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Abstract. We establish a duality in the cohomology of arbitrary
tori over smooth but not necessarily projective curves over a p-
adic field. This generalises Lichtenbaum–Tate duality between the
Picard group and the Brauer group of a smooth projective curve.

Introduction

Let C be a connected smooth projective curve over a p-adic field
k, and let T0 be a torus over the function field K = k(C) of C.
In order to relate the Galois cohomology of T0 over K to the local
cohomology groups of T0 in the closed points of C (see [Sch2]), one
needs a global duality theory for ‘integral models’ of T0, namely tori
over open subcurves of C. The aim of this paper is to set up such a
theory.

The pattern of the result we seek is given by a theorem of
Lichtenbaum [Li], which establishes a natural non-degenerate pairing

Pic(C)× Br(C)→ Q/Z
(‘Lichtenbaum–Tate duality’). This can be seen as a pairing

H1(C,Gm)×H2(C,Gm)→ Q/Z
of étale cohomology groups.

In general, a K-torus T0 does not necessarily have a model over
C, but it always admits a model T over some open subset V of C.
As is usual in cohomological duality over non-compact spaces, one
has to work with a form of cohomology with compact supports. We
define such a cohomology theory which is specially tailored for tori, and
which we denote by H∗

cc(V, T ) (see Section 2). It is slightly different
from the general notion of cohomology with compact supports in étale
cohomology. We also need the (standard) notion of the dual torus T ′

of T (see Section 1.3). Our main result establishes for every integer q
a natural pairing

Hq
cc(V, T )×H3−q(V, T ′)→ Q/Z
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which is non-degenerate on the left if q 6= 3, and non-degenerate on the
right if q 6= 2 (see Theorem 4.8).

We first prove our result in the case where T is the split torus Gm,V .
Then the general case is deduced from the split case by a descent
argument. An important role is played by the perfect (cup product)
pairings of the cohomology groups of the torsion groups,

Hq
c (V, nT )×H4−q(V, nT

′)→ Q/Z
(see Section 1.5) and by the Kummer exact sequences. In fact, not
only the proof that our pairings are non-degenerate, but even their
construction proceeds via these torsion pairings. For the construction,
a more elegant approach in the spirit of [vH] would have been possible,
but at the cost of employing much heavier technical machinery than the
approach we take here. Moreover, and this was something of a surprise,
the proof that our pairing is non-degenerate becomes essentially a
formality, after embedding the pairing into the Kummer sequence. The
crucial descent argument is in the proof of Proposition 4.5. Without the
Kummer sequence, a descent argument seems much more cumbersome.

Here is an outline of the structure of the paper. In Section 1
we have gathered the known constructions and results we will need.
This ranges from elementary observations regarding abelian groups to
Poincaré duality in the étale cohomology of varieties over p-adic fields
and Lichtenbaum–Tate duality. In Section 2 we define H∗

cc(V,−), our
modified cohomology of tori with compact supports, and study how it
relates to the standard definition of étale cohomology with compact
supports, H∗

c (V,−). We also establish links between H∗
cc(V,Gm),

motivic cohomology and generalised Jacobians. In Section 3 we
construct the pairing Hq

cc(V,Gm) × H3−q(V,Gm) → Q/Z, using the
Kummer sequences and the cup product pairing with coefficients in the
nth roots of unity. To derive our duality in this case from Lichtenbaum–
Tate duality, we use the localisation exact sequences (see Lemma 2.8).
In Example 3.8 we also see where the degeneracies of the pairings pop
up. In Section 4 we construct our pairings for arbitrary tori, and prove
the duality result Theorem 4.8.

Acknowledgements. This paper results from a four-month visit of
the second author to the Gerhard Mercator Universität in Duisburg,
financed by the European Union in the framework of the network K-
Theory and Linear Algebraic Groups (Contract ERB FMRX CT-97-
0107). He would like to thank the institute for its hospitality and the
European Union for the financial support.

1. preliminaries

1.1. Abelian groups. Let M be an abelian group. Given n ∈ N, we
let nM resp. M/n be the kernel resp. the cokernel of M

n
−→ M , the
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multiplication by n map on M . We write M ∗ := Hom(M,Q/Z) for
the group of characters of M . If M is a topological group, we write
M∨ := Homcont(M,Q/Z) for the group of continuous characters, where
Q/Z has the discrete topology. M 7→ M∨ is an exact functor on the
category of compact abelian groups.

For a prime ` we define Tate`(M) := lim←−(`
νM); this is the `-adic

Tate module of M . It is a torsion-free Z`-module. If `M is finite, then
Tate`(M) is free of finite rank. We let Tate(M) := lim←−(nM) be the
total Tate module of M , and we have

Tate(M) =
∏

`

Tate`(M).

If `M is finite for every prime `, then Tate(M) is a torsion-free profinite
abelian group. The functor Tate(−) is left exact. If D is the largest
divisible torsion subgroup of M , the inclusion D ⊂ M induces an
isomorphism Tate(D)

∼
→ Tate(M).

The profinite completion of M is denoted by M̂ (or M ̂ ). The group
M is called residually finite if the natural map M → M̂ is injective.

There is a natural map lim←−M/n→ M̂ . It is an isomorphism if M/` is
finite for every prime `.

Let D(M) := ker(M → lim←−M/n) =
⋂

n nM , the subgroup of
divisible elements of M . We need the following elementary observation:

Lemma 1.1. If 0 → A → B → C is an exact sequence of abelian
groups, and if for every prime ` the `-primary torsion subgroup of C
has finite exponent, then the sequence 0 → D(A) → D(B) → D(C) is
exact.

Proof. Let x ∈ A ∩D(B), and fix a prime `. For every n ∈ N there is
yn ∈ B with `nyn = x. By the hypothesis on C there exists r ∈ N with
`ryn ∈ A for every n. Thus x ∈ `mA for every m ∈ N. ¤

Moreover, we need the following facts about profinite completions of
locally compact groups:

Lemma 1.2. Let A be a locally compact abelian group, and suppose
that A contains a profinite open subgroup A0 which is (topologically)
finitely generated.

(a) Every subgroup of A of finite index is open in A.
(b) Assume further that the abelian group A/A0 is finitely

generated. Then the map A → Â induces isomorphisms

nA
∼
→ nÂ and A/n

∼
→ Â/n for every n ∈ N.

Proof. The Sylow subgroups of A0 are topologically finitely generated,
and A0 is their direct product. So (a) follows easily from the
corresponding fact for finitely generated pro-p groups (see [Se2], I.4.2
ex. 6). As for (b), A = A1 × F where F is free abelian (of finite rank)
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and A1 is a profinite abelian group every finite index subgroup of which

is open. Hence Â = A1 × F̂ , from which (b) is clear. ¤

1.2. Pairings. Let A be a discrete torsion abelian group and B a
profinite abelian group. Let A × B → Q/Z be a continuous pairing
(i.e., the annihilator of each a ∈ A is open in B). The following lemma
is a standard consequence of Pontryagin duality ([Po], see also [RiZa],
Sec. 2.9, or [Wi], Sec. 6.4).

Lemma 1.3. For a pairing A× B → Q/Z as above, we have that the
induced map A → B∨ is injective (resp., surjective, resp., bijective)
if and only if the induced map B → A∗ is surjective (resp., injective,
resp., bijective).

The pairing A × B → Q/Z is called perfect if the induced
homomorphisms A→ B∨ andB → A∗ are bijective. A pairing A×B →
Q/Z between arbitrary abelian groups is said to be non-degenerate on
the left (resp., on the right) if the induced homomorphism A → B∗

(resp., B → A∗) is injective. The pairing is called non-degenerate if it
is so on the left and on the right.

