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Abstract. Let X be an anisotropic projective quadric over a field F of
characteristic not 2. The essential dimension dimes(X) of X, as defined by
Oleg Izhboldin, is

dimes(X) = dim(X)− i(X) + 1 ,

where i(X) is the first Witt index of X (i.e., the Witt index of X over its
own function field).

Let Y be a complete (possibly singular) algebraic variety over F with
all closed points of even degree and such that Y has a closed point of odd
degree over F (X). Our main theorem states that dimes(X) ≤ dim(Y ) and
that in the case dimes(X) = dim(Y ) the quadric XF (Y ) is isotropic.

Applying the main theorem to a projective quadric Y , we get a proof of
Izhboldin’s conjecture stated as follows: if an anisotropic quadric Y becomes
isotropic over F (X), then dimes(X) ≤ dimes(Y ), and the equality holds if
and only if X is isotropic over F (Y ).

Let (V, ϕ) be a non-degenerate quadratic form over a field F of characteristic
not 2 and let X = Q(ϕ) be the quadric hypersurface given by the equation
ϕ(x) = 0 in the projective space P(V ). We say that the quadricX is anisotropic
if ϕ is an anisotropic quadratic form. By Springer’s theorem, every closed
point of an anisotropic quadric X has even degree. Is it possible to compress
X rationally, i.e., to find a rational morphism X → Y to a variety Y of smaller
dimension with all closed points of even degree?
The quadratic form ϕ is isotropic over the function field F (X), hence, by

the general theory of quadratic forms, ϕF (X) is isomorphic to ψ⊥kH for some
anisotropic quadratic form ψ and some k ≥ 1, where H stays for the hyperbolic
plane. The number k is called the first Witt index of ϕ (or X), and we denote
it by i(ϕ) (or i(X)). Let V ′ ⊂ V be a subspace of codimension i(X)−1. Since
V ′ ⊗ F (X) intersects nontrivially a totally isotropic subspace of V ⊗ F (X),
the anisotropic quadric X ′ = Q(ϕ|V ′) becomes isotropic over F (X), i.e., X
compresses to the subvariety X ′ of dimension dim(X)− i(X) + 1. The latter
integer is denoted dimes(X) and called the essential dimension of X.
We prove in the paper (Theorem 3.1) that an anisotropic quadric X cannot

be compressed to a variety Y of dimension smaller than dimes(X) with all

Date: 11 June 2002.
Key words and phrases. Quadratic forms, first Witt index, complete varieties, Chow

groups, correspondences. 2000 Mathematical Subject Classifications: 11E04; 14C25.
The second author was supported in part by NSF Grant #0098111.

1



2 N. KARPENKO AND A. MERKURJEV

closed points of even degree. Moreover, if there is a rational morphism X → Y
with dim(Y ) = dimes(X), then there is a rational morphism Y → X, i.e., X
is isotropic over F (Y ).
Applying the main theorem to a projective quadric Y , we get a proof of Izh-

boldin’s conjecture (Theorem 4.1) stated as follows: if an anisotropic quadric
Y becomes isotropic over F (X), then dimes(X) ≤ dimes(Y ), and the equality
holds if and only if X is isotropic over F (Y ).
A field in the paper is an arbitrary field of characteristic not 2 (the charac-

teristic restriction is important only there where quadratic forms are involved).
By scheme we mean a separated scheme of finite type over a field, and by va-
riety an integral scheme. We write CHd(Y ) for the d-th Chow group which is
the group of rational equivalence classes of dimension d algebraic cycles on the
scheme Y .

1. First Witt index of generic subforms

We are going to determine the first Witt index of certain subforms of a given
anisotropic quadratic form. These subforms are generic in a sense (living over
certain purely transcendental extensions of the base field), at least their first
Witt indices turn out to be the minimal possible ones. The construction of
these subforms is borrowed from [5, proof of lemma 7.9] (where a different
property of these subforms is studied).
We recall that the first Witt index of an anisotropic quadratic F -form ϕ

coincides with the minimal positive Witt index of ϕE, when E runs over all
field extension of F . In particular, i(ϕ) ≤ i(ϕL) for any extension L/F such
that ϕL is anisotropic.

Proposition 1.1. Let ϕ be an anisotropic quadratic F -form, and let n be an

integer such that 0 ≤ n ≤ dimϕ− 2. There exists a purely transcendental field
extension F̃ /F and an n-codimensional subform ψ ⊂ ϕF̃ such that

i(ψ) =

{

i(ϕ)− n, if n < i(ϕ);

1, if n ≥ i(ϕ).

