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Abstract

A conjecture of Amitsur states that two Severi-Brauer varieties
are birationally isomorphic if and only if the underlying algebras are
the same degree and generate the same cyclic subgroup of the Brauer
group. It is known that generating the same cyclic subgroup is a
necessary condition, however it has not yet been shown to be sufficient.

In this paper we examine the case where the algebras have a max-
imal subfield K/F of degree n with Galois closure E/F whose Galois
group is of the form Cn o H, where EH = K and |H| is prime to n.
For such algebras we show that the conjecture is true for certain cases
of n and H. In particular we prove the conjecture in the case that G
is a dihedral group of order 2p, where p is prime.

1 Introduction

Let F be a field. We fix for the entire paper a positive integer n, and
we suppose that either n is prime, or that F contains a primitive n’th
root of unity. For a field extension L/F , and A a central simple L-
algebra, we write V (A) or V (A/L) to denote the Severi-Brauer variety
of A, consisting of (deg A)-dimensional right ideals of A, and denote
the function field of this variety by L(A).

We recall the following conjecture:

Conjecture (Amitsur, 1955 [Ami55]). Given A,B Central Simple
algebras over F , F (A) ∼= F (B) iff [A] and [B] generate the same cyclic
subgroup of the Br(F ).
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Amitsur showed in [Ami55] that one of these implications hold.
Namely if F (A) ∼= F (B), then the equivalence classes of A and B
generate the same cyclic subgroup of the Brauer Group. The aim of
this note is to prove the reverse implication for certain algebras A and
B. We will say that the conjecture holds for the pair (A, l), or simply
that (A, l) is true to mean that l is prime to deg(A) and F (A) ∼= F (Al).
We say that the conjecture is true for A if, for all l prime to deg(A),
(A, l) is true.

One important case is when the algebra A has a cyclic Galois
maximal splitting field. In this case we know that the conjecture is
true for A ([Ami55], [Roq64]). In this paper we extend this result to
certain G−H crossed products. We recall the following definitions:

Definition 1.1. Let G be a finite group, and H a subgroup of G. A
field extension K/F is called G − H Galois if there exists a field E
containing K such that E/F is G-Galois, and EH = K.

Definition 1.2. Let A be a central simple F -algebra. A is called a
G−H crossed product if A has a maximal subfield K which is G−H
Galois. In the case H = 1, we call A a G-crossed product.

The main theorem in this note concernes the case of an algebra
which is a so-called semidirect product algebra in the sense of [RS96]

Definition 1.3. A is called a semidirect product algebra if it is a
G−H crossed product where G = N oH.

This can be interpreted as meaning that A becomes an N - crossed
product after extending scalars by some field K/F which is H-Galois.
In the case where N is a cyclic group, we will try to exploit the fact
that we know Amitsur’s conjecture to be true for N crossed products
to prove the conjecture for G crossed products.

Semidirect product theorem 1.4. Let A be a semidirect product
algebra of degree n as in 1.3, with N = Cm = 〈τ〉, H = Cn = 〈σ〉,
such that the homomorphism N → Aut(H) (induced by conjugation)
is injective and |N | and |H| are relatively prime. Choose r so that we
may write τστ−1 = σr. Let

S =
Z[ρ]

1 + ρ+ ρ2 + · · ·+ ρn−1
,

and define an action of τ on S via τ(ρ) = ρr, and a ring homomor-
phism ε : S → Z/nZ via ε(ρ) = 1. Then (A, l) is true for all l such
that l ∈ ε

(
(S∗)τ

)
.
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We give the proof of this in section 3. For now, we give the follow-
ing corollary:

Corollary 1.5. Suppose deg(A) = n, n odd. If A has a dihedral
splitting field of degree 2n. Then the conjecture is true for A.

Proof. In this case, we have ε((S∗)τ ) = (Z/nZ)∗. If l = 2k, l is the
image of (ρ+ρ−1)k. If l = 2k+1, then l is the image of ρ−k+ρ−(k−1)+
. . .+ρ−1 +1+ρ+ . . .+ρk−1 +ρk. Any other unit in (Z/nZ)∗ is easily
seen to be the image of a product of those above.

Remark. This theorem is already known when F contains the n’th
roots of unity, since by a theorem of Rowen and Saltman [RS82], any
such algebra is in fact cyclic, and so the theorem follows from [Ami55]
or [Roq64].

It is worth noting that the hypothesis concerning the splitting field
E can be stated in weaker terms for the case n = p a prime number.
In particular we have:

Proposition 1.6. Suppose A is a central simple F -algebra of degree p
with a maximal subfield K, and suppose that there is some extension
E′ of K such that E ′/F is Galois with group G = Cp o H where
(E′)H = K. Then there is a subfield E ⊂ E ′ containing K such that
E/F is Galois with group Cp o Cm where Cm acts faithfully on Cp.