Corollary 1.4. A continuous pairing A×B → Q/Z between a discrete
torsion abelian group A and a profinite abelian group B is perfect if and
only if it is non-degenerate.

Definition 1.5. Let I be a directed set. Let {Ai}i∈I be an inductive
system of abelian groups and {Bi}i∈I a projective system of abelian
groups, both indexed by I. A collection of pairings 〈−,−〉i : Ai×Bi →
Q/Z indexed by i ∈ I will be called a system of pairings between {Ai}
and {Bi} if the pairings 〈−,−〉i are compatible with the transition
maps.

Lemma 1.6. Let I be a directed set. Let 〈−,−〉i (i ∈ I) be a system
of pairings between an inductive system of abelian groups {Ai}i∈I and
a projective system of abelian groups {Bi}i∈I .

(a) There is a unique continuous pairing 〈−,−〉 : (lim−→Ai) ×
(lim←−Bi)→ Q/Z which is compatible with the pairings 〈−,−〉i.

(b) If the groups Ai, Bi are finite and the pairings 〈−,−〉i are
perfect (i ∈ I), then the limit pairing (a) is a perfect pairing
between the discrete torsion group lim−→Ai and the profinite
group lim←−Bi.

Example 1.7. Any pairing A × B → Q/Z of discrete abelian groups
gives rise to a continuous pairing

Ators × B̂ → Q/Z,

and also to a continuous pairing

(A⊗Q/Z)× Tate(B)→ Q/Z
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(which is the pairing lim−→(A/n)× lim←−(nB)→ Q/Z).

Lemma 1.8. Let A×B → Q/Z be a perfect continuous pairing between
a torsion abelian group A and a profinite abelian group B. Then for
any n ∈ N, the induced pairings

(nA)×B/n→ Q/Z and A/n× (nB)→ Q/Z
are perfect.

Proof. Consider the multiplication by n exact sequences for A and B,
and use exactness of the functors (−)∗ and (−)∨. ¤

Lemma 1.9. Suppose we have two exact sequences 0 → A1 → A2 →
A3 → 0 and 0 ← B1 ← B2 ← B3 ← 0 of abelian groups, and
pairings βi : Ai × Bi → Q/Z (i = 1, 2, 3) that are compatible with
these sequences. Suppose further that the middle pairing β2 is non-
degenerate.

(a) β1 is non-degenerate on the left, and β3 is non-degenerate on
the right.

(b) β1 is non-degenerate if and only if β3 is non-degenerate.

Proof. (a) is obvious, and (b) is immediate using the snake lemma. ¤

The proof of the following five lemma for pairings is immediate.

Lemma 1.10. Suppose we have two exact sequences of abelian groups

A1
f1
−→ A2

f2
−→ A3

f3
−→ A4

f4
−→ A5

and
B1

g1
←− B2

g2
←− B3

g3
←− B4

g4
←− B5,

together with pairings βi : Ai × Bi → Q/Z (i = 2, 3, 4) that are
compatible with the two sequences.

(a) If β4 is non-degenerate on the left and ker(g1)
⊥ = im(f1), then

β3 is non-degenerate on the left.
(b) If β2 is non-degenerate on the right and ker(f4)

⊥ = im(g4),
then β3 is non-degenerate on the right.

1.3. Tori and their duals. A general reference for tori over schemes
is [SGA3], tome II. Given a scheme S, a torus over S (or: S-torus) is
an S-group scheme T which locally with respect to the fpqc topology
is isomorphic to (Gm,S)

r for some integer r ≥ 0. The S-torus T is said
to be split if T ∼= (Gm,S)

r for some r ≥ 0. If S is locally noetherian
and normal, any S-torus is isotrivial, i.e., it splits over a finite étale
covering S ′ of S (see [SGA3], Th. X.5.16). We will call such a covering
S ′ → S a trivialising covering for T . If moreover S is connected, then
S ′ can be taken to be finite and Galois over S.

Given an S-torus T , the character group scheme of T is X∗(T ) =
HomS−gr(T,Gm). This is a lattice group scheme over S, by which we
mean an S-group scheme which is locally constant free abelian of finite
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rank. We have T = HomS−gr(X
∗(T ),Gm), and the functor T 7→ X∗(T )

defines a duality between the category of S-tori and the category of
lattice group schemes over S.

Assume that S is locally noetherian, normal and connected. Then
the category of S-tori is anti-equivalent to the category of isotrivial
group schemes over S which are locally constant free abelian, by means
of the functor X∗. We can also fix a geometric point s̄ of S and identify
the latter category with the category of π1(S, s̄)-lattices (i.e., of discrete
π1(S, s̄)-modules which are free abelian of finite rank as abelian groups).

The cocharacter group scheme of T is X∗(T ) = HomS−gr(Gm, T ).
We have T = X∗(T )⊗Gm. The natural pairing

X∗(T )× X∗(T )→ HomS−gr(Gm,Gm) = ZS

(of group schemes over S) identifies each of X∗(T ) and X∗(T ) with the
dual lattice group scheme of the other.

The dual torus T ′ of T is defined to be

T ′ := HomS−gr(X∗(T ),Gm) = X∗(T )⊗Gm.

We have X∗(T ′) = X∗(T ) and (T ′)′ = T (canonical isomorphism).
Base change gives us for any morphism f : X → S a torus TX :=

T ×S X on X, the pullback of T via f . Observe that in general TX
does not represent the étale sheaf f ∗T (e.g., when f is the inclusion of
a closed point on a curve). It does, however, if the map f is étale.

1.4. Galois cohomology and duality. Let F be a field and fix a
separable closure Fs of F . By GF = Gal(Fs/F ) we denote the absolute
Galois group of F . If M is a discrete GF -module, Galois cohomology
Hq(GF ,M) is denoted by Hq(F,M). For a group scheme G over F ,
we will mostly write Hq(F,G) rather than Hq(GF , G(Fs)). If M is a
torsion module whose torsion is prime to char(F ), then M(i) is the i-th
Tate twist of M , for i ∈ Z.

Theorem 1.11 (Tate–Nakayama). Let T be a torus over a p-adic
field k. The cup product pairing

Hq(k, T )×H2−q(k,X∗(T ))→ H2(k,Gm) = Q/Z (1)

is non-degenerate for all q ∈ Z. Moreover, it is a perfect pairing of
finite groups for q = 1, and induces perfect pairings

H0(k, T )̂ ×H2(k,X∗(T ))→ Q/Z

for q = 0 and

H0(k,X∗(T ))̂ ×H2(k, T )→ Q/Z

for q = 2, each between a profinite group and a discrete torsion group.
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Proof. See [Se2], II.5.8, Thm. 6. (There the completion of H0(k, T ) in
the q = 0 case is taken with respect to the system of open subgroups
of finite index. By Lemma 1.2, the result is the same as the profinite
completion of the abstract (discrete) group H0(k, T ).) ¤

1.5. Poincaré duality for curves over p-adic fields. By an
algebraic variety over a field k, we mean a separable reduced k-scheme
of finite type. A curve over k is a purely one-dimensional algebraic
variety over k. Unless mentioned otherwise, all cohomology groups
H∗(−,−) will be étale cohomology. In view of the equivalence between
the Galois cohomology and the étale cohomology of Spec k, this is
consistent with the notation in the previous section. Let k be a p-adic
field, let C be a nonsingular projective curve over k (which in general
we do not assume to be connected), let V be a dense open subscheme
of C, and let j : V ↪→ C denote the inclusion. Given any étale sheaf F
on V , the cohomology of F with compact supports is defined as

Hq
c (V, F ) := Hq(C, j!F ),

where j! is the extension by zero. We have a trace map

tr : H4
c (V,Q/Z(2))→ H2(k,Q/Z(1)) = Q/Z

which is an isomorphism if (and, in fact, only if) V is connected.
Indeed, H4

c (V,Q/Z(2)) = H2
(
k, H2

c (V ,Q/Z(2))
)
by the Hochschild-

Serre spectral sequence, and tr is the map induced by the trace
H2
c (V ,Q/Z(2))→ Q/Z(1) (see for example [Mi1],§V.2).

