COHOMOLOGICAL INVARIANTS AND R-TRIVIALITY OF ADJOINT CLASSICAL GROUPS

GRÉGORY BERHUY, MARINA MONSURRÒ, AND JEAN-PIERRE TIGNOL

ABSTRACT. Using a cohomological obstruction, we construct examples of absolutely simple adjoint classical groups of type 2A_n with $n \equiv 3 \mod 4$, C_n or 1D_n with $n \equiv 0 \mod 4$, which are not R-trivial hence not stably rational.

Introduction

For an algebraic group G defined over a field F, let G(F)/R be the group of R-equivalence classes introduced by Manin in [6]. The algebraic group G is called R-trivial if G(L)/R = 1 for every field extension L/F. It was established by Colliot-Thélène and Sansuc in [2] (see also [7, Proposition 1]) that the group G is R-trivial if the variety of G is stably rational.

In this paper, we focus on the case where G is an absolutely simple classical group of adjoint type. Adjoint groups of type 1A_n or B_n are easily seen to be rational (see [7, pp. 199, 200]). Voskresenskiĭ and Klyachko [11, Cor. of Th. 8] proved that adjoint groups of type 2A_n are rational if n is even, and Merkurjev [7, Prop. 4] showed that adjoint groups of type C_n are stably rational for n odd. On the other hand, Merkurjev also produced in [7] examples of adjoint groups of type 2A_3 (= 2D_3) and of type 2D_n for any $n \geq 4$ which are not R-trivial, hence not stably rational. Examples of adjoint groups of type 1D_4 which are not R-trivial were constructed by Gille in [3].

The goal of the present paper is to construct examples of adjoint groups of type 2A_n with $n \equiv 3 \mod 4$ and of adjoint groups of type C_n or 1D_n with $n \equiv 0 \mod 4$ which are not R-trivial. Our constructions are based on Merkurjev's computation in [7] of the group of R-equivalence classes of adjoint classical groups, which we now recall briefly. According to Weil (see [4, §26]), every absolutely simple classical group of adjoint type over a field F of characteristic different from 2 can be obtained as the connected component of the identity in the automorphism group of a central simple algebra with involution (A, σ) over F. Let $\mathbf{Sim}(A, \sigma)$ be the algebraic group of similitudes of (A, σ) , defined (as a group scheme) by

$$\mathbf{Sim}(A,\sigma)(E) = \{ u \in A \otimes_F E \mid (\sigma \otimes \mathrm{Id})(u)u \in E^{\times} \}$$

²⁰⁰⁰ Mathematics Subject Classification. 11E57, 20G15.

The authors gratefully acknowledge support from the TMR network "K-theory and linear algebraic groups" (ERB FMRX CT97-0107). The third author is also grateful to the National Fund for Scientific Research (Belgium) for partial support.

¹We use the same terminology as in [4]. In particular, the center of A is F if σ is of the first kind; it is a quadratic étale extension of F if σ is of the second kind.

for every commutative F-algebra E, and let $\mathbf{PSim}(A, \sigma)$ be the group of projective similitudes,

$$\mathbf{PSim}(A, \sigma) = \mathbf{Sim}(A, \sigma) / R_{K/F}(\mathbf{G}_{m,K})$$

where K is the center of A. The connected component of the identity in these groups is denoted by $\mathbf{Sim}^+(A,\sigma)$ and $\mathbf{PSim}^+(A,\sigma)$ respectively. We let $\mathbf{Sim}(A,\sigma)$, $\mathbf{PSim}(A,\sigma)$, $\mathbf{Sim}^+(A,\sigma)$ and $\mathbf{PSim}^+(A,\sigma)$ denote the corresponding groups of F-rational points:

$$Sim(A, \sigma) = Sim(A, \sigma)(F), \quad PSim(A, \sigma) = PSim(A, \sigma)(F), \quad etc.$$

The group $\mathbf{PSim}^+(A, \sigma)$ is canonically isomorphic (under the map which carries every similitude g to the induced inner automorphism $\mathrm{Int}(g)$) to the connected component of the identity in the automorphism group of (A, σ) . To describe the group of R-equivalence classes of $\mathrm{PSim}^+(A, \sigma)$, consider the homomorphism

$$\mu \colon \operatorname{\mathbf{Sim}}(A, \sigma) \to \mathbf{G}_{\mathrm{m}}$$

which carries every similitude to its multiplier

$$\mu(g) = \sigma(g)g.$$

Let $G^+(A, \sigma) = \mu(\operatorname{Sim}^+(A, \sigma)) \subset F^\times$ and $NK^\times = \mu(K^\times) \subset F^\times$ (so $NK^\times = F^{\times 2}$ if K = F). Let also $\operatorname{Hyp}(A, \sigma)$ be the subgroup of F^\times generated by the norms of the finite extensions L of F such that (A, σ) becomes hyperbolic after scalar extension to L. In [7, Theorem 1], Merkurjev shows that the multiplier map μ induces a canonical isomorphism