Proof. We define a homomorphism φ : H → Aut(Cp) via the natural
conjugation action of H on Cp. Since Aut(Cp) is a cyclic group every
subgroup is cyclic, and we may regard φ as a surjective map H → Cm.
Now we define a map

G = Cp oH → Cp o Cm

(a, h) 7→ (a, φ(h))

one may check quickly that this is a homomorphism of groups and its
kernel is precisely the kernel of φ. Set H ′ = kerφ, and let E = (E ′)H

′

.
Since H ′ is normal in G (as the kernel of a homomorphism), we know
that E/F is Galois and its Galois group is G/H ′ = Cp o Cm. By
construction, the action of Cm is faithful on Cp.

Note also that in the case n = p a prime, S is a ring of cyclotomic
integers.
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2 Preliminaries

To begin, let us fix some notation. Let F be an infinite field. The
symbol ⊗ when unadorned will always denote a tensor product over
F and × will denote a fiber product of schemes over Spec(F ). For
us an F -variety will mean a quasi-projective geometrically integral
seperated scheme of finite type over F (note F is not assumed to
be algebraically closed). By geometrically integral we mean that the
scheme remains integral when fibered up to the algebraic closure of
its field of definition. If X is a variety, we denote its function field by
F (X). We remark that X being geometrically integral variety implies
that F (X) is a regular field extension of F , that is to say, F (X)⊗FF

alg

is a field.
Let E/F be G-Galois for some group G. If B is an E algebra, then

a homomorphism α : G → AutF (B) defines an action of G on B (as
an F algebra) which is called semilinear in case

∀x ∈ E, b ∈ B, α(σ)(xb) = σ(x)α(σ)(b).

Similarly, if X is an E-variety with structure map k : X → Spec(X),
a homomorphism α : G→ AutSpec(F )(X) defines an action of G on X
(as an F -scheme) which is called semilinear in case σ ◦ k = k ◦ α(σ).

Also for B an E-algebra as above, given σ ∈ G, we define σB to
be the algebra with the same underlying set and ring structure as B,
but with the structure map σ−1 : E ↪→ σB.

Given A a central simple F -algebra, we recall that the functor of
points of the Severi-Brauer variety V (A) is given the following sub-
functor of the Grassmannian functor of points (see [Jah00], [VdB88],
or [See99], and [EH00] for the definition of the Grassmannian functor):

V (A)(R) =

{
I ⊂ AR

∣∣∣∣
I is a left ideal and AR/I
is R-projective of rank n

}

and for a homomorphism of commutative F -Algebras R
ψ
→ S we ob-

tain the set map

V (A)(ψ) : V (A)(R)→ Vk(A)(S)

via I 7→ I ⊗R S

4



2.1 Descent and functors of points

Given X an F -variety, we obtain a functor

XE/F : {commutative F -algebras} → {sets}

by XE/F (R) =MorschE
(Spec(RE), XE). If f ∈Mor(X,Y ), we abuse

notation, and refer to the natural transformation induced by f also
by the letter f .

For σ ∈ G, we obtain a natural transformation σ : XE/F → XE/F

via for φ ∈ XE/F (R), σ ¦ φ = σ ◦ φ ◦ σ−1. We denote this action by
ιX : G→ NatAut(XE/F ).

Proposition 2.1. Let f ∈ MorE(XE , YE). Then f = gE for g ∈
MorF (X,Y ) iff the following diagram commutes:

XE/F Y E/F

XE/F Y E/F

-f

?

σ

?

σ

-f

Or, in other words, For every commutative F -algebra R and φ ∈
XE/F (R), we have

σ ¦ f(φ) = f(σ ¦ φ)

Proof. To begin, assume the above condition holds. We have (recalling
that f(φ) = f ◦ φ),

σ ¦ f(φ) = σ ¦ (f ◦ φ) = σ ◦ (f ◦ φ) ◦ σ−1

f(σ ¦ φ) = f(σ ◦ φ ◦ σ) = f ◦ σ ◦ φ ◦ σ−1

And setting these two to be equal, we have

σ ◦ f ◦ φ = f ◦ σ ◦ φ

which in turn gives us

f ◦ φ = σ−1 ◦ f ◦ σ ◦ φ

Since this must hold for each φ, this just says that the elements f, σ−1◦
f ◦σ ∈MorE(XE , YE) correspond to the same natural transformation
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when thought of as elements of Nat(XE/F , Y E/F ) via the Yoneda
embedding, and therefore they must actually be equal - that is to say
f = σ−1◦f ◦σ or σ◦f = f ◦σ. But now, by Galois descent of schemes,
we know f = gE .

Conversely, assume that f = gE . Then by Galois descent of
schemes, we have σ ◦ f = f ◦ σ. Now we simply make our previ-
ous argument backwards and find that the desired diagram does in
fact commute.

We note the following lemma, which can be checked by examining
the Grassmannian in terms of its Plüker embedding:

Lemma 2.2. Suppose that V is an F -vector space, and let X =
Grk(V ). Then the natural semilinear action ιX can be described func-
torially as the natural transformation from XE/F to itself such that
for R an F -algebra, σ ∈ G, M ∈ XE/F (R),

XE/F (ιX(σ))(M) = σ(M) = {σ(m)|m ∈M}

where σ acts on the elements of VR⊗E in the natural way.