Theorem 1.12 (Poincaré duality). Let V be a nonsingular, not
necessarily projective curve over a p-adic field k. Let M be a locally
constant étale sheaf on V with finite stalks. Then the cup product
pairing

Hq
c (V,M)×H4−q(V,M∨(2))→ H4

c (V,Q/Z(2)) tr
−→ Q/Z

is a perfect pairing of finite abelian groups, for every q ∈ Z.

Proof. This is a formal consequence of geometric Poincaré duality in
étale cohomology, and Tate duality in the Galois cohomology of k with
finite coefficients. See for example [Sa], Lemma 2.9 (or compare [Mi2],
Th. II.7.6). ¤

Corollary 1.13. Let V be as above, and let T be a torus over V , with
dual torus T ′. Then the cup product pairing gives for any q ∈ Z and
any n ∈ Z a perfect pairing

Hq
c (V, nT )×H4−q(V, nT

′)→ H4
c (V,Q/Z(2)) tr

−→ Q/Z

of finite abelian groups.
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Proof. For the n-torsion subgroups we have nT = Hom(X∗(T ), µn) =
M∨(1) with M := X∗(T )/n, and nT

′ = X∗(T )⊗µn = M(1). Therefore,
the perfectness for any n ∈ N is a particular case of Poincaré duality
(Theorem 1.12). ¤

Note that for any torus T over V , the groups H q(V, T )/n are finite

(for all q ∈ Z, n ∈ N), by the exact sequences 0→ nT → T
n
−→ T → 0

and the finiteness of the groups Hq(V, nT ). In particular, we have

Hq(V, T )̂ = lim←−
n

Hq(V, T )/n

for the profinite completions (cf. Section 1.1). We will use the notation

Hq(V,Tate(T )) := lim←−
n

Hq(V, nT )

and
Hq
c (V,Tate(T )) := lim←−

n

Hq
c (V, nT )

for all q ∈ Z. These are profinite abelian groups.

Corollary 1.14. Let T be a torus over V . The cup product pairings
of Corollary 1.13 induce perfect pairings

Hq
c (V, Ttors)×H4−q(V,Tate(T ′))→ Q/Z (2)

and
Hq
c (V,Tate(T

′))×H4−q(V, Ttors)→ Q/Z (3)

(in the sense of Section 1.2) for any q ∈ Z.

Proof. Consider the pairings of sheaves

nT × nT
′ → Z/n(2) ↪→ Q/Z(2)

constructed above for all n ∈ N. It follows from the construction
that for any positive integers m and n the natural maps nT ↪→ mnT
and mnT

′ ³ nT
′ are adjoint with respect to these pairings. Hence

the induced maps in cohomology are adjoint with respect to the cup
product pairings, and the statement is an immediate consequence of
Lemma 1.6 and Corollary 1.13. ¤

Let π : W → V be a finite flat morphism of nonsingular curves
over k. For any smooth group scheme G over V we have trace maps

π∗ : Hq(W,GW )→ Hq(V,G)

and

π∗ : Hq
c (W,GW )→ Hq

c (V,G)

(see [SGA4], XVII.6.3). For M as in Theorem 1.12, these maps are
adjoint to the pullback maps with respect to the cup product pairing.
Namely, we have

〈π∗ω, η〉 = 〈ω, π∗η〉



COHOMOLOGY OF TORI 9

for ω ∈ Hq
c (W,π∗M) and η ∈ H4−q(V,M∨(2)), resp. for ω ∈

Hq(W,π∗M) and η ∈ H4−q
c (V,M∨(2)) (see for example [SGA4.5],

Dualité).

1.6. Lichtenbaum–Tate duality for curves over p-adic fields.

Theorem 1.15 (Lichtenbaum–Tate duality [Li]). Let C be a smooth
projective curve over a p-adic field k. For every q ∈ Z there is a natural
non-degenerate pairing

Hq(C,Gm)×H3−q(C,Gm)→ Q/Z. (4)

The induced pairings

H0(C,Gm)̂ ×H3(C,Gm)→ Q/Z (5)

and

H1(C,Gm)̂ ×H2(C,Gm)→ Q/Z (6)

are perfect.

Proof. We may assume C to be geometrically connected. Consider the
Hochschild–Serre spectral sequence

Eij
2 = H i(k, Hj(C,Gm)) ⇒ H i+j(C,Gm). (7)

Since scd(k) = 2 and Hj(C,Gm) = 0 for j ≥ 2, it follows that
Hq(C,Gm) = 0 for q ≥ 4. So only the cases q = 0 and q = 1 need to be
considered. For q = 1, our pairing is the pairing Pic(C)×Br(C)→ Q/Z
constructed by Lichtenbaum in [Li]. He proves that Br(C)→ Pic(C)∨

is an isomorphism, where Pic(C) carries its natural locally compact

topology (loc. cit., Thm. 4, p. 131). Since Pic(C)→ P̂ic(C) induces an

isomorphism
(
P̂ic(C)

)∨ ∼
→

(
Pic(C)

)∨
, this implies perfectness of the

pairing P̂ic(C)× Br(C)→ Q/Z, by Lemma 1.3.
For q = 0, the pairing (4) coincides with the obvious pairing

k∗ × H2(k,Z) → Br(k) = Q/Z from local class field theory, and
the assertions are classical (it is the special case T = Gm, q = 0
of Tate–Nakayama duality as treated in Theorem 1.11). To see that
H3(C,Gm) = H2(k,Z), use the Hochschild–Serre spectral sequence (7)
and the fact that H2(k,Pic0(C)) = 0 (see [Se2], II.5.3). ¤

Remarks 1.16.
1. For q ≥ 2, Hq(C,Gm) is a (discrete) abelian torsion group, whereas

for q = 0 and q = 1, it is an extension of a free abelian group of finite
rank by a compact p-adic Lie group.

2. Lichtenbaum’s construction of the pairing Pic(C)×Br(C)→ Q/Z
is as follows. Suppose given a Weil divisor D =

∑
P np · P on C,

representing a class [D] ∈ Pic(C), and a central simple k(C)-algebra
A which is everywhere unramified on C, therefore representing a class
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[A] ∈ Br(C). Let A(P ) denote the residue central simple algebra over
k(P ), for P any closed point on C. Then

〈[D], [A]〉 =
∑

P

nP · invk(P )A(P ),

where invK : Br(K) → Q/Z is the invariant from local class field
theory, for K any local field.

3. For any abelian variety A over a p-adic field k, with dual abelian
variety A′, Tate established a natural pairing H0(k,A)×H1(k,A′)→
Q/Z and proved that it is perfect [Ta]. Lichtenbaum’s pairing is closely
related to Tate’s pairing for A := J , the Jacobian of the curve C. In
fact, Lichtenbaum’s proof proceeds by establishing this relation and
then using perfectness of Tate’s pairing. His conclusion also uses a
theorem of Roquette [Ro] (to which Lichtenbaum gives a new proof),
to the end that the order of ker

(
Br(k)→ Br(C)

)
is precisely the index

of C.