(1)
$$PSim^{+}(A,\sigma)/R \simeq G^{+}(A,\sigma)/(NK^{\times} \cdot Hyp(A,\sigma)).$$

For any positive integer d, let $H^d(F, \mu_2)$ be the degree d cohomology group of the absolute Galois group of F with coefficients $\mu_2 = \{\pm 1\}$. In Section 3 we consider the case where σ is of the first kind. If it is orthogonal, we assume further that its discriminant is trivial. Assuming the index of A divides $\frac{1}{2} \deg A$, we construct a homomorphism

$$\Theta_1$$
: $PSim^+(A, \sigma)/R \to H^4(F, \mu_2)$,

and give examples where this homomorphism is nonzero, hence $\operatorname{PSim}^+(A,\sigma)/R \neq 1$. Similarly, if σ is of the second kind and the exponent of A divides $\frac{1}{2} \deg A$, we construct in Section 4 a homomorphism

$$\Theta_2$$
: $\operatorname{PSim}^+(A,\sigma)/R \to H^3(F,\mu_2)$

and show that this map is nonzero in certain cases. In all the examples where we show $\Theta_1 \neq 0$ or $\Theta_2 \neq 0$, the algebra with involution has the form $(A, \sigma) = (B, \rho) \otimes (C, \tau)$ where ρ is an orthogonal involution which admits improper similitudes.

Throughout the paper, the characteristic of the base field F is different from 2.

1. Improper similitudes

Let (A, σ) be a central simple F-algebra with orthogonal involution of degree n = 2m. The group of similitudes $\mathbf{Sim}(A, \sigma)$ is denoted $\mathbf{GO}(A, \sigma)$. This group is not connected. Its connected component of the identity $\mathbf{GO}^+(A, \sigma)$ is defined by the equation

$$Nrd_A(g) = \mu(g)^m$$
,

where Nrd_A is the reduced norm. We denote by $\operatorname{GO}(A,\sigma)$ and $\operatorname{GO}^+(A,\sigma)$ the group of F-rational points

$$GO(A, \sigma) = \mathbf{GO}(A, \sigma)(F), \qquad GO^{+}(A, \sigma) = \mathbf{GO}^{+}(A, \sigma)(F).$$

The elements in $GO^+(A, \sigma)$ are called *proper similitudes*, and those in the nontrivial coset

$$GO^-(A, \sigma) = \{ g \in GO(A, \sigma) \mid Nrd_A(g) = -\mu(g)^m \}$$

are called $improper\ similitudes.$

For example, if m=1 (i.e. A is a quaternion algebra), then every orthogonal involution has the form $\sigma=\mathrm{Int}(q)\circ\gamma$, where γ is the canonical involution, q is an invertible pure quaternion and $\mathrm{Int}(q)$ is the inner automorphism induced by q, mapping $x\in A$ to qxq^{-1} . It is easily checked that

$$\mathrm{GO}^+(A,\sigma) = F(q)^{\times}$$
 and $\mathrm{GO}^-(A,\sigma) = q'F(q)^{\times},$

where q' is a unit which anticommutes with q. Therefore, $GO^-(A, \sigma) \neq \emptyset$.

If m>1, the existence of improper similitudes is an important restriction on A and σ , since it implies that A is split by the quadratic étale F-algebra $F[\sqrt{\operatorname{disc}\sigma}]$, where $\operatorname{disc}\sigma$ is the discriminant of σ , see [9, Theorem A] or [4, (13.38)]. In particular, the index of A satisfies ind $A\leq 2$, i.e. A is Brauer-equivalent to a quaternion algebra. Moreover, if m is even, then $-1\in\operatorname{Nrd}_A(A)$, see [9, Corollary 1.13]. There is no other restriction on A, as the following proposition shows.

1. Proposition. Let H be an arbitrary quaternion F-algebra and let m be an arbitrary integer. If m is even, assume $-1 \in \operatorname{Nrd}_H(H^{\times})$. Then the algebra $M_m(H)$ carries an orthogonal involution which admits improper similitudes.

Proof. Suppose first m is odd. Let i, j be elements in a standard quaternion basis of H. We set

$$\sigma = t \otimes (\operatorname{Int}(i) \circ \gamma)$$
 on $M_m(H) = M_m(F) \otimes_F H$,

where γ is the canonical involution on H. It is readily verified that $1 \otimes j$ is an improper similitude of σ .

