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ABSTRACT. Using a cohomological obstruction, we construct examples of ab-
solutely simple adjoint classical groups of type 2A, with n = 3 mod 4, C,, or
1D,, with n = 0 mod 4, which are not R-trivial hence not stably rational.

INTRODUCTION

For an algebraic group G defined over a field F, let G(F)/R be the group of
R-equivalence classes introduced by Manin in [6]. The algebraic group G is called
R-trivial if G(L)/R = 1 for every field extension L/F. It was established by Colliot-
Thélene and Sansuc in [2] (see also [7, Proposition 1]) that the group G is R-trivial
if the variety of G is stably rational.

In this paper, we focus on the case where G is an absolutely simple classical
group of adjoint type. Adjoint groups of type 'A, or B, are easily seen to be
rational (see [7, pp. 199, 200]). Voskresenskii and Klyachko [11, Cor. of Th. §]
proved that adjoint groups of type 2A4,, are rational if n is even, and Merkurjev |7,
Prop. 4] showed that adjoint groups of type C,, are stably rational for n odd. On
the other hand, Merkurjev also produced in [7] examples of adjoint groups of type
2A3 (= %2Dj3) and of type 2D,, for any n > 4 which are not R-trivial, hence not
stably rational. Examples of adjoint groups of type D4 which are not R-trivial
were constructed by Gille in [3].

The goal of the present paper is to construct examples of adjoint groups of type
2A,, with n = 3 mod 4 and of adjoint groups of type C,, or 'D,, with n = 0 mod 4
which are not R-trivial. Our constructions are based on Merkurjev’s computation
in [7] of the group of R-equivalence classes of adjoint classical groups, which we
now recall briefly. According to Weil (see [4, §26]), every absolutely simple classical
group of adjoint type over a field F' of characteristic different from 2 can be obtained
as the connected component of the identity in the automorphism group of a central®
simple algebra with involution (A, o) over F. Let Sim(A, o) be the algebraic group
of similitudes of (4, o), defined (as a group scheme) by

Sim(A,0)(E)={ue A®r E| (c ®@1d)(uv)u € E*}
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for every commutative F-algebra E, and let PSim(A, o) be the group of projective
similitudes,

PSim(A, 0') = Sim(A, U)/RK/F(Gm,K)
where K is the center of A. The connected component of the identity in these
groups is denoted by Sim™ (A, o) and PSim™ (A, o) respectively. We let Sim(4, o),
PSim(A4, o), Sim* (A, ) and PSim™ (4, ¢) denote the corresponding groups of F-
rational points:

Sim(A, o) = Sim(A, 0)(F), PSim(A,0) = PSim(A,0)(F), etc.

The group PSim™ (A, ) is canonically isomorphic (under the map which carries
every similitude g to the induced inner automorphism Int(g)) to the connected
component of the identity in the automorphism group of (A,o). To describe the
group of R-equivalence classes of PSim™ (A, ), consider the homomorphism

w: Sim(A4,0) — Gy,
which carries every similitude to its multiplier

1(g) = o(g)g-
Let GT(A,0) = pu(Sim*(4,0)) C F* and NK* = p(K*) C F* (so NK* = F*?
if K = F). Let also Hyp(A, o) be the subgroup of F* generated by the norms
of the finite extensions L of F such that (A, o) becomes hyperbolic after scalar
extension to L. In [7, Theorem 1], Merkurjev shows that the multiplier map pu
induces a canonical isomorphism

(1) PSim* (A,0)/R ~ GT(A,0)/(NK* - Hyp(4,0)).

