥ 5 and
hence H i(K/F ) = {0} for i ≤ 3.
b) The same justification as in a) shows that the condition ψL 6∈ I4L
in column 2 of row 4 in the tableau of d) is also independent of the
choice of ψ.

For the proof of Theorem 7.3, we first establish a few more technical
results in the next section. We then prove Theorem 7.3 in the following
order, relatively to the type of ϕ: forms in GP2(K); Albert forms; 5-
dimensional forms; and finally 4-dimensional forms not in GP2(K).
Each case uses the results established for the previous cases.

8. More lemmas

The following lemma will be needed to justify the “uniqueness” state-
ments (column 4) in the proof of Theorem 7.3.
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8.1. Lemma. Let q,K, ϕ be as in Conjecture 2, and let ψ, ψ′ ∈ Desc(ϕ).
Then

(i) If dim q ≥ 5 and q is not a neighbour, then ψ ≡ ψ′ (mod I4F ).
If furthermore, dimψ′ ≤ dimψ ≤ 8, then ψ ≈ ψ′ or ψ ' ψ′

according as dimψ = 8 or not.
(ii) If dim q = 4 and d±q 6= 1, then ψ ≡ ψ′ (mod I3F ).

Proof. From Theorems 3.1 and 3.2 we deduce that H i(K/F ) = {0} for
i ≤ 2 (resp. for i ≤ 3) when dim q = 4 (resp. dim q ≥ 5). We finish
the proof by using the bijectivity of e2 and e3, respectively.

The following proposition is essentially contained in [27].

8.2. Proposition. Let γ be a possibly isotropic Albert form over F ,
and let L denote the field F (C(γ)) (L is a generic splitting field for
γ). Let ψ be a quadratic form such that ψ ≡ γ (mod I3F ). Suppose
that ψL ∈ I4L. Then there exists a scalar a ∈ F ∗ such that ψ ≡ aγ
(mod I4F ). If dimψ < 10, one has ψ ∼ aγ.

Proof. Consider the Arason invariant e = e3(ψ ⊥ −γ) ∈ H3F . By [27,
corollaire 6], one has e = (a) · c(γ) = e3(〈a,−1〉 ⊗ γ) for some a ∈ F ∗.
Hence, by (2.1)

ψ ⊥ −γ ≡ aγ ⊥ −γ (mod I4F )

and the claim follows. The last assertion follows from the Hauptsatz.

8.3. Proposition. Let K/F be a finitely generated extension and ϕ ∈
Im(W (F ) → W (K)) + InK be a form of dimension < 2n−1. Then
ϕ ∈Wnr(K/F ).

Proof. Same as [19, Proposition 1 (a)].

The following technical corollary will be needed to handle the case
where dimϕ = 4 in Theorem 7.3.

8.4. Corollary. Let ϕ ∈ I3F , q be a 4-dimensional form and τ ∈
GP2(F ). We assume ϕF (τ,q) ∼ 0. Then there exists a form θ of dimen-
sion 4 such that c(q) ∈ {c(θ), c(τ) + c(θ)} and

(i) If c(q) = c(θ), then π := −q ⊥ θ ∈ GP3(F ) and ϕ ⊥ π ⊥ τ ⊥
ατ ∈ I4F for some α ∈ F ∗. In this case, πF (q) ∼ 0.

(ii) If c(q) = c(τ) + c(θ), then ϕ ⊥ β(−q ⊥ θ) ⊥ τ ∈ I4F for some
β ∈ F ∗.

Proof. By assumption one has e3(ϕ)F (τ) ∈ H3(F (τ, q)/F (τ)). By
Lemma 3.3, e3(ϕ)F (τ) = e3(−q ⊥ aq) for some a ∈ F (τ)∗. By the
bijectivity of e3, one has ϕF (τ) ⊥ −qF (τ) ⊥ aq ∈ I4F (τ). Proposition
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8.3 implies that aq ∈ Wnr(F (τ)/F ). By Theorem 6.4 b), W (F ) →
Wnr(F (τ)/F ) is surjective; hence, by the excellence of F (τ)/F , there
exists θ ∈ W (F ) of dimension 4 such that aq ' θF (τ). Since −q ⊥
aq ∈ GP3(F (τ)) one gets c(q)F (τ) = c(aq) = c(θ)F (τ), hence c(q) ∈
{c(θ), c(τ) + c(θ)}. We distinguish two cases:

(i) If c(q) = c(θ), then π := −q ⊥ θ ∈ GP3(F ) and πF (q) ∼ 0.
Also, e3(ϕ) + e3(−q ⊥ θ) ∈ H3(F (τ)/F ). By Theorem 3.2,
there exists α ∈ F ∗ such that e3(ϕ)+e3(−q ⊥ θ) = e3(τ ⊥ ατ).
So ϕ ⊥ π ⊥ τ ⊥ ατ ∈ I4F .

(ii) If c(q) = c(τ) + c(θ). Then −q ⊥ θ ⊥ τ ∈ I3F , hence e3(ϕ) +
e3(−q ⊥ θ ⊥ τ) ∈ H3(F (τ)/F ). One reapplies Theorem 3.2 to
find β ∈ F ∗ such that e3(ϕ)+ e3(−q ⊥ θ ⊥ τ) = c(−q ⊥ θ) · (β)
(because c(τ) = c(−q ⊥ θ)). So ϕ ⊥ β(−q ⊥ θ) ⊥ τ ∈ I4F .

The following proposition reinforces [19, Lemma 5].

8.5. Proposition. Let D be a central division F -algebra. Let q be an
F -form such that 5 ≤ dim q ≤ 8, and let K = F (D). Consider the
following conditions:

(i) qK is an anisotropic neighbour, but q is not a neighbour.
(ii) There exists q′ ∈ I2F of dimension 8 such that

a) q ≤ q′

b) c(q′) = D.