Suppose next m is even, and $q \in H$ satisfies $Nrd_H(q) = -1$. We pick a quaternion basis 1, i, j, k = ij such that i commutes with q, and set

$$\sigma = \operatorname{Int} \operatorname{diag}(j, i, \dots, i) \circ (t \otimes \gamma)$$
 and $g = \operatorname{diag}(j, qj, \dots, qj)$.

Again, computation shows that g is an improper similitude of σ .

Necessary and sufficient conditions for the existence of improper similitudes for a given involution σ are not known if $m \geq 4$. For m = 2 (resp. m = 3), Corollary (15.9) (resp. (15.26)) in [4] shows that $\mathrm{GO}^-(A,\sigma) \neq \varnothing$ if and only if the Clifford algebra $C(A,\sigma)$ has outer automorphisms (resp. outer automorphisms which commute with its canonical involution). (For m=2 another equivalent condition is that A is split by the center of $C(A,\sigma)$, see [4, (15.11)] or [9, Prop. 1.15].) We use this fact to prove the following result:

2. **Proposition.** Let (A, σ) be a central simple F-algebra with orthogonal involution of degree 4. Assume that A is not split and disc $\sigma \neq 1$. Then there exists a field extension L/F such that A_L is not split and $GO^-(A_L, \sigma_L) \neq \emptyset$.

Proof. By hypothesis, $F(\sqrt{\operatorname{disc}}\sigma)$ is a quadratic field extension of F. We denote it by K for simplicity and let ι be its nontrivial F-automorphism. The Clifford algebra $C = C(A, \sigma)$ is a quaternion K-algebra. Let X be the Severi-Brauer variety of $C \otimes_K {}^{\iota}C$ and let L be the function field of its Weil transfer:

$$L = F(R_{K/F}(X)).$$

Then $(C \otimes_K {}^{\iota}C) \otimes_K KL$ splits, so C_{KL} is isomorphic to ${}^{\iota}C_{KL}$, which means that C_{KL} has outer automorphisms. By [4, (15.9)], it follows that $GO^{-}(A_{L}, \sigma_{L}) \neq \emptyset$.

On the other hand, by [9, Corollary 2.12], the kernel of the scalar extension map $\operatorname{Br}(F) \to \operatorname{Br}(L)$ is generated by the corestriction of $C \otimes_K {}^{\iota}C$. Since this corestriction is trivial, A_L is not split.

2. Trace forms

In this section, A is a central simple F-algebra of even degree with an involution σ of the first kind. We consider the quadratic forms T_A and T_σ on A defined by

$$T_A(x) = \operatorname{Trd}_A(x^2), \qquad T_{\sigma}(x) = \operatorname{Trd}_A(\sigma(x)x) \qquad \text{for } x \in A$$

where Trd_A is the reduced trace on A. We denote by T_{σ}^+ (resp. T_{σ}^-) the restriction of T_{σ} to the space $Sym(\sigma)$ of symmetric elements (resp. to the space $Skew(\sigma)$ of skew-symmetric elements), so that

(2)
$$T_A = T_{\sigma}^+ \perp -T_{\sigma}^- \quad \text{and} \quad T_{\sigma} = T_{\sigma}^+ \perp T_{\sigma}^-.$$

Recall that if σ is orthogonal the (signed) discriminant disc T_{σ}^{+} is equal to the discriminant disc σ up to a factor which depends only on the degree of A, see for instance [4, (11.5)]. In the following, we denote by I^nF the n-th power of the fundamental ideal IF of the Witt ring WF.

- 3. Lemma. Let σ , σ_0 be two involutions of the first kind on A.

 - If σ and σ₀ are both symplectic, then T⁺_σ T⁺_{σ₀} ∈ I³F.
 If σ and σ₀ are both orthogonal, then disc(T⁺_σ T⁺_{σ₀}) = disc σ disc σ₀. Moreover, if disc σ = disc σ₀, then T⁺_σ T⁺_{σ₀} ∈ I³F.