Remark 1.17. When π : C̃ → C is a finite covering of smooth
projective curves, it follows from the construction that the trace
map π∗ : H∗(C̃,Gm) → H∗(C,Gm) is adjoint to the pullback map
π∗ : H∗(C,Gm)→ H∗(C̃,Gm) with respect to Lichtenbaum’s pairing.

1.7. Relating Poincaré duality to Lichtenbaum–Tate duality.

We will now check that Lichtenbaum’s pairing (4) is compatible with
the cup product pairing for coefficients in the roots of unity. Let n ∈ N
and q ∈ Z, and consider the Kummer exact sequence

0→ Hq(C,Gm)/n
δn−→ Hq+1(C, µn)

ιn−→ nH
q+1(C,Gm)→ 0. (8)

We need the following observation.

Lemma 1.18. Let C be a smooth projective curve over a p-adic field.
Let m, n ∈ N.

(a) The composite map

Hq(C, µm)
ιm−→ Hq(C,Gm)

δn−→ Hq+1(C, µn)

coincides with the boundary map

βm,n : Hq(C, µm)→ Hq+1(C, µn)

associated with the short exact sequence

0→ µn → µmn
n
−→ µm → 0.

(b) The map βm,n is adjoint to the map βn,m with respect to the cup
product pairings

Hq(C, µm)×H4−q(C, µm)→ Q/Z

and

Hq+1(C, µn)×H3−q(C, µn)→ Q/Z.
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We leave the proof as an exercise to the reader. ¤

Proposition 1.19. Let C be a smooth projective curve over a p-adic
field. Let n ∈ N.

(a) Lichtenbaum’s pairing (4) induces for every q ∈ Z a perfect
pairing of finite groups

Hq(C,Gm)/n× nH
3−q(C,Gm)→ Q/Z. (9)

(b) The mappings δn and ιn in the Kummer sequence (8) are adjoint
to each other with respect to the cup product pairings

Hq(C, µn)×H4−q(C, µn)→ Q/Z (10)

and the above pairings (9).

Proof. (a) Apply Lemma 1.8 to the pairings (5) and (6) in
Theorem 1.15. Note that for q = 0 and q = 1, the group A :=
Hq(C,Gm) is of the type considered in Lemma 1.2(b). Therefore, the

torsion and cotorsion of Â and of A are the same.
(b) We claim that

〈δnα, ω〉 = 〈α, ιnω〉

for α ∈ Hq(C,Gm)/n and ω ∈ H3−q(C, µn). For q = 0, 3 this is
essentially a formal consequence of the construction of Lichtenbaum’s
pairing, since the local class field pairing

H0(k,Gm)×H2(k,Z)→ H2(k,Gm) = Q/Z
is the cup product.

For q = 1, 2 the situation is slightly more subtle. For q = 1 we may
assume without loss of generality that α is the class [P ] of a closed
point P ∈ C. It is a standard property of the cycle map that, given a
diagram

P
i //

π
¿¿9

99
99

99
C

ϕ
££¦¦
¦¦
¦¦
¦

Spec k

we have
〈δn[P ], ω〉 = π∗i

∗ω

(cf. [SGA4.5], Cycle 2.3.1). We see from the construction of the
pairing (4) (cf. Remark 1.16.2) that the right hand side of the equation
coincides with 〈[P ], ιnω〉, so we have proved the case q = 1.

The case q = 2 can be reduced to the case q = 1 by using that
H2(C,Gm) is a torsion group: Indeed, α = ιmη (modulo n) for some
m ∈ N and η ∈ H2(C, µm), so Lemma 1.18 implies that

〈δnα, ω〉 = 〈δn ◦ ιm η, ω〉 = 〈η, δm ◦ ιn ω〉,

and the case q = 1 gives us that

〈η, δm(ιnω)〉 = 〈ιmη, ιnω〉 = 〈α, ιnω〉.
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Taking the inverse and direct limit of the Kummer exact sequence,
we get short exact sequences

0→ Hq(C,Gm)̂ δTate−→ Hq+1(C, Ẑ(1)) ιTate−→ Tate
(
Hq+1(C,Gm)

)
→ 0

of profinite groups and

0← H3−q(C,Gm)tors
ι∞←− H3−q(C,Q/Z(1)) δ∞←− H2−q(C,Gm)⊗Q/Z← 0

of discrete torsion groups.

Corollary 1.20. Let C be a smooth projective curve over a p-adic
field. For every q ∈ Z we have the following diagrams with exact
rows of compatible perfect pairings into Q/Z, which are induced by
Lichtenbaum’s pairing (4) and the cup product pairing:

0 // Hq(C, Gm)̂ δTate // Hq+1(C, Ẑ(1))
ιTate // Tate

(
Hq+1(C, Gm)

)
// 0

× × ×

0 H3−q(C, Gm)torsoo

**UUU
UUUU

UUUU
U

H3−q(C, Q/Z(1))
ι∞oo

²²

H2−q(C, Gm)⊗Q/Z
δ∞oo

sshhhhh
hhhhh

hhhh
0oo

Q/Z

Proof. The compatibility of the pairings follows from Proposi-
tion 1.19(b). By Theorem 1.15 (resp., Proposition 1.19(a)) and
Lemma 1.6, the middle (resp., the left) column pairing is perfect. From
Lemma 1.9(b) and Corollary 1.4 it follows that the right column pairing
is perfect as well. ¤

2. Cohomology of tori with compact supports

2.1. Introduction. Let C be a (not necessarily smooth) projective
curve over an arbitrary field F , let j : V → C be the inclusion of
an open non-empty subset and let i : Z ↪→ C be the inclusion of its
reduced closed complement.

Let T be a torus over V . Assume T extends to C, i.e., we have
a torus S over C such that T = SV = j∗S. We have two natural
possibilities of defining cohomology of T with compact supports. The
first is the standard sheaf-theoretic definition

Hq
c (V, T ) := Hq(C, j!T ),

where j!T is the étale sheaf on C characterised by the short exact
sequence

0→ j!T → S → i∗i
∗S → 0.

The second, more geometric definition is

Hq
cc(V, T ) := Hq(C, T̃ ),
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where T̃ is the étale sheaf on C defined by the short exact sequence

0→ T̃ → S → i∗SZ → 0

and SZ is the pullback of S to Z (1.3). However, if T is an arbitrary
torus on V which does not extend to a torus S on C, we cannot define
T̃ and H∗

cc(V, T ) in this way.

2.2. Definitions and basic properties. Let F be a field and V
a (reduced) curve over F . An open immersion j : V ↪→ C into a
projective curve C will be called a good compactification of V if V is
dense in C and Z = C − V consists of nonsingular points of C. Every
curve V has a good compactification that is unique up to isomorphism.

Definition 2.1. Let j : V → C be a good compactification of V , let
Z = C − V be the reduced complement and i : Z ↪→ C its inclusion in
C. Let T be a torus on V .

(a) The étale sheaf j!!Gm on C is defined by the exact sequence

0→ j!!Gm → Gm,C → i∗Gm,Z → 0. (11)

(b) The étale sheaf j!!T on C is defined by j!!T := j∗X∗(T )⊗j!!Gm.
(c) For q ∈ Z we define Hq

cc(V, T ) := Hq(C, j!!T ).