Corollary 2.3. Suppose that A is an F -central simple algebra, and let
X = Vk(A). Then the natural semilinear action ιX can be described
functorially as the natural transformation from XE/F to itself such
that for R an F -algebra, σ ∈ G, I ⊂ AR⊗E an element of XE/F (R)

XE/F (ιX(σ))(I) = σ(I) = {σ(x)|x ∈ I}

where σ acts on the elements of AR⊗E = A⊗R⊗ E as id⊗ id⊗ σ.

2.2 Severi-Brauer varieties of crossed product

algebras

We give here an explicit birational description of the Severi-Brauer
Variety of a crossed product algebra. An similar discussion (without
the functorial viewpoint) may be found in [Sal99] (Cor. 13.15). Let
L/F be a G-galois extension of degree n. Let A = (L,G, c) be a
crossed product algebra, where c is taken to be a specific 2-cocycle
(not just a cohomology class) normalized so that c(id, id) = 1.
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We define the “functor of splitting 1-chains for c” via: To begin,
define the functor

F :

{
commutative L-algebras
with G-semilinear action

}
→ {sets}

F(S) = {z ∈ C1(G,S∗)|δz = c}

Where C1(G,S∗) denotes the set of 1-cochains. From this we define
the functor of splitting 1-chains of c as

Spc : {commutative F -algebras} → {sets}

Spc(R) = F(R⊗ L)

Proposition 2.4. Spc is represented by on open subvariety of U
of V (A), which is given as an open subfunctor by U(R) = {I ∈
V (A)(R)|I + LR = AR}. This isomorphism of functors is given by
the natural isomorphism Λ : U → Spc, where Λ(R)(I) is the 1-cochain

σ 7→ z(I)σ

where z(I)σ is the unique element of LR such that

z(I)σ − uσ ∈ I.

Further, the inverse is given by

Λ−1(z) =
∑

σ∈G

(L⊗R)(z(σ)− uσ)

Proof. First we note that if I ∈ U(R) then I∩LR = 0. This is because
we have the exact sequence of R-modules

0→ I ∩ LR → LR → AR/I → 0

which is split since AR/I is projective. Hence LR = AR/I ⊕ (I ∩LR),
and since LR is projective (since L is) we have I ∩ LR is also projec-
tive. By additivity of ranks, we have that rk(AR/I) = n, rk(LR) =
dimF (L) = n and so rk(I ∩ LR) = 0. Since I ∩ LR is projective, it
must be trivial. Consequently, I+LR = AR implies that AR = I⊕LR.

To see now that Λ(R) is well defined, we just note that −uσ ∈
AR = I ⊕ LR, and so there is a unique element z(I)σ ∈ I such that
z(I)σ−uσ ∈ I. Next we check that z(I) defines an element of Spc(R).
Since I is a left ideal,

z(I)τ − uτ , z(I)στ − uστ ∈ I

⇒ uσ(z(I)τ − uτ )− c(σ, τ)(z(I)στ − uστ ) ∈ I
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But this expression may be simplified to:

uσ(z(I)τ − uτ )− c(σ, τ)(z(I)στ − uστ ) + σ(z(I)τ )(z(I)σ − uσ)

= σ(z(I)τ )uσ−c(σ, τ)uστ−c(σ, τ)z(I)στ+c(σ, τ)uστ+σ(z(I)τ )z(I)σ−σ(z(I)τ )uσ

= σ(z(I)τ )z(I)σ − c(σ, τ)z(I)στ ∈ I ∩ (R⊗ L) = 0

and so σ(z(I)τ )z(I)σ = c(σ, τ)z(I)στ which says that

δ(z(I))(σ, τ) = σ(z(I)τ )z(I)σ(z(I)στ )
−1 = c(σ, τ)

Next, we check that Λ−1 is well defined. Let z ∈ Spc(R) and set
I = Λ−1(z). It is clear from the definition that I + (L ⊗ R) = AR,
and AR/I = L ⊗ R is free (and so projective) of rank 1. To check
that I is actually a left ideal, since it follows from the definition that
(L ⊗ R)I = I, we need only check that for each σ ∈ G, uσI ⊂ I,
and this in turn will follow if we can show uσ(z(τ)− uτ ) ∈ I for each
τ ∈ G. Calculating, we get

uσ
(
z(τ)− uτ

)
= σ

(
z(τ)

)
uσ − c(σ, τ)uστ

= σ
(
z(τ)

)
uσ − z(σ)σ

(
z(τ)

)
z(στ)−1uστ

= σ
(
z(τ)

)(
uσ − z(σ)z(στ)

−1uστ
)

= σ
(
z(τ)

)(
−
(
z(σ)− uσ

)
+
(
z(σ)− z(σ)z(στ)−1uστ

))

= σ
(
z(τ)

)(
−
(
z(σ)− uσ

)
+ z(σ)z(στ)−1

(
z(στ)− uστ

))

= −σ
(
z(τ)

)(
z(σ)− uσ

)
+ z(σ)σ

(
z(τ)

)
z(στ)−1

(
z(στ)− uστ

)

∈ (L⊗R)
(
z(τ)− uτ

)
+ (L⊗R)

(
z(στ)− uστ

)
⊂ I

and hence I is a left ideal, and Λ−1 makes sense.
It remains to show that Λ and Λ−1 are natural transformations and

are inverses to one another. It follows fairly easily that if Λ is natural
and they are inverses of one another then Λ−1 will automatically be
natural also.