Then (i) ⇒ (ii), and (ii) ⇒ (i) if ind(D) ≥ 4 and dim q ≥ 6.
Proof. (i)⇒ (ii): set d = d±q and L = F (

√
d±q). We distinguish three

cases:

• dim q = 5. Since q is not a neighbour and qK is a neighbour,
we have ind(C0(q)) = 4 and ind(C0(q)K) ≤ 2 [26, Page 10].
By Theorem 2.2 (2), we have ind(C0(q) ⊗D) = 2, hence there
exists τ = 〈1〉 ⊥ τ ′ ∈ P2(F ) such that [D] = c(q) + c(τ). We
take q′ = q ⊥ dτ ′.

• dim q = 6. By assumption qK is anisotropic, hence d 6= 1.
Moreover, qK·L ∼ 0, hence c(q)L ∈ H2(K · L/L) = {0, [DL]}.
Since qL ¿ 0 (because q is not a neighbour [26, Page 10]), we
have c(q)L 6= 0. So c(q)L = [DL], and thus c(q) = [D] + (f, d)
for some f ∈ F ∗. We take q′ = q ⊥ −f〈1,−d〉.

• dim q = 7 or 8. By [26, Page 11], c(q) ∈ H2(K/F ) = {0, [D]}.
Since q is not a neighbour, we have c(q) = [D]. We take q′ =
q ⊥ 〈−d〉 or q according as dim q = 7 or 8.

(ii) ⇒ (i): note that q′K ∈ I3K. By [27, Th. 4] (for ind(D) =
4) or [6, Cor. 9.2] (for ind(D) = 8), q′K is anisotropic, so qK is an
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anisotropic neighbour. If q were a neighbour of a 3-fold Pfister form
π, then dim(q′ ⊥ −aπ)an would be ≤ 4 for some a ∈ F ∗. This is
impossible since c(q′ ⊥ −aπ) = c(q′) has index ≥ 4.
We shall also need the following proposition.

8.6. Proposition. Let D be a central division F -algebra of exponent 2
and index 8, and let q be an F -form. Consider the following conditions:

(i) ind(DF (q)) < ind(D).
(ii) There exists a form q′ ∈ I2F of dimension 8 such that c(q′) =

[D] and q ≤ q′.

Then (ii) ⇒ (i), and (i) ⇒ (ii) if q /∈ GP2(F ) and q is not an Albert
form.

Proof. (ii) ⇒ (i) is obvious. For (i) ⇒ (ii), use Theorem 2.2 (1) and
proceed as in the proof of [28, corollaire 3].

8.7. Remark. In Proposition 8.6, condition (ii) cannot hold in the ex-
ceptional cases where q ∈ GP2(F ) or q is an Albert form: otherwise, we
would get a contradiction with the complementary form which would
be in I2F . In these cases however, one may find an q′ as in (ii) which
contains a codimension 1 sub-form of q.

9. Proof of Theorem 7.3: the cases n = 1, 2, 3

From now on, we keep the same notation as at the beginning of
Section 7.

9.A. The cases n = 1, 2. The case n = 1 has been seen previously
(Lemma 5.3 a)). For n = 2, by [19, Theorem 2 (b)], one has necessarily
dim q = 4, d = d±q = d±ϕ. Moreover, [19, Theorem 6] shows that one
then has ϕ ' aq1 for some a ∈ F ∗, so we may choose ψ = aq. The
uniqueness assertion follows from Propositions 4.5 and 4.4.

9.B. The case n = 3. According to [19, Theorem 2 (c)], we are in one
of the following three cases:

(1) q is an Albert form.
(2) dim q = 5, q not a neighbour.
(3) dim q = 4, d′ 6= 1.
In case (1), [19, Theorem 6] shows that ϕ ' −dτ ′, where τ = 〈1〉 ⊥ τ ′

is the leading form of q. Then ϕ ⊥ 〈−d〉 ' −dτ . But τ 6∈ Im(W (F )→
Wnr(K/F )) by Theorem 6.4 c), a contradiction. This case is therefore
impossible.
In case (2), we argue as in [19, Proof of Theorem 6]: the invariant

c(ϕ) is of the form c′F (q), where c
′ is of index 4. Merkurjev’s index
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reduction theorem implies that c′ = c(q). But then c(ϕ) = c(q1), hence
ϕ is similar to q1 and ϕ ' dd′q1. We may therefore choose ψ = dd′q.
The uniqueness assertion follows from Proposition 4.5.
In case (3), the same argument gives that c(q)E′ = c′E′ . Then

c(ϕ)E′(q) = c′E′(q) = 0 and ϕE′(q) is isotropic. Therefore ϕ is of the

form λ〈1,−d′〉 ⊥ 〈dd′〉 for some λ ∈ F (q)∗. But then, λ〈1,−d′〉 ∈
Im(W (F ) → W (F (q))). By the case n = 2, we therefore may choose
ψ = aq ⊥ 〈dd′〉 for some a ∈ F ∗. For uniqueness, let ψ′ be of dimension
5 such that ϕ ∼ ψ′K . By Lemma 3.4 we get

ψ′ ≡ aN(x)q ⊥ 〈dd′〉 (mod I4F )

for some x ∈ E ′∗, hence ψ′ ' aN(x)q ⊥ 〈dd′〉 by the Hauptsatz.
It follows that, in row 1 of the tableau, CF (q, ϕ) > 3 if and only if

the condition in column 2 is satisfied.