For any positive integer d, let H(F, u2) be the degree d cohomology group of the
absolute Galois group of F with coefficients ps = {£1}. In Section 3 we consider
the case where o is of the first kind. If it is orthogonal, we assume further that its
discriminant is trivial. Assuming the index of A divides % deg A, we construct a
homomorphism

©:: PSim™(A,0)/R — H*(F, ),

and give examples where this homomorphism is nonzero, hence PSim™* (A, o) /R # 1.
Similarly, if o is of the second kind and the exponent of A divides %deg A, we
construct in Section 4 a homomorphism

O,: PSim™*(A,0)/R — H*(F, uz)

and show that this map is nonzero in certain cases. In all the examples where we

show ©1 # 0 or O # 0, the algebra with involution has the form (A4,0) = (B, p) ®

(C,7) where p is an orthogonal involution which admits improper similitudes.
Throughout the paper, the characteristic of the base field F is different from 2.

1. IMPROPER SIMILITUDES

Let (A,0) be a central simple F-algebra with orthogonal involution of degree
n = 2m. The group of similitudes Sim(A, o) is denoted GO(A, o). This group is
not connected. Its connected component of the identity GO (A, o) is defined by
the equation

Nrda(g) = u(g)™,
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where Nrd, is the reduced norm. We denote by GO(A,s) and GOT(4,0) the
group of F-rational points

GO(A4,0) = GO(A,0)(F), GO (A,0) =GO (4,0)(F).

The elements in GO™ (A, o) are called proper similitudes, and those in the nontrivial
coset

GO™(A,0) = {g € GO(A,0) | Nrda(g) = —pu(9)™}

are called improper similitudes.

For example, if m = 1 (i.e. A is a quaternion algebra), then every orthogonal
involution has the form o = Int(q) o v, where 7 is the canonical involution, ¢ is
an invertible pure quaternion and Int(q) is the inner automorphism induced by ¢,
mapping x € A to grq~!. It is easily checked that

GOT(A,0) = F(g)* and GO~ (4,0)=q¢'F(q)%,

where ¢’ is a unit which anticommutes with gq. Therefore, GO~ (A,0) # &.

If m > 1, the existence of improper similitudes is an important restriction on A
and o, since it implies that A is split by the quadratic étale F-algebra F[v/disc o],
where disc o is the discriminant of o, see [9, Theorem A] or [4, (13.38)]. In partic-
ular, the index of A satisfies ind A < 2, i.e. A is Brauer-equivalent to a quaternion
algebra. Moreover, if m is even, then —1 € Nrd4(A), see [9, Corollary 1.13]. There
is no other restriction on A, as the following proposition shows.

1. Proposition. Let H be an arbitrary quaternion F-algebra and let m be an
arbitrary integer. If m is even, assume —1 € Nrdgy (H*). Then the algebra M,,(H)
carries an orthogonal involution which admits improper similitudes.

Proof. Suppose first m is odd. Let i, j be elements in a standard quaternion basis
of H. We set

o=t® (Int(i) o) on M,,(H) = M,,(F) ®r H,

where v is the canonical involution on H. It is readily verified that 1 ® j is an
improper similitude of o.

Suppose next m is even, and g € H satisfies Nrdy(¢) = —1. We pick a quaternion
basis 1, 4, j, k = i such that ¢ commutes with ¢, and set

o = Int diag(j,4,...,i) o (t ®7) and g = diag(j,qJ,...,qj).

Again, computation shows that g is an improper similitude of o. ([l

Necessary and sufficient conditions for the existence of improper similitudes for
a given involution ¢ are not known if m > 4. For m = 2 (resp. m = 3), Corol-
lary (15.9) (resp. (15.26)) in [4] shows that GO™ (4, 0) # @ if and only if the Clifford
algebra C(A, o) has outer automorphisms (resp. outer automorphisms which com-
mute with its canonical involution). (For m = 2 another equivalent condition is
that A is split by the center of C(A, o), see [4, (15.11)] or [9, Prop. 1.15].) We use
this fact to prove the following result:

2. Proposition. Let (A, o) be a central simple F-algebra with orthogonal involution
of degree 4. Assume that A is not split and disco # 1. Then there exists a field
extension L/F such that Ay, is not split and GO™ (AL,0L) # @.
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Proof. By hypothesis, F(v/disco) is a quadratic field extension of F. We denote
it by K for simplicity and let ¢ be its nontrivial F-automorphism. The Clifford
algebra C' = C(A, o) is a quaternion K-algebra. Let X be the Severi-Brauer variety
of C' ®k *C and let L be the function field of its Weil transfer:

L= F(Rg/r(X)).
Then (C @k ‘C) @ KL splits, so Ck, is isomorphic to “Ckr,, which means that
Ck 1, has outer automorphisms. By [4, (15.9)], it follows that GO™ (AL, 0L) # @.
On the other hand, by [9, Corollary 2.12], the kernel of the scalar extension map

Br(F) — Br(L) is generated by the corestriction of C® g *C'. Since this corestriction
is trivial, A, is not split. |

2. TRACE FORMS

In this section, A is a central simple F-algebra of even degree with an involution
o of the first kind. We consider the quadratic forms T4 and T, on A defined by

Ta(z) = Trda(2?), T, (z) = Trda (o(2)z) for z € A,

where Trd 4 is the reduced trace on A. We denote by T\ (resp. T,) the restriction
of T, to the space Sym(c) of symmetric elements (resp. to the space Skew(o) of
skew-symmetric elements), so that

(2) Ta=T; 1L -T; and T,=T 5 LT,.

Recall that if o is orthogonal the (signed) discriminant disc7," is equal to the
discriminant disco up to a factor which depends only on the degree of A, see for
instance [4, (11.5)]. In the following, we denote by I™F the n-th power of the
fundamental ideal IF' of the Witt ring W F'.

3. Lemma. Let o, o¢ be two involutions of the first kind on A.
o If o and og are both symplectic, then T; — T;[) € I’F.
e Ifo and oy are both orthogonal, then disc(T, =T ) = disc o disc 0. More-
over, if disco = disc oy, then T, — T} € I3F.

Proof. The symplectic case has been considered in [1, Theorem 4]. For the rest of
the proof, we assume that o and oy are both orthogonal. By [4, (11.5)], there is a
factor ¢ € F* such that

disc T, = cdisco and disc T;o = cdisc oy,

hence

disc(T} — T\ ) = disc T} disc T}, = disc o disc 0.
To complete the proof, observe that the Witt-Clifford invariant es(7,") (or, equiva-
lently, the Hasse invariant wo (7)) depends only on disc o and on the Brauer class
of A, as was shown by Quéguiner [10, p. 307]. Therefore, if disco = disc oy, then
e2(TF) = ea(Ty), hence T — T} € I*F by a theorem of Merkurjev. O

We next compute the Arason invariant es(T,7 — T, ) € H3(F, p2) in the special
case where o and oo decompose. We use the following notation: [A] € H?(F, ua) is
the cohomology class corresponding to the Brauer class of A under the canonical
isomorphism H?(F, uz) = 2 Br(F). For a € F* we denote by (a) the cohomol-
ogy class corresponding to the square class of a under the canonical isomorphism
HY(F,pg) = F*/F*2.
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4. Lemma. Suppose A = B®p C for some central simple F-algebras B, C of even
degree. Let p and pg be orthogonal involutions on B and let T be an involution of
the first kind on C. Let also 0 = p® T and 09 = pg @ T.

If 7 (hence also o and o) is symplectic, then

) = 4
eg(T;_T;)):{o if deg C = 0 mod 4,

(disc pdisc pg) U[C] if degC = 2 mod 4.
If 7 (hence also o and o) is orthogonal, then
es(TH —T*) = (disc pdisc pg) U (disc 7) U (—1) if deg C = 0 mod 4,
3\ 70l (disc pdisc pg) U ((diSCT) U(=1)+ [C’]) if deg C' = 2 mod 4.
Proof. The decomposition
Sym(c) = (Sym(p) @ Sym(r)) ® (Skew(p) ® Skew(7))
yields
TS =TfTF+T, T,  in WF.
Since T =T p+ — T, we may eliminate 7/ in the equation above to obtain
T} =T5T} + (T, —Tg)T; .
Similarly,
T =TT + (T}, — Te)T;
and subtracting the two equalities yields
+ F (T +\+ + +y— + +
T — T} = (T, - THT + (T} — TH)T; = (T - TH)T,.
Since deg C' is even, we have T € I?F (see [4, (11.5)]), hence
e3(Th — T:;) = (dlsc(Tp"' - T+ ) Uea(Tr) in H*(F, js).
By Lemma 3 we have
dise(T, — T,}') = disc pdisc po.
The computation of es(T;) in [10, Theorem 1] or [5] completes the proof. O