Proof. It suffices to give a proof for n = 1. Let t be an indeterminate. We
consider the quadratic F (t)-form ϕF (t)⊥〈−t〉 and construct F̃ as its function

field. The field extension F̃ /F is clearly a purely transcendental one. More-
over, the anisotropic form ϕF̃ represents t, therefore ϕF̃ ' ψ⊥〈t〉 for certain
1-codimensional subform ψ ⊂ ϕF̃ .
We are going to determine the first Witt index of ψ. First of all we clearly

have: i(ψ) ≥ i(ϕ)− 1 and i(ψ) ≥ 1. Moreover, we have the following isomor-
phisms of F̃ (ϕ)-forms (we omit the subscript F̃ (ϕ) in the formula):

ψ⊥H ' ψ⊥〈t〉⊥ 〈−t〉 ' ϕ⊥〈−t〉 ' ϕ′⊥〈−t〉⊥iH
where i = i(ϕ) and ϕ′ is the anisotropic part of the form ϕF (ϕ). Cancelling one

copy of H, we get ψ ' ϕ′⊥〈−t〉⊥(i − 1)H over F̃ (ϕ). Note that the F̃ (ϕ)-
form ϕ′⊥〈−t〉 is anisotropic because the field extension F̃ (ϕ)/F (ϕ)(t) is purely
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transcendental (by the reason that the F (ϕ)(t)-form ϕ⊥〈−t〉 is isotropic).
Therefore the Witt index of ψF̃ (ϕ) is i−1. If i−1 is positive, then i(ψ) ≤ i−1

and we are done in this case. Otherwise i(ψ) ≤ i(ψF̃ (ϕ)) = i(ϕ′

F̃ (ϕ)
⊥〈−t〉).

Since the form ϕ′ remains anisotropic over the function field of the latter form
(which is a purely transcendental extension of F̃ (ϕ)), the latter first Witt index
is equal to 1. ¤

Remark 1.2. In the case i(ϕ) > 1, the first Witt index of every 1-codimensional
subform is known to be i(ϕ) − 1. This is a result due to A. Vishik which we
do not use in this paper.

2. Correspondences

Let X and Y be schemes over a field F . Suppose that X is equidimensional
and set d = dim(X). A correspondence from X to Y , denoted α : X Ã Y ,
is an element α ∈ CHd(X × Y ). A correspondence α is called prime if α is
represented by a prime (irreducible) cycle. Every correspondence is the sum
of prime correspondences.
Let α : X Ã Y be a correspondence. Assume that X is a variety and Y is

complete. The projection morphism p : X × Y → X is proper and hence the
push-forward homomorphism

p∗ : CHd(X × Y )→ CHd(X) = Z · [X]

is defined [1, § 1.4]. The number deg(α) ∈ Z such that p∗(α) = deg(α) · [X]
is called the degree of α. Clearly, deg(α+ β) = deg(α) + deg(β) for every two
correspondences α, β : X Ã Y .
A correspondence α : SpecF → Y is represented by a 0-cycle z on Y . We set

deg(z) = deg(α). This coincides with the usual notion of degree for 0-cycles
as defined in [1, def. 1.4].
The image of a correspondence α : X Ã Y under the pull-back homomor-

phism

CHd(X × Y )→ CH0(YF (X))

with respect to the flat morphism YF (X) → X × Y is represented by a 0-cycle
on YF (X). The degree of this cycle is equal to deg(α) (see [8, lemma 1.4]).

Lemma 2.1. Let F̃ /F be a purely transcendental field extension. Then

deg CH0(Y ) = deg CH0(YF̃ ) .

Proof. It suffices to consider the case where F̃ is the function field of the affine
line A1. The statement follows from the fact that the restriction homomor-
phism CH∗(Y )→ CH∗(YF (A1)) is surjective (cf. [7, proof of prop. 3.12]) as the
composite of the surjections

CH∗(Y )→ CH∗+1(Y × A1) and CH∗+1(Y × A1)→ CH∗(YF (A1))

(for the surjectivity of the first map see [1, prop. 1.9]). ¤
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A rational morphism X → Y defines a degree 1 prime correspondence X Ã
Y as the closure of its graph. Moreover, there are natural bijections between
the sets of:

0) rational morphisms X → Y ;
1) degree 1 prime cycles on X × Y ;
2) rational points of YF (X).