10. Proof of Theorem 7.3: the case of a form similar to a

2-fold Pfister form

By [19, Theorems 2 and 6], ϕ is defined over F except perhaps in
the following cases:

(1) dim q ≤ 5.
(2) q is an Albert form.
(3) dim q = 7, c(q)K = c(ϕ).
(4) dim q = 8, q ∈ I2F , c(q)K = c(ϕ).

The cases (2) and (4) are handled in [19, Theorem 6]: in each of
them, ϕ is necessarily of the form aq1 for some a ∈ F ∗. This yields row
4 of the tableau in dimension 8 as well as row 3, the uniqueness claim
on ψ coming from Proposition 4.5 (and Proposition 4.4 in case (4)).
Observe that cases (3) and (4) are equivalent: indeed, in these two

cases, ind c(q) = 2 by [19, Lemma 4]. But a sub-form of dimension 7 in
a form of dimension 8 of that type is stably birationally equivalent to it.
Conversely, if q is anisotropic with dim q = 7 and ind c(q) = 2, then q
cannot represent its discriminant d±q, hence q ⊥ 〈−d±q〉 is anisotropic
of the above type. The equivalence between (3) and (4) now follows
from Proposition 6.1 b).
From this, one derives easily row 4 of the tableau in dimension 7.
It remains to deal with the cases where dim q ≤ 5. If q is a Pfister

neighbour, ϕ is defined over F by reduction to a 3-fold Pfister form
(Proposition 6.1 b)). There are therefore two cases to examine:

(1a) dim q = 5, q not a neighbour.
(1b) dim q = 4, d±q 6= 1.
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In both cases, observe that ind(C(ψ)) ≤ 4. Since ψL ∈ I3L, we have
by the Hauptsatz

(10.1) ψK·L ∼ ϕK·L ∼ 0

In particular,

(10.2) e3(ψL) ∈ H3(K · L/L)

We have the following diagram of field extensions:

L K · L


F K

10.A. The case ind(C(ψ)) = 4. Let γ be an anisotropic Albert form
such that c(ψ) = c(γ). Then ψ ≡ γ (mod I3F ). The form γK is
isotropic. It follows from [32] (cf. also Hoffmann’s unpublished thesis)
that q is similar to a sub-form of γ. Therefore qL is isotropic since
γL ∼ 0. The extension L · K/L is therefore purely transcendental
and ψL ∼ 0 by (10.1). By Proposition 8.2, there exists a ∈ F ∗ such
that ψ ≡ aγ (mod I4F ). Extending scalars to K, we conclude by the
Hauptsatz that ϕ ∼ aγK since dimϕ < 10.
This justifies row 2 of the tableau, except for the uniqueness claim

on ψ and the exact value of CF (q, ϕ). For another anisotropic Witt
descent ψ′ of ϕ, of dimension ≤ 6, we deduce by Lemma 8.1 that
ψ′ ∈ I2F and c(ψ′) = c(γ). Hence dimψ′ = 6 since ind(C(γ)) = 4.
Moreover, ψ′ is similar to γ. If ψ′ = abγ, one has (〈〈 b 〉〉⊗aγ)K ∼ 0,
which is equivalent to b ∈ G(ϕ). Conversely, one does have abγK ∼ ϕ
for any b verifying this condition.

10.1. Remark. In case (1a), the map H3F → H3K is injective and
one gets something slightly better: b ∈ G(ϕ) ⇐⇒ b ∈ G(γ).

10.B. The case ind(C(ψ)) = 2. The reasoning is similar but more
complicated. Of course, we assume that q is of type (1a) or (1b).
Let τ ∈ P2(F ) be such that c(ψ) = c(τ). Then ψ ≡ τ (mod I3F ).

We shall distinguish the following cases:

(i) qL is isotropic.
(ii) dim q = 5 and qL is not a neighbour.
(iii) dim q = 5 and qL is an anisotropic neighbour.
(iv) dim q = 4.
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10.B.1. Suppose that q is as in (i) or (ii). Then

H3(K · L/L) = 0.
From equation (10.2) and the bijectivity of e3, we deduce that

ψL ∈ I4L.

By Proposition 8.2, there exists a ∈ F ∗ such that ψ ≡ aτ (mod I4F ),
hence ϕ ≡ aτK (mod I

4K). By the Hauptsatz, we therefore have
ϕ ' aτK and ϕ is defined over F .

10.B.2. Suppose that q is as in (iii). By Proposition 8.5 there exists
a form q′ ∈ I2F of dimension 8 such that q ≤ q′ and c(q′) = c(τ). Set

ξ = q′ ⊥ −τ.
Then ξ ∈ I3F . In particular, ψ ⊥ −ξ ≡ τ (mod I3F ).
Note that qL and q

′
L are neighbours of the same 3-fold Pfister form,

and e3(q′L) = e3(ξ)L. Hence, by Theorem 3.2 we get thatH
3(K ·L/L) =

{0, e3(ξ)L}.
• If e3(ψL) = 0, then ψL ∈ I4L and we conclude as in case (A) that

ϕ is defined over F .
• If e3(ψL) = e3(ξ)L, then (ψ ⊥ −ξ)L ∈ I4L. Applying Proposition

8.2, we can find a scalar a ∈ F ∗ such that ψ ⊥ −ξ ≡ aτ (mod I4F ),
or

ψ ≡ a(ξ ⊥ τ) ≡ aq′ (mod I4F )

since ξ ∈ I3F . The Hauptsatz then implies that

ϕ ∼ aq′K .