Remark. If 0 and oy are symplectic, the Arason invariant es(T,7 — T, ) is the
discriminant Ay, (o) investigated in [1].

3. INVOLUTIONS OF THE FIRST KIND

In this section, A is a central simple F-algebra of even degree, and o is an
involution of the first kind on A. We assume ind A divides 3 deg A, i.e. A ~ Mj(Ay)
for some central simple F-algebra Ag, so that A carries a hyperbolic involution oq
of the same type as 0. If ¢ is orthogonal, we assume disco = 1 (= disc oy), so that
in all cases T, — T, € I’F, by Lemma 3.

5. Proposition. The map 01: Sim(A, o) — H*(F, ju3) defined by
01(9) = (u(9)) Ues(T; —T5,)

induces a homomorphism

©:: PSim™(A,0)/R — H*(F, ).
Moreover, for all g € Sim(A, o), we have

O1(g)U(-1)=0 in H(F, ).
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Proof. In view of the isomorphism (1), it suffices to show that for every finite field
extension L/F such that (A,0) ®F L is hyperbolic and for every x € L™,
(Npp(z)) Ues(T) =Ty =0 in HY(F, po).
The projection formula yields
(NL/F(x)) Ues(T,F — T;g) = COI‘L/F((I) Ues(T, — T:O)L)'
Since o, is hyperbolic, the involutions o7, and (o¢)r, are conjugate, hence
e3(TF — T;;)L =0.
For the last equality, observe that (2) yields the following equations in W F:
T, +Ta= (10T and T, ,+Ta=(1,1)T;}

00
hence

T, —T,, = (1,1)(T) — Tjo)
Since o is hyperbolic, we have T,, = 0. Moreover, for g € Sim(A4, o) the map
x +— gx is a similitude of T, with multiplier u(g), hence

(1, —plg)To = (L, —p(g)) (L, 1)(T}] —~ T) = 0.
Since
es (1, —u(g) (1L, (TS — T,;)) = b1(g) U (—1),
the proposition follows. O

6. Proposition. Let (A,0) = (B,p) ® (C,7), where B and C are central simple
F-algebras of even degree and p, T are involutions of the first kind. Suppose ind B
divides 5 deg B and p is orthogonal. For g € GO™ (B, p), we have g®1 € Sim™ (A, o)
and

0 if deg C' = 0 mod 4,

i(g®1) = {[B] U[C] if degC =2 mod 4.

Proof. For g € GO(B, p), we have

olg@l)g®l=p(g)g=pug)
and
Nrdy (g ® 1) = Nrdp(g)9e©,
so g® 1€ Sim™(4,0).
Since ind B divides %deg B, we may find a hyperbolic orthogonal involution pg

on B, and set 0g = py ® T, a hyperbolic involution on A of the same type as o.
If 7 is symplectic, Lemma 4 yields

es(TH - TF) = 0 if degC' = 0 mod 4,
e 70/ (discp) U[C] if degC' =2 mod 4.
The proposition follows by taking the cup-product with (u(g))7 since (H(g)) U

(disc p) = [B] by [9, Theorem A] (see also [4, (13.38)]).
Suppose next 7 is orthogonal. By Lemma 4,

TH_TF) = (disc p) U (disc7) U (—1) if deg C' = 0 mod 4,
] (discp) U ((discT) U (=1) +[C]) if degC =2 mod 4.
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Using again the equation (p(g)) U (disc p) = [B] and taking into account the equa-
tion (—1) U [B] = 0, which follows from [9, Corollary 1.13], we obtain the formula
for 1(g®1). O

Using Proposition 6, it is easy to construct examples where 6; # 0. For these
examples, the map ©; of Proposition 5 is not trivial, hence PSim™ (4, ¢) is not
R-trivial.