Similarly, the following two sets are naturally bijective for every r > 0:

1) degree r prime cycles on X × Y ;
2) closed points of YF (X) of degree r.

Let g : Y → Y ′ be a morphism of complete schemes. The image β of a
correspondence α : X Ã Y under the push-forward homomorphism

(idX × g)∗ : CHd(X × Y )→ CHd(X × Y ′)

is a correspondence from X to Y ′. The following statement is a consequence
of functoriality of the push-forward homomorphisms:

Lemma 2.2. deg(β) = deg(α). ¤

Let X ′ ⊂ X be a closed subvariety such that the embedding i : X ′ ↪→ X is
regular of codimension r [1, B.7.1]. Then the embedding i × idY : X

′ × Y ↪→
X × Y is also regular of codimension r, hence the pull-back homomorphism

(i× idY )
∗ : CHd(X × Y )→ CHd−r(X

′ × Y )

is defined [1, § 6]. The pull-back γ of the correspondence α is a correspondence
from X ′ to Y .

Lemma 2.3. deg(γ) = deg(α). ¤

Proof. The statement follows from the commutativity of the diagram [1, th. 6.2]:

CHd(X × Y )
(i×idY )∗

−−−−−→ CHd−r(X
′ × Y )

p∗





y





y

p′∗

CHd(X)
i∗

−−−→ CHd−r(X
′),

where p and p′ are the projections. ¤

Let α : X Ã Y be a correspondence between schemes of dimension d. We
write αt for the element in CHd(Y ×X) corresponding to α under the exchange
isomorphism X × Y ' Y ×X. The correspondence αt : Y Ã X is called the
transpose of α.

3. Main theorem

In this section X is an anisotropic projective quadric over a field F . We
recall that the essential dimension dimes(X) of X is defined as the integer
dim(X)− i(X) + 1.
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Theorem 3.1. Let X be an anisotropic projective F -quadric and let Y be

a complete F -variety with all closed points of even degree. Suppose Y has a

closed point of odd degree over F (X). Then

(1) dimes(X) ≤ dim(Y );
(2) if, moreover, dimes(X) = dim(Y ), then X is isotropic over F (Y ).

Proof. A closed point of Y over F (X) of odd degree gives rise to a prime
correspondence α : X Ã Y of odd degree. By Springer’s theorem, to prove the
statement (2) it is sufficient to find an odd degree correspondence Y Ã X.
Assume first that i(X) = 1, so that dimes(X) = dim(X) . We prove both

statements simultaneously by induction on n = dim(X) + dim(Y ).
If n = 0, i.e., X and Y are of dimension zero, we have X = SpecK and

Y = SpecL, where K and L are field extensions of F with [K : F ] = 2 and
[L : F ] even. Taking the push-forward to SpecF of the correspondence α we
get the formula

[K : F ] · deg(α) = [L : F ] · deg(αt).

Since deg(α) is odd, αt : Y Ã X is a correspondence of odd degree.
Assume that n > 0 and let d be the dimension of X. We are going to prove

(2), so that we have dim(Y ) = d > 0. It is sufficient to show that deg(αt) is
odd. Assume that the degree of αt is even. Let x ∈ X be a closed point of
degree 2. Since the degree of the correspondence Y × x : Y Ã X is 2 and the
degree of x× Y : X Ã Y is zero, we can modify α by an appropriate multiple
of x × Y and therefore assume that deg(α) is odd and deg(αt) = 0. Hence
the degree of the pull-back of αt on XF (Y ) is zero. By [7, prop. 2.6] or [9], the
degree homomorphism

deg : CH0(XF (Y ))→ Z
is injective. Therefore there is a nonempty open subset U ⊂ Y such that the
restriction of α on X × U is trivial. Write Y ′ for the reduced scheme X \ U ,
i : X×Y ′ → X×Y and j : X×U → X×Y for the closed and open embeddings
respectively. The sequence