This justifies row 4 of the tableau in dimension 5, except for the
uniqueness claim on ψ and the exact value of CF (q, ϕ).
Observe first that q′ is anisotropic since qL is anisotropic and qL, q

′
L

are neighbours of the same 3-fold Pfister from. If ψ′ ∈ Desc(ϕ) of di-
mension ≤ 8, then we deduce by Lemma 8.1 that ψ′ ≡ aq′ (mod I4F ).
Hence we necessarily have dimψ′ = 8 and ψ′ ≈ aq′. By Proposition
4.4, ψ′ ' baq′ where b ∈ G(π) and π is the twist of q′.
10.B.3. Suppose that q is as in (iv). We apply Corollary 8.4 to the
form ψ ⊥ −τ to get the existence of a form θ of dimension 4 and
π ∈ GP3(F ) hyperbolic over K such that

(ψ ⊥ −τ) ⊥ π ⊥ τ ⊥ −ατ ∈ I4F

or
(ψ ⊥ −τ) ⊥ −aq ⊥ −θ ⊥ τ ∈ I4F

for suitable scalars α, a ∈ F ∗. In both cases and after simplification,
we extend scalars to K and apply the Hauptsatz to get ατK ∼ ϕ or



A SECOND DESCENT PROBLEM 25

(aq ⊥ θ)K ∼ ϕ. In the first case, ϕ is defined over F ; in the second
case, CF (q, ϕ) ≤ 8.
To finish the justification of row 1 of the tableau, we prove the

uniqueness claim on ψ and the exact value of CF (q, ϕ). Let ψ
′ ∈

Desc(ϕ) of dimension ≤ 8. Then (ψ′ ⊥ −aq ⊥ −θ)K ∼ 0. By Lemma
3.4, we have

ψ′ ≡ aN(x)q ⊥ θ (mod I4F )

for some x ∈ E ′∗. So ψ′ is conjugate or Witt-equivalent to aN(x)q ⊥ θ,
according as dimψ′ = 8 or not. Moreover, by the Hauptsatz CF (q, ϕ) ≤
6 if and only if −a ∈ G(π)D(q)D(θ).

11. Proof of Theorem 7.3: the case of an Albert form

The method is parallel to that in the previous section. By [19, The-
orem 2], ϕ is defined over F except perhaps in the following cases:

(1) dim q ≤ 7.
(2) dim q = 8, q ∈ I2F , c(q)K = c(ϕ).

From these cases we exclude the following, after Proposition 6.1 b):

(3) q is a neighbour of a 3-fold Pfister form
(4) dim q = 7, ind(C0(q)) = 2.

Indeed, in case (3) (resp. (4)), q is stably birationally equivalent to a
3-fold Pfister form (resp. to an 8-dimensonal form in I2F with Clifford
invariant of index 2).
Moreover, in case (2), ϕ is necessarily of the form aq1 with a ∈ F ∗

by [19, Theorem 6] (see also loc. cit., note bottom p. 153).
It therefore remains to handle the cases dim q ∈ {4, 5, 6, 7}, q not a

neighbour and not of type (4).
We have ind(C(ψ)) = 4 or 8 since ind(C(ψ)K) = 4.

11.A. The case ind(C(ψ)) = 8. We first note that in this case, we
have automatically dimψ ≥ 8 since ψ ∈ I2F .

11.1. Lemma. If ind(C(ψ)) = 8, then CF (q, ϕ) = 8 and q cannot be
an Albert form.

Proof. The index of C(ψ) gets reduced by extension of scalars to K.
Let δ be a form defined as follows: δ is an arbitrary 5-dimensional sub-
form of q if q is an Albert form; δ = q otherwise. Since F (q, δ)/F (δ) is
purely transcendental, we have ind(C(ψ)F (δ)) ≤ 4. By Proposition 8.6,
there exists q′ ∈ I2F of dimension 8 such that δ ≤ q′ and c(ψ) = c(q′).
So, ψ ⊥ −q′ ∈ I3F . Now, on the one hand

q′L(δ) ∼ 0
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because q′L ∈ GP3(L) and q
′
F (δ) is isotropic. On the other hand, by the

Hauptsatz,

ψL(q) ∼ 0
because ϕ ∼ ψF (q) and ψL ∈ I3L. Therefore, e3(ψ ⊥ −q′) ∈ H3(L(q, δ)/F ).
Note that

H3(L(q, δ)/F ) ⊆ H3(L(δ)/F )

because L(δ, q)/L(δ) is purely transcendental.

(A) Suppose that dim q ∈ {5, 6, 7}. By Theorem 3.9 (1), we have
e3(ψ ⊥ −q′) = c(−q′)(r) for some r ∈ F ∗, hence ψ ⊥ −rq′ ∈ I4F . To
finish, extend scalars to K and apply the Hauptsatz to get ϕ ∼ rq ′K .
(B) Suppose dim q = 4. Up to a scalar, we have q = 〈−a,−b, ab, d±q〉.

By the index reduction theorem of Merkurjev (Theorem 2.2 (1)), we
have [C(ψ)] = (a, b) + (d±q, u) + (r, s) for suitable scalars r, s, u ∈ F ∗.
By Theorem 3.9 (3), there exists x, y ∈ F ∗ such that e3(ψ ⊥ −q′) =
c(q′)(x) + e3(q ⊗ 〈1,−y〉) with q ⊗ 〈1,−y〉 ∈ GP3(F ). So, ψ ⊥ −xq′ ⊥
q ⊗ 〈1,−y〉 ∈ I4F . Extend scalars to K and apply the Hauptsatz and
the fact that (q ⊗ 〈1,−y〉)K ∼ 0 to get ϕ ∼ xq′K .
In both cases, we get an 8-dimensional form q′ ∈ I2F such that

δ ≤ q′, ind(C(q′)) = 8 and ϕ ∼ aq′K for some scalar a ∈ F ∗. Hence
CF (q, ϕ) = 8.
Since ϕ ∼ aq′K , the form q′K is isotropic, hence q cannot be an Albert

form otherwise q′ would be isotropic by [27], [28], which is impossible
because ind(C(q′)) = 8.