To see that Λ is natural, we need to check that for φ : R → S a
ring homomorphism, and I ∈ U(R), that

Λ(S)(U(φ)(I)) = Spc(φ)(Λ(R)(I))

the right hand side is

Spc(φ)(Λ(R)(I)) = Spc(φ)(z(I)) = (idL ⊗ φ)(z(I))
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and by definition of z(I), we know for σ ∈ G, z(I)σ − uσ ∈ I and for
the left hand side we have

Λ(S)(U(φ)(I)) = Λ(S)(I ⊗R S)

but
z(I)σ − uσ ∈ I ⇒ z(I)σ ⊗ 1− uσ ∈ I ⊗R S

and now, using the identification

(L⊗R)⊗R S
∼
→ L⊗ S

(l ⊗ r)⊗ s 7→ l ⊗ φ(r)s

z(I)σ⊗1 becomes (idL⊗φ)(z(I)σ), and so combining these facts gives

Spc(φ)(Λ(R)(I))(σ) = (idL ⊗ φ)(z(I)σ) ∈ I ⊗R S ∩ (L⊗ S − uσ)

and by definition of Λ, this means

Λ(S)(I ⊗R S)(σ) = (idL ⊗ φ)(z(I)σ) = Spc(φ)(Λ(R)(I))(σ)

as desired.
Finally, we need to check that transformations are mutually in-

verse. Choosing I ∈ U(R), we want to show

I =
∑

σ∈G

(L⊗R)(z(I)σ − uσ)

Now, it is easy to see that the right hand side is contained in the left
hand side. Furthermore, both of these are direct summands of AR of
corank n. For convenience of notation, let us call the right hand side
J .

Claim. I / J is projective

We show this by considering the exact sequence

0→ I/J → AR/J → AR/I → 0

Since AR/I is projective, this sequence splits and I/J⊕AR/I ∼= AR/J .
But since AR/J is projective, and I/J is a summand of it, I/J must
be projective as well, proving the claim.

Now, from the exact sequence

0→ J → I → I/J → 0
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we know rank(I/J) = rank(I)− rank(J) = 0, and so I/J = 0 which
says I = J as desired.

Conversely, if z ∈ Spc(R), we need to verify that

I =
∑

σ∈G

(L⊗R)(z(σ)− uσ)⇒ I ∩ (L⊗R− uσ) = z(σ)− uσ

But since z(σ)− uσ ∈ I, this immediately follows.

Remark. This same proof will work for an Azumaya algebra (the case
where F is a commutative ring).

This becomes simpler for the case that L/F is a cyclic extension,
say A = (L/F, σ, b). In this case, choosing c to be the standard 2-
cocycle:

c(σi, σj) =

{
1 i+ j < n

b i+ j ≥ n

If z ∈ Spc(R), then z is determined by its value on σ, and z(σ) must
be an element of (L ⊗ R) with “σ-norm” equal to b, and conversely
it is easy to check that such an element will determine an element of
Spc(R). With this in mind, we will write [NL/F = b] for the functor
Spc. By the above we may write (up to natural isomorphism)

[NL/F = b](R) = {x ∈ L⊗R|xτ(x) · · · τm−1(x) = b} (1)

and for a homomorphism f : R→ S, we have:

[NL/F = b](f)(x) = (idL ⊗ f)(x)

and by 2.4, this is represented by an open subvariety of V (A).

2.3 Group algebra computations

For convenience of notation, since we will be dealing often with certain
elements of the group algebra R = ZG, we define for γ ∈ G, and j a
positive integer

N j
γ = 1 + γ + γ2 + . . .+ γj−1

which we will call the j’th partial norm of γ.
These satisfy the following useful identity which can be easily ver-

ified:
(N j

γ)(N
i
γj ) = N ij

γ
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where γ is an element of G.
Now, suppose that u is an element in a arbitrary F-algebra B,

and E′ is a subfield of B such that for all x ∈ E ′, ux = γ(x)u for
γ ∈ AutF (E

′). Then we have the identity:


i−1∑

k=0




k∏

j=1

γi−j(x)


ui−k−1


 (x− u) = γi−1(x)γi−2(x) · · · γ(x)x− ui

(where we consider the empty product in the case k = 0 to equal 1).
If we consider the group algebra Z 〈γ〉 to act on E ′, then in the

above notation, there is an element a ∈ B such that

a(x− u) = N i
γx− u

i. (2)

2.4 Galois monomial maps

As in (1), let [NE/L = b] be the functor representing elements of norm
b.

Definition 2.5. A Galois monomial in σ is an element of the group
algebra Z 〈σ〉.