CHd(X × Y ′)
i∗−→ CHd(X × Y )

j∗

−→ CHd(X × U)

is exact [1, prop. 1.8]. Hence there exists α′ ∈ CHd(X×Y
′) such that i∗(α

′) =
α. We can view α′ as a correspondence X Ã Y ′. By Lemma 2.2, deg(α′) =
deg(α), hence deg(α′) is odd. Since α′ is a sum of prime correspondences, we
can find a prime correspondence β : X Ã Y ′ of odd degree, i.e., Y ′ has a
closed point of odd degree over F (X). The class β is represented by a prime
cycle, hence we may assume that Y ′ is irreducible. Since dimY ′ < dimX, by
induction hypothesis, we get a contradiction with the statement (1).
In order to prove (1) assume that dim(Y ) < dim(X). Let Z ⊂ X × Y

be a prime cycle representing α. Since deg(α) is odd, the field extension
F (X) ↪→ F (Z) is of odd degree. The restriction of the projection X × Y → Y
gives a proper morphism Z → Y . Replacing Y by the image of this morphism,
we come to the situation where Z → Y is a surjection and so, the function
field F (Z) is a field extension of F (Y ).
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In view of Proposition 1.1, extending the scalars to a purely transcendental
extension F̃ of F , we can find a subquadric X ′ of X of the same dimension
as Y having i(X ′) = 1. We note that according to Lemma 2.1, the hypothesis
on X and Y is still satisfied over F̃ . By Lemma 2.3, the pull-back of α
with respect to the regular embedding X ′ × Y ↪→ X × Y produces an odd
degree correspondence X ′

Ã Y . Since dim(X ′) < dim(X), by the induction
hypothesis, the statement (2) holds for X ′ and Y , that is, there exists an odd
degree (in fact, of degree 1) correspondence β : Y Ã X ′. We compose β with
the embedding X ′ ↪→ X to produce an odd degree (in fact, of the same degree
as β) correspondence γ : Y Ã X (Lemma 2.2). We may assume that γ is
prime. Let T ⊂ Y ×X be a prime cycle representing γ. Since the degree of γ
is odd, the projection T → Y is surjective, so that F (T ) is a field extension of
F (Y ) of odd degree.
Using the odd degree prime correspondences α : X Ã Y and γ : Y Ã X,

we are going to construct an odd degree correspondence δ : X Ã X with even
deg(δt) getting this way a contradiction with

Theorem 3.2 ([8, th. 6.4]). Let X be an anisotropic quadric with i(X) = 1.
Then for every correspondence δ on X×X, one has deg(δ) ≡ deg(δt) (mod 2).

Note that in the case where Y is regular we can simply take δ as the com-
posite of the correspondences α and γ (cf. [8, proof of prop. 7.1]).

Lemma 3.3. Let F ↪→ L and F ↪→ E be two field extensions with odd degree

[L : F ]. Then there is a field K and field extensions L ↪→ K and E ↪→ K such

that [K : E] is odd.

Proof. We may assume that L is generated over F by one element, say θ. Let
f ∈ F [t] be the minimal polynomial of θ (of odd degree). Choose an odd
degree irreducible polynomial g ∈ E[t] dividing f and set K = E[t]/gE[t]. ¤

By Lemma 3.3 applied to the field extensions F (T ) and F (Z) of F (Y ), we
can find a field extensionK of F (T ) and F (Z) such that [K : F (Z)] is odd. Let
a variety S over F be a projective model of the field extension K/F . Replacing
S by the closure of the graph of the rational morphism S → Z × T , we come
to the situation where the rational morphisms S → Z and S → T are regular.
Let f be the composite of S → Z with Z → X and g be the composite of
S → T and T → X. We write δ for the correspondence X Ã X given by the
image of the morphism (f, g) : S → X ×X. The degree

deg(δ) = [F (S) : F (X)] = [F (S) : F (Z)] · [F (Z) : F (X)]

is odd and the degree of the transpose of δ is zero since g is not surjective as
dimT = dimY < dimX, a contradiction.
We have proven Theorem 3.1 in the case i(X) = 1. Consider now the

general case (the first Witt index of X is arbitrary). Let X ′ be a subquadric of
X with dim(X ′) = dimes(X

′) = dimes(X) which we may find after extending
the scalars to a purely transcendental extension according to Proposition 1.1.
By Lemma 2.3, the pull-back β : X ′

Ã Y of α with respect to the embedding
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of X ′ into X is an odd degree correspondence. Therefore dimX ′ ≤ dimY by
the first part of the proof. If dimX ′ = dimY , then again by the first part of
the proof, X ′ and hence X have rational points over F (Y ). ¤

Remark 3.4. For X and Y as in part (2) of Theorem 3.1, assume additionally
that dim(X) = dimes(X), i.e., i(X) = 1. In the proof of Theorem 3.1, it is
shown that deg(αt) is odd for every odd degree correspondence α : X Ã Y .