Let us justify the uniqueness claims on ψ. Let ψ′ ∈ Desc(ϕ) of
dimension ≤ 8. It follows from Lemma 8.1 that c(q′) = c(ψ′).
• If dim q ≥ 5, then by Lemma 8.1 again aq′ ≈ ψ′.
• If dim q = 4, write aq′ = aq ⊥ θ with dim θ = 4. By Lemma

3.4 (applied to ρ = a(ψ′ ⊥ −θ)), we then have aN(y)q ⊥ θ ≡ ψ′

(mod I4F ) for some y ∈ E
′∗, hence aN(y)q ⊥ θ ≈ ψ′ by Proposition

4.3 a).
This justifies rows 3 and 5 of the tableau.

11.B. The case ind(C(ψ)) = 4.

11.2. Lemma. Suppose ind(C(ψ)) = 4.
a) If dim q ≥ 5, ϕ is defined over F unless qL is an anisotropic neigh-
bour. In the latter case, CF (q, ϕ) ≤ 8.
b) If dim q = 4, then ϕ is defined over F unless ind(C(qE′)⊗C(ψ)E′) =
2 or 4. In the first case, CF (q, ϕ) ≤ 8. (In the second case, we cannot
bound CF (q, ϕ).)
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Proof. Let γ be an anisotropic Albert form such that c(γ) = c(ψ). In
particular, ψ ⊥ −γ ∈ I3F . We distinguish the following cases:

(i) dim q ≥ 5, qL is not a neighbour or qL is isotropic.
(ii) dim q ≥ 5, qL is an anisotropic neighbour.
(iii) dim q = 4.

By [17], ϕ ' xγK for some x ∈ K∗. We have ϕK·L ∼ ψK·L ∼ 0 since
γL ∼ 0. Then
(11.1) e3(ψ ⊥ −γ) ∈ H3(K · L/F ).
(A) Suppose that q satisfies (i). Then

H3(K · L/F ) ⊂ H3(L/F ).

By Corollary 3.7, we have e3(ψ ⊥ −γ) = c(γ)(u) for some u ∈ F ∗.
So, ψ ⊥ −uγ ∈ I4F . Extend scalars to K and apply the Hauptsatz to
get ϕ ∼ uγK . In this case, ϕ is defined over F .
(B) Suppose that q satisfies (ii). In particular, q is not an Albert

form. By Proposition 8.5, there exists q′ ∈ I2F of dimension 8 such
that q ≤ q′ and c(q′) = c(γ).
By equation (11.1), e3(ψ ⊥ −γ)L ∈ {0, e3(q′L)} because qL and q′L

are neighbours of the same 3-fold Pfister form.
• Suppose e3(ψ ⊥ −γ)L = 0. By corollary 3.7, there exists v ∈ F ∗

such that e3(ψ ⊥ −γ) = c(γ)(v). So ψ ⊥ −vγ ∈ I4F . Extend scalars
to K and apply the Hauptsatz to get ϕ ∼ vγK . In this case, ϕ is
defined over F .
• Suppose e3(ψ ⊥ −γ)L = e3(q′L). We obviously have e

3(q′L) =
e3(q′ ⊥ γ)L. By Corollary 3.7, we have e

3(ψ ⊥ −γ) + e3(q′ ⊥ γ) =
c(q′)(−a) for some a ∈ F ∗. So ψ ⊥ −aq′ ∈ I4F . Extend scalars to K
and apply the Hauptsatz to get ϕ ∼ aq′K .
(C) Suppose that q verifies (iii). If we are not in the exceptional

cases of the lemma, we have (use Corollary 3.7, Theorem 3.9 (2), and
Lemma 3.3):

e3(ψ ⊥ −γ) = e3(〈〈N(x) 〉〉⊗q) + e3(〈〈 a 〉〉⊗γ)
for some x ∈ E ′∗ and a ∈ F ∗, hence

ψ ⊥ −γ ≡ 〈〈N(x) 〉〉⊗q ⊥ −〈〈 a 〉〉⊗γ (mod I4F )

or

ψ ≡ 〈〈N(x) 〉〉⊗q ⊥ aγ (mod I4F ).

Extending scalars to K and applying the Hauptsatz, we find that
ϕ ' aγK . In this case, ϕ is defined over F .
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If we are in case ind(C(qE′)⊗C(ψ)E′) = 2, the same references give
this time:

e3(ψ ⊥ −γ) = e3(〈〈N(x) 〉〉⊗q) + e3(〈〈 f 〉〉⊗γ) + e3(bq ⊥ q′′ ⊥ cγ)

for q′′ as in Theorem 3.9 (2) and some x, f, b, c ∈ F ∗, hence
ψ ⊥ −γ ≡ 〈〈N(x) 〉〉⊗q ⊥ −〈〈 f 〉〉⊗γ ⊥ −fc(bq ⊥ q′′ ⊥ cγ)

(mod I4F )

or
ψ ≡ 〈〈N(x) 〉〉⊗q ⊥ −fc(bq ⊥ q′′) (mod I4F )

and, thanks to the Hauptsatz, ϕ ∼ −fc(bq ⊥ q′′)K . So CF (q, ϕ) ≤ 8.
Set α = −fcb, β = −fc and δ = αq ⊥ βq′′.