Remarks 2.2.
1. The stalk of the sheaf j∗X∗(T ) at a geometric point P of Z is the

subgroup of X∗(T ) fixed by the monodromy action at P . In particular,
if T extends to a torus S on all of C, then j∗X∗(T ) = X∗(S), and thus
j!!T coincides with the sheaf T̃ considered in 2.1 before. (Tensoring
the sequence (11) with j∗X∗(T ) = X∗(S) gives the exact sequence
0 → j!!T → S → i∗SZ → 1.) At the other extreme, if no subtorus
6= {1} of T can be extended to any larger open subcurve of C, then
j!!T = j!T .

2. The sheaf j!!Gm appears under the name Gm(m) in [SGA4],
XVIII.1.5.8, where m is the ideal defining the reduced closed subscheme
Z of C. In [SGA4.5], Arcata VI, the notation ZGm is used.

Lemma 2.3. Let j : V → C and T be as above. We have a natural
injective map

j!T → j!!T

of sheaves on C which is an isomorphism on torsion prime to char(F ).
The cokernel is a sheaf concentrated on Z, uniquely divisible if
char(F ) = 0.

Proof. The case T = Gm is clear, and it implies the general case since
j!T = j∗X∗(T )⊗ j!Gm. ¤

Corollary 2.4. Let j : V → C and T be as above, and assume
char(F ) = 0. Then for q 6= 1, the natural map

Hq
c (V, T )→ Hq

cc(V, T )
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is an isomorphism. For q = 1 it is surjective, with a uniquely divisible
kernel.

Proof. Follows from the previous lemma, together with the fact that
H0
c (V, T ) = H0

cc(V, T ) = 0 if V is connected and V 6= C. ¤

Remark 2.5. Since (j!!T )|V = T , there are natural maps Hq
cc(V, T ) →

Hq(V, T ), and the composition

Hq
c (V, T )→ Hq

cc(V, T )→ Hq(V, T )

is the canonical map for the usual definition of cohomology with
compact supports.

Lemma 2.6 (Kummer sequence). With notations as above we have,
for any n ∈ N prime to char(F ) and any q ∈ Z, a short exact sequence

0→ Hq
cc(V, T )/n→ Hq+1

c (V, nT )→ nH
q+1
cc (V, T )→ 0. (12)

Proof. Clear from the exact sequence of sheaves 0→ j!(nT )→ j!!T
n
−→

j!!T → 0. ¤

The following lemma, together with its corollary, is obvious:

Lemma 2.7. Let V be a curve over a field F and T a torus over V .
Let U ⊂ V be a dense open subset such that Y = V − U consists of
regular points, and let j ′ : U → C, j : V → C and i : Y ↪→ C be the
inclusions into a good compactification C of V . Then we have a short
exact sequence of sheaves on C

0→ j ′!!TU → j!!T → i∗TY → 0.

Corollary 2.8 (Localisation). With notations as above, we have a long
exact sequence

· · · Hq
cc(U, TU)

j∗
−→ Hq

cc(V, T )→ Hq(Y, TY ) · · · (13)

where the second arrow is the composition H q
cc(V, T ) → Hq(V, T )

i∗
−→

Hq(Y, TY ).

Example 2.9. When V 6= ∅ is open in a geometrically irreducible
smooth projective curve C over F , and Z = C − V , we have exact
sequences

0→ F ∗ →
⊕

P∈Z

F (P )∗ → H1
cc(V,Gm)→ Pic(C)→ 0 (14)

and

0→ H2
cc(V,Gm)→ Br(C)→

⊕

P∈Z

BrF (P )→ H3
cc(V,Gm)→ · · · (15)
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Remarks 2.10.
1. When π : V ′ → V is a finite covering of curves over F and T is a

torus on V , one defines pullback maps

π∗ : Hq
cc(V, T )→ Hq

cc(V
′, TV ′)

and trace maps

π∗ : Hq
cc(V

′, TV ′)→ Hq
cc(V, T )

in the obvious way.
2. It is not hard to derive from the above a more explicit description

of the groups H1
cc(V,Gm) and H2

cc(V,Gm) when V is smooth. To
simplify notation we assume that V is connected. As before, let V ↪→ C
be a smooth compactification and Z = C − V .

Denoting by Div(C) the group of divisors on C and by div : F (C)∗ →
Div(C) the divisor map, the group H1

cc(V,Gm) is the cokernel of the
map

F (C,Z)∗
div
−→ Div(V ),

where F (C,Z)∗ ⊂ F (C)∗ is the subgroup consisting of all rational
functions on C that take the value 1 on all points of Z (in particular,
they do not have zeroes or poles in Z). In [SGA4.5], Arcata VI, the
group H1

cc(V,Gm) is denoted by PicZ(C). In terms of invertible sheaves
it can be described as the group of isomorphism classes of pairs (L, τ),

where L is an invertible sheaf on C and τ : LZ
∼
→ OZ is a trivialisation

of L at Z.
The group H2

cc(V,Gm) is the subgroup of Br(C) of unramified central
simple F (C)-algebras A for which the class of the residue central simple
algebra A(P ) in Br(F (P )) is trivial for every point P ∈ Z.

2.3. Relations to generalised Jacobians and motivic cohomol-

ogy. Now assume C to be a geometrically connected smooth projective
curve over F and j : V ↪→ C a dense open subset with (reduced)
complement Z = C − V . Let ϕ : C → SpecF be the structure
morphism. As remarked before, the sheaf j!!Gm already appears in
[SGA4], Exp. XVIII, under the name Gm(m), where m is the ideal
defining the reduced closed subscheme Z ⊂ C. In [SGA4], XVIII.1.6.3,
it was observed that the higher direct image sheaf R1ϕ∗j!!Gm is
representable by a group scheme locally of finite type over F (actually,
representable not just on the small étale site, where we are working in
the present paper, but already on the fppf site). This group scheme is
denoted by Picm,C/F in loc. cit.; it represents the fppf sheaf associated
to the presheaf that sends an F -scheme S to the set of isomorphism
classes of line bundles on C×S with a given trivialisation at Z×S. In
fact, when V 6= C, we see from the Hochschild–Serre spectral sequence
that

H1
cc(V,Gm) = Picm,C/F (F ).
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The connected component of Picm,C/F containing zero coincides with
Rosenlicht’s generalised Jacobian of C with modulus m (see [Se1]); it
is an extension of the Jacobian of the curve C by a torus (compare the
exact sequence (14)).

The cohomology groups H∗
cc(V,Gm) are (in degrees ≤ 1) closely

related to motivic cohomology. The localisation exact sequence
for motivic cohomology H∗

c (−,Z(1)) with compact supports and
coefficients in Z(1) (see [FrVo], Sec. 9) and the fact that H∗

c (X,Z(1)) =
H∗(X,Z(1)) = H∗

Zar(X,Gm) when X is smooth and proper (see [Vo],
Cor. 3.4.3) give us (for V 6= C) an exact sequence

0→ F ∗ → Γ(Z,Gm)→ H2
c (V,Z(1))→ Pic(C)→ 0

similar to (14). So our group H1
cc(V,Gm) should be motivic, i.e.,

naturally isomorphic to H2
c (V,Z(1)). We have not actually tried to

construct the map that should give this isomorphism.

2.4. Some properties over p-adic fields. Let now V be a smooth
connected curve over a p-adic field k and T a torus over V . From the
Kummer sequence and the finiteness of the groups Hq

c (V, nT ) we see
that the groups Hq

cc(V, T )/n and nH
q
cc(V, T ) are finite. Therefore

Hq
cc(V, T )̂ = lim←−

n

Hq
cc(V, T )/n

for all q ∈ Z (cf. Section 1.1).