Suppose P is a Galois Monomial in σ. Let ε : Z 〈σ〉 −→ Z be the
augmentation map defined by mapping all group elements to 1. Then
if we set l = ε(P ), for every integer k, P induces a map

P : [NE/L = bk]→ [NE/L = bkl]

via for x ∈ [NE/L = bk], if P =
p−1∑
i=0

niσ
i,

P (x) = xn0+n1σ+n2σ2+···+np−1σp−1

=

p−1∏

i=0

σi(xni).

We refer to this as the Galois monomial map induced by P .

3 Proof of the semidirect product the-

orem

We begin by fixing notation. Let A be a central simple semidirect
product algebra of degree n as in the statement of theorem 1.4, and
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fixK/F maximal separable in A so that we have the following diagram
of fields:

E

L K

F

¡
¡
σ @

@
τ

@
@τ

¡
¡

Now, as was shown in section 2.2, since AL is a cyclic algebra, the func-
tor [NE/L = b] is represented by an open subvariety of V (AL). The
idea of the proving theorem 1.4 will be to construct rational maps
of Severi-Brauer varieties by constructing natural transformations be-
tween the corresponding functors. One way to construct these natural
transformations is via Galois monomial maps.

It can be easily verified that a Galois monomial map as in the
previous section is a natural transformation, and hence yields an L-
rational map V (AkL) → V (AklL ). Our goal will be to determine when
such a map induces an F -rational map V (Ak) → V (Akl). By 2.1,
this will happen when the τ actions on [NE/L = bk] ⊂ V (Ak)E/L and

[NE/L = bkl] ⊂ V (Akl)E/L commute with our natural transformation.
We will proceed now to determine the actions of τ , and then to trans-
late these into actions on the “norm set” functors, which will let us
answer our question.

3.1 The Action of τ

Lemma 3.1. Let B = C ⊗ L, where C is a central simple F -algebra
of degree n. If α is an arbitrary τ -semilinear action on B, then there
is an isomorphism (B,α) ∼= (B, ιC).

Proof. Let D = Bα. Then by descent, we have an isomorphism (D ⊗
L, ιD) ∼= (B,α)

Since m = [L : F ] is relatively prime to n = deg(B), the restriction
map of Brauer groups:

Brn(F )
resL/F
−→ Brn(L)

is injective. Therefore, since both D and C restrict to the same el-
ement, they are F -isomorphic. We can therefore write D ∼= C, and
again by descent we get an isomorphism of (D⊗L, ιD) ∼= (C ⊗L, ιC).
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Combining this with the isomorphism (D ⊗ L, ιD) ∼= (B,α), we have
an isomorphism (C ⊗ L, ιC) ∼= (B,α).

Corollary 3.2. Let B be a central simple L-algebra, α, β τ -semilinear
actions on B. Then (B,α) ∼= (B, β).

Therefore, to understand the action of τ on AL via 1⊗ τ up to an
isomorphism of pairs, we need only define any τ -semilinear action on
AL.

3.1.1 An Action of τ on AL

Since the algebra AL has a maximal subfield E which is cyclic over L,
we may write AL = (E, σ, b) for some element b ∈ L. Our goal in this
section will be to define a semilinear action of τ on AL.

Borrowing some of the methods of Rowen and Saltman, we first
investigate the action of τ on b ∈ L. We first note that since A is an
F -algebra, that if we consider the algebra τAL, then this is isomorphic
to AL by the map idA ⊗ τ . On the other hand, one may also check
that there is an isomorphism

τAL = τ (E, σ, b)→ (E, σr, τ(b))

via E
τ
→ E and u→ u

and extending to make a homomorphism. Consequently, we have an
isomorphism of central simple algebras (E, σ, b) ∼= (E, σr, τ(b)). In
addition, there is also an isomorphism (E, σ, b) ∼= (E, σr, br) ([Pie82]
p.277 Cor.a), which means (E, σr, br) ∼= (E, σr, τ(b)). This implies
τ(b) = abr where a = Nσr(x) = Nσ(x) for some x ∈ E∗ ([Pie82] p.279
Prop.b).

Now to define an action of τ on AL, we must first extend the action
to the maximal subfield of AL which is of the form L(b1/n). This will
be made more tractable by choosing a different b.

Lemma 3.3. There exists b′ ∈ L such that (E, σ, b) ∼= (E, σ, b′) and
such that τ(b′) = λn(b′)r where λ ∈ L.

Proof. In the case where F contains the n’th roots of unity, this follows
directly from [RS96], Lemma 1.2.

For the case where n = p is prime, We consider the exact sequence
of Z/pZ[τ ] modules:

0→
NE/L(E

∗)

(L∗)p
→

L∗

(L∗)p
π
→

L∗

NE/L(E∗)
→ 0
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By Maschke’s theorem ([Pie82], p.51), Z/pZ[τ ] is a semisimple algebra
and hence every module is projective and every exact sequence splits.
We may therefore choose a splitting map φ : L∗

NE/L(E∗) →
L∗

(L∗)p . Let

b′ be a coset representative for φ(bNE/L(E
∗)). Since φ is a splitting,

π(b(L∗)p) = π(b′(L∗)p) implies π(b/b′(L∗)p) = 1 which means that b
and b′ differ by a norm and so (E, σ, b) ∼= (E, σ, b′). Further, since φ
is a τ -morphism,

τ(b′)(L∗)p = τ(φ(b)(L∗)p) = φ(τ(b)NE/L(E
∗)) =

φ(abrNE/L(L
∗)) = φ(brNE/L(E

∗)) = (b′)r(L∗)p

This gives us τ(b′) = λp(b′)r for some λ ∈ L as desired.