It remains to justify the uniqueness claim on ψ and the exact value
of CF (q, ϕ). We keep the case distinction in the proof of Lemma 11.2.
(B) Let ψ′ ∈ Desc(ϕ), with dimψ′ ≤ 8. It follows from Lemma 8.1

that ψ′ ≡ aq′ (mod I4F ). We have CF (q, ϕ) = 8, otherwise by the
Hauptstaz aq′ would be isotropic, hence also qL, a contradiction. This
justifies row 4 of the tableau.
(C) Let ψ′ ∈ Desc(ϕ) of dimension ≤ 8. Then (δ ⊥ −ψ′)K ∼ 0. By

Lemma 3.4, we have

αN(y)q ⊥ βq′′ ≡ ψ′ (mod I4F )

for some y ∈ E ′∗. By the Hauptsatz, we have dimψ′ = 6 if and only if
αN(y)q ⊥ βq′′ is isotropic, that is, −αβ ∈ G(π)D(q)D(q′′), where π is
the twist of q. This justifies row 2 of the tableau.

12. Proof of Theorem 7.3: the case of a 5-dimensional

form

12.1. Proposition. Let q,K, ϕ be as in Conjecture 2, with ϕ of dimen-
sion 5, and let ψ ∈ Desc(ϕ). If ind(C0(ψ)) = ind(C0(q)⊗ C0(ψ)) = 4,
we assume that dim q 6= 4. Then CF (q, ϕ) ≤ 9. In particular,
C(m, 5) ≤ 9 for all m 6= 4.
Proof. It will be divided into several cases.

12.A. ϕ is of one of the two following forms.

(1) ϕ is not a neighbour and γ = ϕ ⊥ 〈−d〉 is not defined over F .
(2) ϕ is a neighbour.

In case (1) and by the case of an Albert form, we deduce the existence
of a form q′ of dimension ≤ 8 such that q ≤ q′ and γ ∼ aq′K for some
scalar a ∈ F ∗. Then ϕ ∼ (aq′ ⊥ 〈d〉)K and CF (q, ϕ) ≤ 9. In particular,
C(m, 5) ≤ 9 for all m 6= 4.
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In case (2) write ϕ = τ ⊥ 〈d〉 with τ ∈ GP2(K) and get back to the
case of τ by applying Theorem 2.
Assume that ϕ is not defined over F . Notice that in case (2) τ is not

defined over F .
Let us give a few justifications for column 4 of the tableaux in f) and

g.2). First, observe that the rows of these tableaux, except for column
4, can be deduced respectively from those of the tableaux in d) and h).

12.A.1. Case of the tableau in g.2). Since γ is not defined over F , it
follows from the tableau of an Albert form that q ′ is anisotropic of
dimension 8. Let ψ′ ∈ Desc(ϕ) of dimension ≤ 9.
(i) dim q ≥ 5: then ϕ is not defined over F , otherwise there would

be ν of dimension 5 such that ϕ ' νK . By Lemma 8.1, we would get
aq′ ⊥ 〈d〉 ⊥ −ν ∈ I4F . By the Hauptsatz, q′ would be isotropic, a
contradiction. So CF (q, ϕ) = 7 or 9. For the uniqueness claims, one
reapplies Lemma 8.1 to get aq′ ⊥ 〈d〉 ⊥ −ψ′ ∈ I4F . If furthermore
d ∈ D(ψ′) (as was supposed in the tableau in g.2)), then ψ′ = q′′ ⊥ 〈d〉
with dim q′′ ≤ 8, and thus aq′ ⊥ −q′′ ∈ I4F . In particular, q′′ is
anisotropic of dimension 8. Hence the uniqueness claim.
(ii) dim q = 4: Set aq′ = aq ⊥ θ with dim θ = 4. By Lemma 3.4, we

have
aN(x)q ⊥ θ ⊥ 〈d〉 ⊥ −ψ′ ∈ I4F

for some x ∈ E
′∗. The condition of column 2 implies that ϕ is not

defined over F . Hence, CF (q, ϕ) = 7 or 9. If furthermore d ∈ D(ψ′),
then ψ′ = q′ ⊥ 〈d〉 with dim q′ ≤ 8, and

aN(x)q ⊥ θ ⊥ −q′ ∈ I4F

It is clear that the condition of column 2 implies that q ′ is anisotropic
of dimension 8. The uniqueness claim is clear from Lemma 3.4.
This justifies column 4 in the tableau in g.2).

12.A.2. Case of the tableau in f). We have H i(K/F ) = {0} for i = 1, 2
(resp. for i ≤ 3) when dim q = 4 (resp. dim q > 4). Let ψ ′ ∈ Desc(ϕ)
anisotropic of dimension ≤ 9.
(i) Case of row 1: we get by Lemma 3.4 that abq ⊥ θ ⊥ 〈d〉 ⊥

−ψ′ ∈ I4F for some b ∈ G(π). The condition of column 2 implies that
CF (q, ϕ) = 7 or 9. If furthermore ψ

′ = 〈d〉 ⊥ q′, then q′ ≈ abq ⊥ θ or
q′ ∼ abq ⊥ θ according as dim q′ = 8 or not.
(ii) Case of row 4: suppose that ψ′ = q′′ ⊥ 〈d〉. SinceH i(K/F ) = {0}

for i ≤ 3, we get aq′ ≡ q′′ (mod I4F ). By the tableau in d) the form q′

is anisotropic of dimension 8. Then, q′′ is also anisotropic of dimension
8. In particular, CF (q, ϕ) = 7 or 9. By Proposition 4.4 we get that
abq′ ≈ q′′ with b ∈ G(π).
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(iii) Case of row 3 and row 2 in dimension 5: we argue as in (ii). In
this case, CF (q, ϕ) = 7 by the condition in column 2.
(iv) Case of row 2 in dimension 4: write γ ' q ⊥ ξ. In this case one

has CF (q, ϕ) ≤ 7. We get by Lemma 3.4
aN(y)q ⊥ aξ ⊥ 〈d〉 ⊥ −ψ′ ∈ I4F

for some y ∈ E
′∗. By the Hauptsatz, we get aN(y)q ⊥ aξ ⊥ 〈d〉 '

ψ′. Now it is clear that the condition in the column 2 implies that
CF (q, ϕ) = 7.