7. Corollary. Let Q, H be quaternion F-algebras satisfying
(-1)U[H]=0in H3(F,u2)  and  [H]U[Q] # 0 in H*(F, uy).

Let A = My, (H)® M (Q), where r is arbitrary and s is odd. Let p be an orthogonal
involution on Ma,.(H) which admits improper similitudes (see Lemma 1), and let
7 be any involution of the first kind on M(Q). Then PSim™(A,p ® 1) is not
R-trivial.

To obtain explicit examples, we may take for F' the field of rational fractions
in four indeterminates F' = C(x1,y1, Y2, y2) and set H = (x1,y1)r, Q@ = (x2,Y2)F-
Note that the degree of A can be any multiple of 8 and that the conditions on @
and H in Corollary 7 imply ind A = 4. Indeed, if there is a quadratic extension of
F which splits @ and H, then [H] U [Q)] is a multiple of (—1) U [H].

Other examples can be obtained from Proposition 2.

8. Corollary. Let (B, p) be a central simple algebra of degree 4 and index 2 with
orthogonal involution of nontrivial discriminant over a field Fy. Let F' = Fy(x,y)
be the field of rational fractions in two indeterminates x, y over Fy, and let (C, 1)
be a central simple F-algebra with involution of the first kind such that

degC =2 mod 4 and [C] = (z) U (y) € H*(F, ).
Then PSim™* (B ® C,p ® ) is not R-trivial.

Proof. Proposition 2 yields an extension Lo/Fy such that pr, admits an improper
similitude g and By, is not split. Set L = Lo(z,y). By Proposition 6,

g®1eSimT (B C,pe7)(L) and 01(g®1) =[Br]U () U (y).

Since [Br,] # 0, taking successive residues for the z-adic and the y-adic valuations
shows that 6;(g ® 1) # 0. Therefore, PSim™ (B ® C,p ® 7)(L)/R # 1, hence
PSim™ (B ® C,p ® 7) is not R-trivial. O

4. INVOLUTIONS OF THE SECOND KIND

We assume in this section that (A, o) is a central simple algebra with unitary
involution over F'. In this case, the group of similitudes is connected,

Sim"(4,0) = Sim(A,0) and  PSim™(4,0) = PSim(4,0).

We denote by K the center of A and write K = F[X]/(X? — «). We assume the
degree of A is even, deg A = n = 2m, and denote by D(A, o) the discriminant
algebra of (A, o) (see [4, §10] for a definition).

9. Lemma. D(A,o0) is split if (A, o) is hyperbolic.
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Proof. The lemma is clear if A is split, for then ¢ is adjoint to a hyperbolic hermitian
form h and [D(A,0)] = (a) U (disch) by [4, (10.35)]. The general case is reduced
to the case where A is split by scalar extension to the field of functions L =
F(Rk,r(SB(A))) of the Weil transfer of the Severi-Brauer variety of A. Indeed,
A ®p L is split and the scalar extension map Br(F) — Br(L) is injective by [9,
Corollary 2.12]. O
10. Proposition. Suppose A®™ is split. The map 0z: Sim(A,0) — H3(F, uz)
defined by
02(9) = (1(g)) U[D(A, )]
induces a homomorphism
Oy: PSim(A,0)/R — H3(F, jy).
Moreover, for any g € Sim(A, o),
02(9)U (@) =0 in HA(F, iz).