Without loss of generality, we now substitute b′ for b and assume
that τ(b) = λnbr.

Now consider the field L(β), where β is defined to be a root of the
polynomial xn − b. We want to show that we can extend the action
of τ to an order m automorphism of L(β)/F . To this effect we first
define an map τ ′ : L(β) → L(β), where τ ′|L = τ and τ ′(β) = λβr.
One may verify this defines an automorphism by considering L(β) =
L[x]/(xn − b) and noting that τ ′ preserves the ideal (xn − b).

Lemma 3.4. We may choose λ above so that τ ′ has order m in
Aut(L(β)).

Proof. Since by definition τ ′|L = τ , we have (τ ′)m ∈ Aut(L(β)/L).
We thereby find that ord(τ ′)|mn, ord(τ) = m|ord(τ ′). Therefore we
can write ord(τ ′) = km, k|n, and set γ = (τ ′)k and M = L(β)γ . Since
[M : F ] = n, [L : F ] = m have relatively prime degrees and are both
subfields of L(β), which has degree nm, we find that L(β) = L⊗F M .
Hence we may define τ ′′ = τ ⊗ idM ∈ Aut(L(β)), which is an order m
automorphism. But now

τ ′′|L = τ |L = τ ′|L

and τ(b) = λnbr =⇒ τ ′′(β) = ρλβr where ρ is an n’th root of unity.
But we see τ ′′ is defined in the same way as τ ′ except for using ρλ
instead of λ as a n’th root of unity. Hence, by changing our choice of
λ to ρλ we obtain an order m automorphism.

For simplicity of notation we denote the extension τ ′ of τ to L(β)
also by τ . By the above description, we have

τβ = λβr
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where λ ∈ L.
We now use this information to define an action of τ on A. Since

AL = (E, σ, b) can be thought of as the free noncommutative F -
algebra generated by E and u modulo the relations ux − σ(x)u = 0
and un = b, giving an F -homomorphism AL → B is equivalent to
giving an F -map φ : L→ B and choosing and element φ(u) ∈ B such
that φ(u)φ(x)−φ(σ(x))φ(u) = 0 and φ(u)n−φ(b) = 0. Consequently,
since any F -endomorphism of AL is an automorphism (since AL is
finite dimensional and simple), to define an action of τ on AL, we
need only define τ on E and on u and then check that our relation is
preserved.

To begin, we define τ |E : E → E ⊂ AL to be the original Galois
action, and τ(u) = λur. Checking our relations we have:

τ(u)τ(x) = λurτ(x) = λσrτ(x)ur = λτσ(x)ur = τσ(x)λur

= τ(σ(x))τ(u)

and
τ(un) = λnurn = λnbr = τ(b)

Since L(u) ∼= L(β) where L(β) is as above, we know that τm(u) = u.
Since τ has order m on E, together this means that τ as defined above
is an order m semilinear automorphism of AL. We will refer to this
action as α : 〈τ〉 → AutF (AL).

3.1.2 An Action of τ on Al
L

We define AlL ⊂ ⊗
lAL =

l - times︷ ︸︸ ︷
AL ⊗L . . .⊗L AL to be the algebra generated

by E ⊗L 1 ⊗L . . . ⊗L 1 (which we will identify with just E), and v =
u⊗L u⊗L . . .⊗L u.

Lemma 3.5. [AlL] = [AL]
l, where brackets denote classes in Br(L)

Proof. Since AL ∼= (E, σ, b), we simply need to verify that AlL is just
the symbol algebra (E, σ, bl). But this follows because we clearly have

AlL =
p∐
i=0
Evi, and we need only check the two defining identities:

vp = (u⊗ u⊗ . . .⊗ u)p = up ⊗ up ⊗ . . .⊗ up

= b⊗ b⊗ . . .⊗ b

= bl ⊗ 1⊗ . . .⊗ 1

15



and

vx = (u⊗ u⊗ . . .⊗ u)(x⊗ 1⊗ . . .⊗ 1)

= (ux⊗ u⊗ . . .⊗ u)

= (σ(x)u⊗ u⊗ . . .⊗ u)

= (σ(x)⊗ 1⊗ . . .⊗ 1)(u⊗ u⊗ . . .⊗ u)

= σ(x)v

Next we note that we have a τ -semilinear action on ⊗lAL which
is induced (diagonally) by the τ action on AL, and further, since it is
easy to establish that:

τv = λlvr

and the action of τ is the usual one on E, we know that AlL is preserved
by τ and hence we have an induced action on AlL. We call this action
αl

3.1.3 τ-Action on Norm Sets

Our goal now will be to describe an action on the norm sets which is
compatible with the above τ -action on ideals. The following lemma
assures us that since the actions on the algebras AL and AlL given
above are isomorphic to the standard actions, they also induce iso-
morphic actions on V (A)L/F and V (Al)L/F respectively. Therefore,
we may proceed to find actions on the norm sets compatible with the
τ actions given above.