12.B. ϕ is not a neighbour and Desc0(γ) 6= ∅. Let γ0 ∈ Desc0(γ).
The justification of the statements (1) and (2) in g.2) are easy to make.
For statement (3), let ψ′ ∈ Desc(ϕ) be anisotropic of dimension 7.
If γ0 ⊥ 〈d〉 ⊥ −ψ′ 6∼ 0, then by a result of Fitzgerald there exists
ρ ∈ GP3(F ) such that (γ0 ⊥ 〈d〉 ⊥ −ψ′)an ' ρ and q 4 ρ. Hence the
claim since iW (γ0 ⊥ 〈d〉 ⊥ −ρ) = 4. If d ∈ D(ψ′), then ψ′ ' δ ⊥ 〈d〉
for some Albert form δ. Since c(δ) = c(γ), we get by [17] that δ ' aγ
for some a ∈ F ∗.

13. Proof of Theorem 7.3: the case of a 4-dimensional

form which is not a neighbour

By [19, Theorem 2], ϕ is defined over F except perhaps in the fol-
lowing cases:

(1) dim q = 4 and d±q 6= 1.
(2) dim q = 5.
(3) dim q = 6 and d±q ∈ {1, d±ϕ}.
Moreover, thanks to Proposition 6.1 b), ϕ is also defined over F if q

is a neighbour of a 3-fold Pfister form.
Clearly, the signed discriminant d of ϕ is defined over F . Since

ϕK·E ∈ GP2(K · E), we have ind(C(ψ)K·E) ≤ 2, hence ind(C(ψ)E)
≤ 4. So there exists an Albert form γ and some r ∈ F ∗ such that
(13.1) c(ψ) = c(γ) + (r, d).

Let t be a variable over F , F̃ = F ((t)) the field of formal power series

in t over F , and K̃ = F̃ (q). Let D = C(γ)F̃ ⊗F̃ (rt, d), M = F̃ (D) and
ϕ′ = (ϕ ⊥ −t〈1,−d〉)K̃ , which is an anisotropic Albert form. We have
the following diagram of field extensions:

M K ·M K̃ ·M




F K K̃
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13.1. Lemma. If dim q 6= 4, then CF (q, ϕ) ≤ 6.
Proof. We have ϕ′ ∈ Im(W (F̃ ) −→ W (K̃)). By Theorem 3, there

exists δ ∈ W (F̃ ) anisotropic such that dim δ ≤ 8 and ϕ′ ∼ δK̃ . Write
δ = δ1 ⊥ tδ2 with δ1, δ2 ∈ W (F ) anisotropic. By Springer’s Theorem,
we get:

• ϕ ∼ (δ1)K ,
• dim δ2 ≥ 2 because d 6= 1, hence dim δ1 ≤ 6.

Since ϕ is not defined over F , the form δ1 is of dimension 6. Hence
(δ1)K is isotropic. By the isotropy results in dimension 6 [9], [29], the
form q cannot be an Albert form. Again by [9], [29] and as q is not a
neighbour, we get δ1 ' aq when dim q = 6 (resp. δ1 ' aq ⊥ 〈b〉 when
dim q = 5) for some a, b ∈ F ∗.
Uniqueness in dimension 6 follows from Propsoition 4.5. Concerning

dimension 5, if ψ′ is another anisotropic Witt descent of ϕ of dimension
6, then Lemma 8.1 and the Hauptsatz implie that ψ′ ' aq ⊥ 〈b〉.
Clearly, −ab 6∈ D(q), because δ1 is anisotropic.
This justifies rows 3 and 4 of the tableau.

13.2. Lemma. If dim q = 4, then CF (q, ϕ) ≤ 10. More precisely, with
the same notation as at the beginning of this section, we have:

(1) If ind(C(ψ)E) = 4, then CF (q, ϕ) = 6.
(2) If ind(C(ψ)E) = 2, then ψ is of one of the two following types:

• ψ ' a 〈1,−d〉 ⊥ τ with a ∈ F ∗ and τ ∈ GP2(F ),
• ψ ' b 〈1,−d〉 ⊥ cq ⊥ θ for some b, c ∈ F ∗ and dim θ = 4.

Proof. Up to scaling we may write q = 〈−α,−β, αβ, d±q〉. We shall
distinguish two cases:
(A) Suppose that ind(C(ψ)E) = 4. This amounts to say that γE is

anisotropic. The algebra D is then a triquaternion division algebra [44,
proposition 2.4]. The index of D gets reduced by extension of scalars

to K̃, since c(ϕ′) = [DK̃ ]. By Proposition 8.6, there exists η ∈ I2F̃ of
dimension 8 such that qF̃ ≤ η and

(13.2) c(η) = [D].

By equations (13.1) and (13.2), we have

ψF̃ ⊥ −t〈1,−d〉 ⊥ η ∈ I3F̃

hence
ϕK̃ ⊥ (−t〈1,−d〉 ⊥ η)K̃ ∈ I3K̃.

We have ηM(q) ∼ 0, because ηM ∈ GP3(M) and ηF̃ (q) is isotropic. By
the Hauptsatz, we get

(13.3) (ϕ ⊥ −t〈1,−d〉 ⊥ η)M(q) ∼ 0.
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So e3(ψF̃ ⊥ −t〈1,−d〉 ⊥ η) ∈ H3(M(q)/F̃ ). Since qF̃ ≤ η, We get
by equation (13.2) that [D] = [(d±q, u)] + [(α, β)] + [(r, s)] for some

r, s, u ∈ F̃ ∗. By Theorem 3.9 (3), the kernel

H3(M(q)/F̃ )

equals

c(η) ·H1F̃ + {e3(q ⊗ 〈1,−y〉) | y ∈ F̃ ∗, q ⊗ 〈1,−y〉 ∈ GP3(F̃ )}.