Lemma 2.11. Let k be a p-adic field and G a commutative algebraic
group over k. Then the group G(k) is residually finite.

Proof. Since G(k)/n is finite for each n ∈ N, we have to show that the
subgroup D(G(k)) of G(k) is trivial, cf. Section 1.1. This is the case
if G is either finite, or a connected linear group, or an abelian variety.
From this the general case follows, using Lemma 1.1. ¤

Proposition 2.12. Let T be any torus on V . Then the groups
H0(V, T ), H0

cc(V, T ) and H1
cc(V, T ) are residually finite.

Proof. The first two cases are clear. There is a finite Galois covering
W → V such that the torus TW on W splits. Writing Γ for the Galois
group of this covering, we have an exact sequence

0→ H1(Γ, H0
cc(W,TW ))→ H1

cc(V, T )→ H1
cc(W,TW ).

The group H1
cc(W,TW ) is an extension of a free abelian group of

finite type by the group G(k) of k-points of a semi-abelian variety
G over k, see Section 2.3. Therefore, H1

cc(W,TW ) is residually finite by
Lemma 2.11. Using Lemma 1.1, it follows that H1

cc(V, T ) is residually
finite as well. ¤

In contrast, the group H1(V, T ) need not be residually finite if V is
affine. For an example see 3.8 below.
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3. Lichtenbaum–Tate duality for open curves

In the following, let C be a smooth projective curve over a p-adic
field k. Let j : V ↪→ C be a dense open subset, and let i : Z ↪→ C be
the reduced complement.

Consider the localisation exact sequences

· · · → Hq
cc(V,Gm)

j∗
−→ Hq(C,Gm)

i∗
−→ Hq(Z,Gm)→ · · · (16)

and

· · · ← Hr(V,Gm)
j∗

←− Hr(C,Gm)
i∗←− Hr

Z(C,Gm)← · · · (17)

Recall that Hr
Z(C,Gm) = Hr−1(Z,Z). We will define pairings

Hq
cc(V,Gm)×H3−q(V,Gm)→ Q/Z (18)

such that sequences (16) and (17) (for r = 3 − q) are adjoint to each
other with respect to these pairings, the Lichtenbaum–Tate pairings
(4) and the Tate–Nakayama pairings 1.11 (for T the direct image of
Gm,Z to the base Spec k).

These generalised Lichtenbaum pairings will be constructed from the
cup product pairings (3) and (2), using the following two diagrams with
exact rows (for T = T ′ = Gm):

0 // Hq
cc(V, T )̂ δTate // Hq+1

c (V, Tate(T ))
ιTate// Tate

(
Hq+1
cc (V, T )

)
// 0

×

0 H3−q(V, T ′)torsoo H3−q(V, T ′tors)
ι∞oo

²²

H2−q(V, T ′)⊗Q/Z
δ∞oo 0oo

Q/Z
(19)

and

0 // Hq−1
cc (V, T )⊗Q/Z

δ∞ // Hq
c (V, Ttors)

ι∞ // Hq
cc(V, T )tors // 0

×

0 Tate
(
H4−q(V, T ′)

)
oo H4−q(V, Tate(T ′))

ιTateoo

²²

H3−q(V, T ′)̂δTateoo 0oo

Q/Z
(20)

The rows of these diagrams are obtained from the Kummer sequences
(8) and (12) by taking inverse resp. direct limits. Note that the pairings
in the middle columns are perfect (Corollary 1.14). We will denote the
composite maps

Hq
(cc)(V, T )→ Hq

(cc)(V, T )̂
δTate−→ Hq+1

(c) (V,Tate(T ))

by δTate as well.

Lemma 3.1. Let V be as above, and let T be a torus on V .
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(a) For q ≥ 2, the groups Hq
cc(V, T ) and Hq(V, T ) are torsion. In

particular, Hq
cc(V, T )⊗Q/Z = Hq(V, T )⊗Q/Z = 0.

(b) For q ≥ 3, the maps

Hq
c (V, Ttors)

ι∞−→ Hq
cc(V, T )

and

Hq(V, Ttors)
ι∞−→ Hq(V, T )

are isomorphisms.
(c) Hq(V, T ) = Hq

cc(V, T ) = 0 for q ≥ 4.

Proof. For any étale sheaf F on a curve X over a field, the groups
Hq(X,F ) are torsion for q ≥ 2 (see [Sch1] pp. 85-86). This proves (a),
and (a) implies (b) by the Kummer exact sequences.

It follows from Poincaré duality (see Corollary 1.14) and from (b)
that for (c) it is sufficient to show H0(V,Tate(T )) = H0

c (V,Tate(T )) =
0. Since T is split by a finite Galois covering W → V , and
since H0

(c)(V,Tate(T )) embeds into H0
(c)(W,Tate(T )), we can assume

T = Gm. In this case, both assertions are clear, since Tate(K∗) =
lim←−n

µn(K) = 0 for any p-adic field K. ¤

We now return to the case of split tori (T = T ′ = Gm):

Lemma 3.2. Let V be as above. With respect to the cup product
pairing, we have for all q ∈ Z:

(a) The image of

δTate : Hq−1(V,Gm)̂ → Hq(V, Ẑ(1))
is orthogonal to the image of

δ∞ : H3−q
cc (V,Gm)⊗Q/Z→ H4−q

c (V,Q/Z(1)).
(b) The image of

δTate : Hq−1
cc (V,Gm)̂ → Hq

c (V, Ẑ(1))
is orthogonal to the image of

δ∞ : H3−q(V,Gm)⊗Q/Z→ H4−q(V,Q/Z(1)).

Proof. It follows from Lemma 3.1 that for q ≤ 1 or q ≥ 4, the source
of δ∞ is zero, and that for q = 3, the source of δTate contains a dense
torsion subgroup, hence (a) and (b) hold when q 6= 2. (In fact, it can
be checked that for q = 3 the source of δTate is finite). Remains q = 2.
Both assertions follow once we show for any n ∈ N that the images of
the Kummer maps

δn : H1(V,Gm)→ H2(V, µn)

and
δn : H1

cc(V,Gm)→ H2
c (V, µn)
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are orthogonal to each other. For V = C, this is true by
Proposition 1.19(b). The case of general V follows from this, since
the restriction map H1(C,Gm) → H1(V,Gm) is surjective and the
canonical map H2

c (V, µn)→ H2(C, µn) is adjoint to the restriction map
H2(C, µn)→ H2(V, µn) with respect to the cup product pairing. ¤

Lemma 3.3. Let V be as above. The composite mapping

δTate ◦ ι∞ : Hq
c (V,Q/Z(1))→ Hq+1

c (V, Ẑ(1))

is adjoint to the composite mapping

δTate ◦ ι∞ : H3−q(V,Q/Z(1))→ H4−q(V, Ẑ(1))

with respect to the cup product pairings (2) and (3).

Proof. This follows from Lemma 1.18 by taking m, n→∞. ¤

Proposition 3.4. Let V be as above. There is a unique family of
pairings

〈−,−〉 : Hq
cc(V,Gm)×H3−q(V,Gm)→ Q/Z (21)

(q ∈ Z) which is compatible

(i) with the Tate–Nakayama pairing 1.11 (for split tori over p-adic
fields) and the Lichtenbaum–Tate pairing 1.15 for nonsingular
projective curves, via the localisation exact sequences (16) and
(17), and

(ii) with the cup product pairing 1.12 of torsion sheaves on V , via
the Kummer exact sequences.