Let (B, β) be an algebra with τ -semilinear action such that B
central simple over L. Then by corollary 2.3, we have an induced
action on V (B)(R ⊗ L) via for I ∈ V (B)(R ⊗ L), thinking of I ⊂
B ⊗L (L⊗R)

β(τ)I = {β(τ)(x)|x ∈ I}

where β(τ) is acting here on B ⊗L (L⊗R) = B ⊗R as β(τ)⊗ 1.

Lemma 3.6. If f : (B, β) → (B′, β′) is an isomorphism, then the
induced isomorphism V (B)( )→ V (B ′)( ) commutes with the actions
of τ
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Proof. This is a simple check:

f(β(τ)(I)) = f({β(τ)(x)|x ∈ I}) = {f(β(τ)(x))|x ∈ I} =

{β′(τ)(f(x))|x ∈ I} = β′(τ)(f(I))

As was shown in the previous section, we know τ acts on AL and
hence also on AL ⊗ R. This translates to τ acting on E ⊗ R via the
natural action on E, and by τu = λur (where we abuse notation by
writing u for u⊗ 1). Therefore, if x− u ∈ I then τx− τu ∈ τI, or in
other words, τx/λ−ur ∈ τI. To translate this into an action on norm
sets, we recall that our birational identification between V (AL) and
[NE/L = x] is via I ∈ V (AL)

E/L(R) being identified with I∩(ER−u).
Therefore to find our τ action on norm sets, we take an ideal I with a
given intersection x−u ∈ ER−u and find the intersection of the new
ideal τ(I).

Since GCD(r, n) = 1 (because rm ≡n 1), we may select a positive
integer t so that rt = sn+ 1. By equation 2 in 2.3, there is an a ∈ A
such that

a(τx/λ− ur) = N t
σr(τx/λ)− urt

= N t
σr(τx/λ)− bsu

= τN t
σ(x)/N

t
σr(λ)− bsu

= τN t
σ(x)/λ

t − bsu

where the last step follows from the fact that λ ∈ L = Eσ.
Now, since τI is a left ideal containing τx/λ − ur, it must also

contain τN t
σ(x)/λ

tbs− u. Therefore, τN t
σ(x)/λ

tbs− u ∈ τI ∩ (E − u).
This tells us precisely that τI corresponds to τN t

σ(x)/λ
tbs, and so we

get an action of τ on [NE/L = b] via

x
τ
7→ τN t

σ(x)/λ
tbs

which makes the following diagram commute:

V (A)E/L V (A)E/L

[NE/L = b] [NE/L = b]

-τ

6

-τ

6
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Similarly, using the fact that τ acts on Al via v 7→ λlvr, vp = bl,
and v induces σ on E, we get that τ ’s action on V (Al) yields an action
on [NE/L = bl] via:

x
τ
7→ τN t

σ(x)/λ
ltbls.

Now, suppose P ∈ Z 〈σ〉, ε(P ) = l. As P can be considered as
a map from [NE/L = bk] to [NE/L = bkl], it is acted upon by τ via
τ • P = τ ◦ P ◦ τ−1. On the other hand, there is a natural action
of τ on the group algebra Z 〈σ〉 given by conjugation by τ , i.e. σ

τ
7→

σr. We claim that these two actions coincide. Thinking of P as an
element of the group algebra ZG, we write τPτ−1 as the action of τ
by conjugation (as a group element).

Proposition 3.7. τ • P = τPτ−1

Proof. We aim to show τ ◦ P = τPτ−1 ◦ τ . To start choose x ∈
[NE/L = bk](R). Since P (x) ∈ [NE/L = bkl](R), we have

τ ◦ P (x) = τN t
σ(P (x))/λ

kltbkls

= τPN t
σ(x)/λ

kltbkls

On the other hand,

τPτ−1 ◦ τ(x) = τPτ−1(τN t
σ(x)/λ

ktbks)

= τPN t
σ(x)/τPτ

−1(λktbks)

= τPN t
σ(x)/λ

kltbkls

= τ ◦ P (x)

Where the second to last step follows from the fact that τPτ−1 is a
monomial in σ, and that λ and b are σ-fixed. To finish, we see that
by composing on the right by the map τ , we get

τPτ−1 = τ ◦ P ◦ τ−1 = τ • P

as desired.

Corollary 3.8. If P ∈ Z 〈σ〉τ then the induced map on norm sets

P : [NE/L = bk]→ [NE/L = bkl]

commutes with the action of τ .
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3.2 Proof of the Main Theorem

We recall our earlier definitions of ε, ε, and S.