Let a, b ∈ F̃ ∗ be such that
e3(ψF̃ ⊥ −t〈1,−d〉 ⊥ η) = e3(η ⊥ aη) + e3(q ⊗ 〈1,−b〉)

with q ⊗ 〈1,−b〉 ∈ GP3(F̃ ). Then

(13.4) ψF̃ ⊥ −t〈1,−d〉 ⊥ −aη ⊥ q ⊗ 〈1,−b〉 ∈ I4F̃

We have (q ⊗ 〈1,−b〉)K̃ ∼ 0. In (13.4), we extend scalars to K̃ and
apply the Hauptsatz to get

(13.5) ϕK̃ ∼ (aη ⊥ t〈1,−d〉)K̃
Set aη = q′ ⊥ tq′′ with q′, q′′ ∈ W (F ) anisotropic. We apply

Springer’s Theorem to (13.5) to deduce:

• (q′′ ⊥ 〈1,−d〉)K ∼ 0, hence necessarily dim q′′ ≥ 2, because
d 6= 1.

• ϕ ∼ q′K and dim q
′ ≤ 6 by the first assertion.

As ϕ is not defined over F , necessarily dim q′ = 6, hence dim q′′ = 2.
In particular, CF (q, ϕ) = 6 and d±q

′ = d.
Since aq ≤ q′ ⊥ tq′′ and dim q′′ < dim q, we deduce again from

Springer’s Theorem that, up to a square, a ∈ F ∗ and aq ≤ q′.
By Lemma 7.2 c(q′) = c(ψ). So ind(C(q′)E) = 4, that is, q

′ is a
virtual Albert form.
It remains to justify the uniqueness claims in this case. Let ψ ′ ∈

Desc(ϕ) of dimension 6. By Lemma 3.4

aN(x)q ⊥ θ ≡ ψ′ (mod I4F )

for some x ∈ E
′∗ and some form θ satisfying q′ ' aq ⊥ θ. By the

Hauptsatz, ψ′ ' aN(x)q ⊥ θ. This justifies row 2 of the tableau.
(B) Suppose that indC(ψ)E = 2. There exists τ = 〈1〉 ⊥ τ ′ ∈ P2(F )

and s ∈ F ∗ such that c(ψ) = c(τ) + (s, d). Consider the form µ =
−s(〈d〉 ⊥ τ ′).
We have d±µ = d = d±ϕ and c(µ) = c(ψ). In particular, c(µ)K =

c(ϕ). By [47], the form ϕ is similar to µK . Hence K(ϕ) ' K(µ).
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We now repeat an argument from [18, Page 149]. Indeed, we have
ψ ⊥ −µ ∈ I3F , hence

(ψK ⊥ −µK)K(µ) ∼ (ϕ ⊥ −µK)K(ϕ) ∼ (ϕK(ϕ) ⊥ −µK(µ)) ∈ I3K(µ).

Since dim(ϕK(ϕ))an and dim(µK(µ))an ≤ 2, we have dim(ϕK(ϕ) ⊥
−µK(µ))an ≤ 4. By the Hauptsatz (ψ ⊥ −µ)K(µ) ∼ 0. Since µF (τ) is
isotropic, we get (ψ ⊥ −µ)K(τ) = 0. By Corollary 8.4, there exists a
4-dimensional form ζ and π ∈ GP3(F ) hyperbolic over K such that

(ψ ⊥ −sτ ⊥ s〈1,−d〉) ⊥ π ⊥ τ ⊥ uτ ∈ I4F

or

(ψ ⊥ −sτ ⊥ s〈1,−d〉) ⊥ v(−q ⊥ ζ) ⊥ τ ∈ I4F

for some u, v ∈ F ∗. Observe that modulo I4F , the two relations become

(ψ ⊥ −sτ ⊥ s〈1,−d〉) ⊥ π ⊥ s(τ ⊥ uτ) ∈ I4F

or

(ψ ⊥ −sτ ⊥ s〈1,−d〉) ⊥ sv(−q ⊥ ζ) ⊥ sτ ∈ I4F.

In these last two relations and after simplification, we extend scalars
to K and apply the Hauptsatz to get CF (q, ϕ) ≤ 6 in the first case
(because πK ∼ 0), and CF (q, ϕ) ≤ 10 in the second case. This justifies
row 1 in the tableau.

Still concerning row 1 of the tableau, we finally give certain cases
where the form ϕ is defined over F .

13.3. Proposition. Keep the same notation and hypotheses as in case
(B) in the proof of Lemma 13.2. Then ϕ is defined over F when one
of the following two conditions is satisfied:

(1) det q = d±ϕ
(2) ind(C0(µ)⊗ C0(q)) = 4.

Proof. By assumption, we have (use [14, Corollary 2.13, Theorem 5.1,
Theorem 5.8, Theorem 5.9])

H3(K(µ)/F ) = H3(K/F ) +H3(F (µ)/F ).

By Lemma 3.3, we have e3(ψ ⊥ −µ) = e3(µ ⊥ −aµ) + e3(q ⊥ bq) for
some a, b ∈ F ∗ such that µ ⊥ −aµ, q ⊥ bq ∈ GP3(F ). So ψ ⊥ −aµ ⊥
q ⊥ bq ∈ I4F . Since (q ⊥ bq)K ∼ 0, we extend scalars to K and apply
the Hauptsatz to get ϕ ' aµK .
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