Proof. In view of the isomorphism (1), it suffices to show that for every finite field
extension L/F such that (A,0) ®p L is hyperbolic and for every x € L*,

(NL/F(.'L‘)) U[D(A,O’)] =0 n HB(F7M2),
and that for every A € K*,

(Nk/p(\)U[D(A,0)] =0 in H*(F, po).
As in the proof of Proposition 5, we are reduced by the projection formula to
proving that D(A, o) is split by K and by every extension L/F such that (A,0)® L
is hyperbolic. The latter assertion follows from the lemma. On the other hand, by
[4, (10.30)] and by the hypothesis on B we have

[D(A,0)k] = [N"A] = m[A] = 0.
To prove the last part, we use the trace form T, defined as in Section 2,
T,(x) = Trda(o(x)x) for x € A,

and its restrictions T,F, T, to Sym(A, o) and Skew(A, o) respectively. In the case

of involutions of unitary type we have
T, =T, LT, =(1,-a)T;.

The computation of the Clifford algebra of T, in [4, (11.17)] shows that T,, € I3F
and
e5(T,) = (@) UD(A, o).
Now, for g € Sim(A4, o) the map x — gz is a similitude of T, with multiplier u(g),
hence (1, —u(g))T, = 0 in WF. Taking the image under ey yields
0= (u(g9)) Ues(T,) = 02(g) U (a).
O
11. Remarks. (1) If ind A divides 3 deg A, so that A carries a hyperbolic uni-
tary involution og, then [4, (11.17)] and Lemma 9 yield
[D(A,0)] = ex(T — T1).
This observation underlines the analogy between 65 and the map 61 of

Proposition 5. Note however that no hypothesis on the index of A is re-
quired in Proposition 10.
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(2) For g € Sim(A4, o), the equation 62(g) U (o) = 0 implies that 05(g) lies in
the image of the corestriction map corg,p: H*(K,pug) — H*(F,ps), by
[4, (30.12)]. On the other hand, if the characteristic does not divide m,
Corollary 1.18 of [8] yields an explicit element ¢ € H?(K, u%?) such that
corg/p(§) = 02(g). In particular, if m is odd it follows that 65 = 0.

The following explicit computation yields examples where 65 # 0.
12. Proposition. Let ¢ be the nontrivial automorphism of K/F, and assume
(A70) = (Bap) ®F (Kv L)

for some central simple F-algebra with orthogonal involution (B, p) of degree n =
2m. Assume m is even. For g € GO™ (B, p) we have g ® 1 € Sim(A,0) and

f2(g® 1) = (o) U [B].
Proof. For g € GO (B, p),

o(g@1)g®1=plg)g = u9),
s0 g®1 € Sim(A, ). By [4, (10.33)], we have
[D(A,0)] = m[B] + («) U (disc p).

Since m is even, the first term on the right side vanishes. The proposition follows by
taking the cup-product with (p(g)), since [B] = (u(g)) U(disc p) by [9, Theorem A]
(see also [4, (13.38)]). O

Remark. If m is odd in Proposition 12, then the definition of #5 requires the extra
hypothesis that B is split by K. Computation then shows that 02(¢g ® 1) = 0 for
all g € GO™ (B, p), as follows also from Remark 11.2 above.

13. Corollary. Let r be an arbitrary integer. Let H be a quaternion F-algebra,
a € FX, K = F[X]/(X? — a), and let v be the nontrivial automorphism of K/F.
Assume

(~1)U[H] =0 in H3(F, uz) and () U[H] # 0 in H3(F, us).

Let p be an orthogonal involution on Ms,.(H) which admits improper similitudes

(see Lemma 1). Then PSim(Mas,(H) ®@p K, p ® 1) is not R-trivial.

As in the previous section (see Corollary 8), alternative examples can be con-
structed from Proposition 2:

14. Corollary. Let (B,p) be a central simple algebra of degree 4 with orthogonal
involution over a field Fy. Assume B is not split and discp # 1. Let F = Fy(x) be
the field of rational fractions in one indeterminate over Fy, let K = F(\/z) and let
L be the nontrivial automorphism of K/F. The group PSim(B ® g, K,p &) is not
R-trivial.

Note that this corollary also follows from [7, Theorem 3.
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