We have also the following more precise version of Theorem 3.1:

Corollary 3.5. Let X and Y be as in Theorem 3.1. Then there exists a closed

subvariety Y ′ ⊂ Y such that

(i) dim(Y ′) = dimes(X);
(ii) Y ′

F (X) possesses a closed point of odd degree;

(iii) XF (Y ′) is isotropic.

Proof. Let X ′ ⊂ X be a subquadric with dim(X ′) = dimes(X). Then, by The-
orem 4.1, dimes(X

′) = dim(X ′). An odd degree closed point on YF (X) gives an
odd degree correspondence X Ã Y which in turn gives an odd degree corre-
spondence X ′

Ã Y . We may assume that the latter correspondence is prime
and take a a prime cycle Z ⊂ X ′×Y representing it. We define Y ′ as the image
of the proper morphism Z → Y . Clearly, dim(Y ′) ≤ dim(Z) = dim(X ′) =
dimes(X). On the other hand, Z gives an odd degree correspondence X

′
Ã Y ′,

therefore dim(Y ′) ≥ dim(X ′) by Theorem 3.1, and condition (i) of Corollary
3.5 is satisfied. Moreover, Y ′

F (X′) has a closed point of odd degree. Since the

field F (X × X ′) is purely transcendental over F (X ′) as well as over F (X),
Lemma 2.1 shows that there is an odd degree closed point on Y ′

F (X), that is,

the condition (ii) of Corollary 3.5 is satisfied. Finally the quadric X ′
F (Y ′) is

isotropic by Theorem 3.1; therefore XF (Y ′) is isotropic. ¤

Example 3.6. Let the dimension of X be equal to 2n − 1 for some n. Since
there exists a field extension E/F such that XE is given by an anisotropic
Pfister neighbor ([2, th. 2]), the first Witt index of X is 1 by Theorem 4.1,
that is, dimes(X) = dim(X). The first part of Theorem 3.1 is therefore a
generalization (to the case of arbitrary dim(X) and of arbitrary complete Y )
of [2, th. 1], while the second part generalizes [4, th. 0.2].

4. Application to the algebraic theory of quadratic forms

Now we apply Theorem 3.1 to a special (but may be the most interesting)
case where the variety Y is also a projective quadric:

Theorem 4.1. Let X and Y be anisotropic quadrics over F and suppose that

Y is isotropic over F (X). Then

(1) dimes(X) ≤ dimes(Y );
(2) moreover, the equality dimes(X) = dimes(Y ) holds if and only if X is

isotropic over F (Y ).
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Proof. Let us choose a subquadric Y ′ ⊂ Y with dim(Y ′) = dimes(Y ) (we can
do it over a pure transcendental extension of the base field by Proposition
1.1). Since Y ′ becomes isotropic over F (Y ) and Y is isotropic over F (X),
Y ′ is isotropic over F (X). According to Theorem 3.1, dimes(X) ≤ dim(Y

′).
Moreover, in the case of equality, X is isotropic over F (Y ′) and hence over
F (Y ). Conversely, if X is isotropic over F (Y ), interchanging the roles of X
and Y , we get as above the inequality dimes(Y ) ≤ dimes(X), hence the equality
holds. ¤

Example 4.2. If some anisotropic 11-dimensional quadratic form is not a Pfis-
ter neighbor, then its first Witt index is 1 (this is a result due to B. Kahn with
an elementary proof given in [3]). Therefore, we recover a theorem of O. Izh-
boldin ([6, th. 5.3]) stating that an anisotropic 10-dimensional quadratic form
remains anisotropic over the function field of any quadratic form of dimension
> 10, if this second form is not a 4-fold Pfister neighbor.

Example 4.3. Similarly, if some anisotropic 13-dimensional quadratic form is
not a Pfister neighbor, then its first Witt index is 1. Therefore, an anisotropic
12-dimensional quadratic form remains anisotropic over the function field of
any quadratic form of dimension > 12, if this second form is not a 4-fold Pfister
neighbor. This result is new.

Example 4.4. Coming back to the 11-dimensional forms, we also see, that if
some anisotropic 11-dimensional form ψ becomes isotropic over the function
field of another 11-dimensional form ϕ and ϕ is not a Pfister neighbor, then
ϕ is isotropic over the function field of ψ. In the situation where the Schur
index of the even Clifford algebra of ψ is at least 16, it can be then shown that
ϕ is similar to ψ. This result is of particular interest in view of attempts to
construct a field with the u-invariant 11.
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