Recall (Example 1.7) that the pairings (21) induce pairings between
the first and third groups in the exact sequences (19), (20). By (ii)
we mean that these exact sequences are compatible with these pairings
and with the already constructed pairings between the middle groups.

Proof. We define the pairing by

〈x, ι∞y〉 := 〈δTatex, y〉

if q = 0, 1, and by

〈ι∞x, y〉 := 〈x, δTatey〉

if q = 2, 3. This gives well-defined pairings by Lemmas 3.1 and 3.2
and by the Kummer exact sequences (19), (20). Now (ii) follows
from the construction and Lemma 3.3. Compatibility (i) follows from
Proposition 1.19(b) and the fact that the localisation exact sequences
with coefficients in Gm and coefficients in µn are compatible with the
Kummer exact sequences for all n ∈ N. ¤

Theorem 3.5 (Lichtenbaum–Tate duality for open curves). Let V be
a nonsingular curve over a p-adic field. The pairing

Hq
cc(V,Gm)×H3−q(V,Gm)→ Q/Z
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is non-degenerate on the left for q 6= 3, and non-degenerate on the right
for q 6= 2. The induced pairings

H0
cc(V,Gm)̂ × H3(V,Gm)→ Q/Z,

H1
cc(V,Gm)̂ × H2(V,Gm)→ Q/Z

and
H2
cc(V,Gm)×H1(V,Gm)̂ → Q/Z

are perfect.

Proof. Using Corollary 1.4, the second assertion about the induced
pairings follows from the first one and from the exact sequences (19),
(20). The first assertion follows from the localisation exact sequences
(16), (17) by Lemma 1.10, using the following observation. ¤

Lemma 3.6. Let r ∈ Z. The maps Hr(C,Gm)
i∗
−→ Hr(Z,Gm) and

H3−r(C,Gm)
i∗←− H3−r

Z (C,Gm) are adjoint to each other with respect
to the usual pairings. For r 6= 2, we have

(a) ker(i∗)
⊥ = im(i∗)

(b) ker(i∗)⊥ = im(i∗)

with respect to these pairings. For r = 2, the group ker(i∗)⊥/ im(i∗) is
divisible.

Proof. For r = 1 resp. r = 3, we have Hr(Z,Gm) = 0 = H3−r
Z (C,Gm),

so (a) is trivial and (b) is equivalent to the nondegeneracy on the right
of the Tate–Lichtenbaum pairing Hr(C,Gm) × H3−r(C,Gm) → Q/Z.
For r = 0, the two maps are

i∗ = incl : k∗ →
⊕

z∈Z

k(z)∗

and
i∗ = cor :

⊕

z∈Z

H2(k(z),Z)→ H2(k,Z),

so both assertions follow from Nakayama-Tate duality for tori over k.

For r = 2 we use that H1
Z(C,Gm) =

⊕
z∈Z Z, H2

Z(C, Ẑ(1)) =
⊕

z∈Z Ẑ
and H1(C,Gm) injects into H2(C, Ẑ(1)). The statement for r = 2 now
follows easily from Poincaré duality with torsion coefficients and the

fact that Ẑ/Z is divisible. ¤

Remarks 3.7.
1. If V is connected and affine (i.e., V 6= C), then for q = 0 we have

the zero pairing: H0
cc(V,Gm) = 0 = H3(V,Gm).

2. The (completed) pairing

H3
cc(V,Gm)×H0(V,Gm)̂ → Q/Z

is non-degenerate on the right.
3. From the explicit descriptions of Hq

cc(V,Gm) and Hq(V,Gm)
for q = 1, 2 (in terms of divisors and central simple algebras, cf.
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Remark 2.10.2), one can give more concrete descriptions of our pairings
in the spirit of Lichtenbaum’s construction (cf. Remark 1.16).

The following example shows that the conditions q 6= 3 resp. q 6= 2
in the theorem cannot be avoided:

Example 3.8. Assume V = C − {P,Q} with P , Q ∈ C(k), let x =
[P ]− [Q] ∈ Pic0(C), and assume that x generates an infinite subgroup

〈x〉 of Pic0(C). Then k[V ]∗ = k∗. Let G := 〈x〉, and consider the two
exact sequences

Br(C)
i∗
−→ Br(k)⊕ Br(k)

∂
−→ H3

cc(V,Gm)→ H3(C,Gm)

and

Pic(C)← Z⊕ Z 0
←− k[V ]∗ ← k∗

(which are adjoint to each other). For all but finitely many primes q,
the group G is q-divisible. Choose one such prime q. Let β ∈ Br(k)
be a class of exponent q, and put α = ∂(β, 0). Then α lies in the left
kernel of

H3
cc(V,Gm)×H0(V,Gm)→ Q/Z.

But α 6= 0. Indeed, otherwise there would be γ ∈ Br(C) with (β, 0) =
i∗(γ). But then 〈γ,−〉 would be a (continuous) character on G which
sends x to β, hence which is annihilated by q. This would contradict
the fact that G is q-divisible.

This shows that in general the pairing H3
cc(V,Gm) × H0(V,Gm) →

Q/Z (and therefore also its completion H3
cc(V,Gm) × H0(V,Gm)̂ →

Q/Z) has a non-trivial left kernel.
The subgroup G/〈x〉 of Pic(V ) contains a subgroup isomorphic to

Zp/Z, and hence its Tate module is 6= 0. Therefore Pic(V ) has a non-
zero Tate module. Since in the pairing

(
H2
cc(V,Gm)⊗Q/Z

)
× Tate

(
H1(V,Gm)

)
→ Q/Z

the left hand group is zero (H2
cc(V,Gm) is a torsion group), this shows

that this pairing has a non-zero right kernel.
Also, G/〈x〉 contains non-zero divisible elements, and hence Pic(V )

is not residually finite. Therefore, the (non-completed) pairing

H2
cc(V,Gm)×H1(V,Gm)→ Q/Z

has a non-zero right kernel.

Corollary 3.9. Let V be as above, let q ∈ Z.
(a) The pairing

Tate
(
Hq
cc(V,Gm)

)
×
(
H3−q(V,Gm)⊗Q/Z

)
→ Q/Z

is perfect if q 6= 3 (and always non-degenerate on the right).
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(b) The pairing
(
Hq
cc(V,Gm)⊗Q/Z

)
× Tate

(
H3−q(V,Gm)

)
→ Q/Z

is perfect if q 6= 2 (and always non-degenerate on the left).

Proof. Recall that for the pairings under consideration perfect is
equivalent to non-degenerate (Corollary 1.4). By Lemma 1.9, this
follows from sequences (19) for (a) (resp. (20) for (b)), using
Theorem 3.5. ¤

4. Duality for general tori

Let V be a non-singular curve over the p-adic field k, and let T be
an arbitrary torus on V . Recall that T ′ denote the dual torus of T . We
are going to construct pairings

Hq
cc(V, T )×H3−q(V, T ′)→ Q/Z

(q ∈ Z) and to investigate their duality properties. For this, we keep
referring to the Kummer exact sequences (19) and (20), together with
the perfect pairings of their middle columns.

Lemma 4.1. Let V and T be as above.

(a) The image of

δTate : Hq−1
cc (V, T )̂ → Hq

c (V,Tate(T ))

is orthogonal to the image of

δ∞ : H3−q(V, T ′)⊗Q/Z→ H4−q(V, T ′tors).

(b) The image of

δTate : H3−q(V, T ′)̂ → H4−q(V,Tate(T ′))

is orthogonal to the image of

δ∞ : Hq−1
cc (V, T )⊗Q/Z→ Hq

c (V, Ttors).