Lemma 3.9. Let P1, P2 ∈ Z 〈σ〉, ε(P ) = li. Then for any k ∈ Z,
P1P2 induces a map

P1P2 : [NE/L = bk]→ [NE/L = bkl1l2 ]

which is the composition of the maps

P2 : [NE/L = bk]→ [NE/L = bkl2 ]

and P1 : [NE/L = bkl2 ]→ [NE/L = bkl1l2 ]

Proof. This just comes from the fact that the group algebra acts on
E∗ with composition being identified with multiplication in the group
algebra.

Definition 3.10. For i, k ∈ Z, we define a natural transformation
(morphism)

φk : [NE/L = bi]→ [NE/L = bi+nk]

by the rule: for x ∈ [N = bi](R), φj(x) = xbk.

Note that we abuse notation here, and don’t specify the domain
or range of φj in the notation. In any case, one may easily verify that
φj ◦ φk = φj+k. In particular, these maps are all invertible and hence
are birational morphisms.

Lemma 3.11. φk commutes with the action of τ .

Proof. We consider φk : [NE/L = bi] → [NE/L = bi+nk]. Using the
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formulas for the τ actions described earlier, we have:

τ(φk(x)) = τ(xbk)

=
τN t

σ(b
kx)

λ(i+nk)tb(i+nk)s

=
τN t

σ(b
k)τN t

σ(x)

λitbisλnktbnks

=
τ(btk)τN t

σ(x)

λitbisλnktbnks

=
(λnbr)tkτN t

σ(x)

λitbisλnktbnks

=
λnkt(bsn+1)kτN t

σ(x)

λitbisλnktbnks

=
bkτN t

σ(x)

λitbis

= bkτ(x)

= φk(τ(x))

Lemma 3.12. For P any Galois monomial in σ, Pφk = φε(P )kP

Proof. If P =
n−1∑
i=0

niσ
i then we simply compute:

P ◦ φk(x) = P (bkx) =
n−1∏

i=0

(σi(bkx))ni =
n−1∏

i=0

(σi(bk))ni(σi(x))ni

=

n−1∏

i=0

(bk)ni

n−1∏

i=0

(σi(x))ni = (bk)
∑
niP (x) = bε(P )kP (x) = φε(P )kP (x)

We now prove the main theorem:

Theorem 3.13. If l ∈ Z such that l ∈ ε((S∗)τ ) then there is a bira-
tional map

V (A)→ V (Al)

Proof. We note first that Z 〈σ〉τ → Sτ is surjective, since if we consider
the short exact sequence:

0→ NZ → Z 〈σ〉 → S → 0
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We get a long exact sequence in group cohomology

NZ → Z 〈σ〉τ → Sτ → H1(τ,NZ)

and since as a τ -module, NZ ∼= Z with trivial action, we have

H1(τ,NZ) = Hom(〈τ〉 ,Z) = Hom(Z/mZ,Z) = 0

giving us a surjective map Z 〈σ〉τ → Sτ as claimed.
Now, choosing α ∈ (S∗)τ with ε(α) = l, we can find α̃ ∈ Z 〈σ〉τ

mapping to α. If ε(α̃) = l′, then by the commutativity of the diagram

0 ZN Z 〈σ〉 S 0

Z Z/nZ

- - -

?

ε

-

?

ε

-

(3)

we have l′ = l and so l′ = l + kn for some k ∈ Z. This means
that α̃ : [NE/L = b] → [NE/L = bl+nk], which commutes with the
action of τ by 3.8. Composing this with the map φ−k gives us a
natural transformation φ−k ◦ α̃ : [NE/L = b] → [NE/L = bl] which
commutes with τ . We will show that this actually induces an natural
isomorphism.

Next pick β ∈ (S∗)τ such that αβ = 1 ∈ S, and choose β̃ ∈
Z 〈σ〉τ mapping to β, and let

(
ε(β̃)

)
l = 1 + ns. We now have β̃ :

[NE/L = bl] → [NE/L = b1+ns] and composing with φ−s yields a

natural transformation φ−s ◦ β̃ : [NE/L = bl] → [NE/L = b] which
commutes with τ .

Now, we compose φ−k ◦ α̃ with φ−s ◦ β̃, which by construction
is a natural transformation [NE/L = b] → [NE/L = b]. If we write

α̃β̃ = 1 + rN , then using 3.12, we compute:

φ−s ◦ β̃ ◦ φ−k ◦ α̃ = φ−sφ−ε(β̃)k
β̃α̃ = φ

−(s+ε(β̃)k)
(1 + rN)

But 1 + rN : [NE/L = b]→ [NE/L = b1+rn] is simply the map φr, so

φ−s ◦ β̃ ◦ φ−k ◦ α̃ = φ
−(s+ε(β̃)k)

φr = φ
r−s−ε(β̃)k

which is clearly an isomorphism (one can check in fact that r − s −
ε(β̃)k = 0 giving that the right hand side above is the identity). This
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argument shows that φ−k ◦ α̃ : [NE/L = b]→ [NE/L = bl] is an also an
isomorphism which therefore induces a birational map

V (A)→ V (Al)
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