Proof. (a) Let π : W → V be a finite étale map such that T splits over
W . Consider the diagram

Hq−1
cc (V, T )̂

π∗

²²

×
(
H3−q(V, T ′)⊗Q/Z

)
→ Q/Z

Hq−1
cc (W,TW )̂ ×

(
H3−q(W,T ′W )⊗Q/Z

)
π∗

OO

→ Q/Z,

where the pairings in both rows are defined by

(α, β) 7→ δTate(α) ∪ δ∞(β).
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The maps π∗ and π∗ are compatible with these pairings. Since TW is
split, the lower pairing is zero by Lemma 3.2. Since

π∗ ◦ π
∗ : H3−q(V, T ′)⊗Q/Z→ H3−q(V, T ′)⊗Q/Z

is multiplication by the degree of π, and since the group H3−q(V, T ′)⊗
Q/Z is divisible, we see that the map π∗ in the diagram is surjective.
So the upper pairing is zero as well.

The proof of (b) goes as the proof of (a). ¤

Lemma 4.2. Let V and T be as above. The composite mapping

δTate ◦ ι∞ : Hq
c (V, Ttors)→ Hq+1

c (V,Tate(T ))

is adjoint to the composite mapping

δTate ◦ ι∞ : H3−q(V, T ′tors)→ H4−q(V,Tate(T ′))

with respect to the cup product pairings (2) and (3).

Proof. Compare Lemma 3.3. ¤

Proposition 4.3. Let V and T be as above. For each q ∈ Z there is a
unique pairing

Hq
cc(V, T )×H3−q(V, T ′)→ Q/Z (22)

which is compatible with the cup product pairings (2) and (3) through
the Kummer sequences.

Proof. We define the pairing by

〈x, ι∞y〉 := 〈δTatex, y〉

if q = 0, 1 and by

〈ι∞x, y〉 := 〈x, δTatey〉

if q = 2, 3. This gives a well-defined pairing by Lemma 3.1
and Lemma 4.1. The compatibility with the cup product pairings
through the Kummer sequences follows from the construction and
Lemma 4.2. ¤

Remark 4.4. When π : W → V is a finite covering of smooth curves
over k, the pairings just constructed are compatible with the pullback
and trace maps induced by π:

〈α, π∗γ〉V = 〈π∗α, γ〉W

holds for α ∈ Hq(V, T ) and γ ∈ H3−q
cc (W,T ′W ), resp. for α ∈ Hq

cc(V, T )
and γ ∈ H3−q(W,T ′W ).

Proposition 4.3 allows us to fill in our diagrams of pairings of
Kummer sequences to get for every q ∈ Z the following diagrams
of compatible pairings, with perfect pairings in the middle columns.
Recall that Hq(V, T ) = Hq

cc(V, T ) = 0 for q < 0 or q > 3.
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0 // Hq
cc(V, T )̂ δTate // Hq+1

c (V, Tate(T ))
ιTate// Tate

(
Hq+1
cc (V, T )

)
// 0

× × ×

0 H3−q(V, T ′)torsoo

**UUU
UUUU

UUUU
U

H3−q(V, T ′tors)
ι∞oo

²²

H2−q(V, T ′)⊗Q/Z
δ∞oo

tthhhh
hhhh

hhhh
h

0oo

Q/Z
(23)

0 // Hq−1
cc (V, T )⊗Q/Z

δ∞ // Hq
c (V, Ttors)

ι∞ // Hq
cc(V, T )tors // 0

× × ×

0 Tate
(
H4−q(V, T ′)

)
oo

**VVV
VVVV

VVVV
VV

H4−q(V, Tate(T ′))
ιTateoo

²²

H3−q(V, T ′)̂δTateoo

ttiiii
iiii

iiii
0oo

Q/Z
(24)

Proposition 4.5. Let V and T be as above, let q ∈ Z.
(a) The pairing

Tate
(
Hq
cc(V, T )

)
×
(
H3−q(V, T ′)⊗Q/Z

)
→ Q/Z

is perfect if q 6= 3 (and always non-degenerate on the right).
(b) The pairing

(
Hq
cc(V, T )⊗Q/Z

)
× Tate

(
H3−q(V, T ′)

)
→ Q/Z

is perfect if q 6= 2 (and always non-degenerate on the left).

Proof. We use the diagrams (23), (24). The kernels on the − ⊗ Q/Z
side are trivial by Lemma 1.9. In order to prove the statement on the
Tate side, we lift to a trivialising cover π : W → V for the torus T . In
case (a) we get the diagram

Tate
(
Hq
cc(V, T )

)

π∗

²²

×
(
H3−q(V, T ′)⊗Q/Z

)
→ Q/Z

Tate
(
Hq
cc(W,TW )

)
×

(
H3−q(W,T ′W )⊗Q/Z

)
π∗

OO

→ Q/Z.

Since TW splits, the lower pairing is non-degenerate for q 6= 3, by
Corollary 3.9. Since

π∗ ◦ π
∗ : Tate

(
Hq
cc(V, T )

)
→ Tate

(
Hq
cc(V, T )

)

is multiplication by deg(π), and Tate
(
Hq
cc(V, T )

)
is torsion-free, it

follows that the map π∗ in the above diagram is injective. So for q 6= 3
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the upper pairing is non-degenerate as well. The proof of the remaining
part of (b) is exactly the same. ¤

Remark 4.6. Observe that the above, together with Lemma 3.1, implies
that the Tate modules of H0(V, T ), H0

cc(V, T ) and H1
cc(V, T ) are zero.

This can also be derived directly from the basic properties of the groups
involved (cf. Section 2.4). Note the contrast with the situation for
H1(V, T ) (cf. Example 3.8).

Corollary 4.7. Let V and T be as above, let q ∈ Z.
(a) The pairing

Hq
cc(V, T )̂ ×H3−q(V, T ′)tors → Q/Z

is perfect if q 6= 2 (and always non-degenerate on the left).
(b) The pairing

Hq
cc(V, T )tors ×H3−q(V, T ′)̂ → Q/Z

is perfect if q 6= 3 (and always non-degenerate on the right).

Proof. Immediate from Proposition 4.5 and the Kummer exact
sequences (23) (for (a)) and (24) (for (b)), by Lemma 1.9. ¤

Now we can state and prove our main theorem:

Theorem 4.8. Let V be a non-singular curve over a p-adic field, and
let T be a torus over V . The natural pairing

Hq
cc(V, T )×H3−q(V, T ′)→ Q/Z

is non-degenerate on the left if q 6= 3, and non-degenerate on the right
if q 6= 2. The induced pairings

H0
cc(V, T )̂ ×H3(V, T ′)→ Q/Z,

H1
cc(V, T )̂ ×H2(V, T ′)→ Q/Z

and

H2
cc(V, T )×H1(V, T ′)̂ → Q/Z

are perfect, while the pairing

H3
cc(V, T )×H0(V, T ′)̂ → Q/Z

is non-degenerate on the right.

Proof. Corollary 4.7 already contains the statements about the induced
pairings. The first part of the theorem follows from these facts, using
that each of the groups H0

cc(V, T ), H
0(V, T ) and H1

cc(V, T ) is residually
finite (see Section 2.4). ¤

Remark 4.9. The comparison between H∗
cc(V, T ) and H∗

c (V, T )
(Lemma 2.4) gives a similar result for the groups H∗

c (V, T ), which is
slightly weaker in degree q = 1.
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