Proof. The symplectic case has been considered in [1, Theorem 4]. For the rest of the proof, we assume that σ and σ_0 are both orthogonal. By [4, (11.5)], there is a factor $c \in F^{\times}$ such that

$$\operatorname{disc} T_{\sigma}^{+} = c \operatorname{disc} \sigma$$
 and $\operatorname{disc} T_{\sigma_{0}}^{+} = c \operatorname{disc} \sigma_{0}$,

hence

$$\operatorname{disc}(T_{\sigma}^{+} - T_{\sigma_{0}}^{+}) = \operatorname{disc} T_{\sigma}^{+} \operatorname{disc} T_{\sigma_{0}}^{+} = \operatorname{disc} \sigma \operatorname{disc} \sigma_{0}.$$

To complete the proof, observe that the Witt-Clifford invariant $e_2(T_{\sigma}^+)$ (or, equivalently, the Hasse invariant $w_2(T_{\sigma}^+)$ depends only on disc σ and on the Brauer class of A, as was shown by Quéguiner [10, p. 307]. Therefore, if $\operatorname{disc} \sigma = \operatorname{disc} \sigma_0$, then $e_2(T_{\sigma}^+) = e_2(T_{\sigma_0}^+)$, hence $T_{\sigma}^+ - T_{\sigma_0}^+ \in I^3 F$ by a theorem of Merkurjev.

We next compute the Arason invariant $e_3(T_{\sigma}^+ - T_{\sigma_0}^+) \in H^3(F, \mu_2)$ in the special case where σ and σ_0 decompose. We use the following notation: $[A] \in H^2(F, \mu_2)$ is the cohomology class corresponding to the Brauer class of A under the canonical isomorphism $H^2(F, \mu_2) = {}_2\operatorname{Br}(F)$. For $a \in F^{\times}$ we denote by (a) the cohomology class corresponding to the square class of a under the canonical isomorphism $H^1(F, \mu_2) = F^{\times}/F^{\times 2}.$

4. Lemma. Suppose $A = B \otimes_F C$ for some central simple F-algebras B, C of even degree. Let ρ and ρ_0 be orthogonal involutions on B and let τ be an involution of the first kind on C. Let also $\sigma = \rho \otimes \tau$ and $\sigma_0 = \rho_0 \otimes \tau$.

If τ (hence also σ and σ_0) is symplectic, then

$$e_3(T_{\sigma}^+ - T_{\sigma_0}^+) = \begin{cases} 0 & \text{if } \deg C \equiv 0 \bmod 4, \\ (\operatorname{disc} \rho \operatorname{disc} \rho_0) \cup [C] & \text{if } \deg C \equiv 2 \bmod 4. \end{cases}$$

If τ (hence also σ and σ_0) is orthogonal, then

$$e_3(T_{\sigma}^+ - T_{\sigma_0}^+) = \begin{cases} (\operatorname{disc} \rho \operatorname{disc} \rho_0) \cup (\operatorname{disc} \tau) \cup (-1) & \text{if } \operatorname{deg} C \equiv 0 \bmod 4, \\ (\operatorname{disc} \rho \operatorname{disc} \rho_0) \cup ((\operatorname{disc} \tau) \cup (-1) + [C]) & \text{if } \operatorname{deg} C \equiv 2 \bmod 4. \end{cases}$$

Proof. The decomposition

$$\operatorname{Sym}(\sigma) = \left(\operatorname{Sym}(\rho) \otimes \operatorname{Sym}(\tau)\right) \oplus \left(\operatorname{Skew}(\rho) \otimes \operatorname{Skew}(\tau)\right)$$

yields

$$T_{\sigma}^{+} = T_{o}^{+} T_{\sigma}^{+} + T_{o}^{-} T_{\sigma}^{-}$$
 in WF .

 $T_\sigma^+ = T_\rho^+ T_\tau^+ + T_\rho^- T_\tau^- \qquad \text{in WF.}$ Since $T_B = T_\rho^+ - T_\rho^-$ we may eliminate T_ρ^- in the equation above to obtain

$$T_{\sigma}^{+} = T_{\rho}^{+} T_{\tau}^{+} + (T_{\rho}^{+} - T_{B}) T_{\tau}^{-}.$$

Similarly,

$$T_{\sigma_0}^+ = T_{\rho_0}^+ T_{\tau}^+ + (T_{\rho_0}^+ - T_B) T_{\tau}^-$$

 $T_{\sigma_0}^+=T_{\rho_0}^+T_\tau^++(T_{\rho_0}^+-T_B)T_\tau^-$ and subtracting the two equalities yields

$$T_{\sigma}^{+} - T_{\sigma_{0}}^{+} = (T_{\rho}^{+} - T_{\rho_{0}}^{+})T_{\tau}^{+} + (T_{\rho}^{+} - T_{\rho_{0}}^{+})T_{\tau}^{-} = (T_{\rho}^{+} - T_{\rho_{0}}^{+})T_{\tau}.$$

Since deg C is even, we have $T_{\tau} \in I^2 F$ (see [4, (11.5)]), hence

$$e_3(T_{\sigma}^+ - T_{\sigma_0}^+) = (\operatorname{disc}(T_{\rho}^+ - T_{\rho_0}^+)) \cup e_2(T_{\tau}) \quad \text{in } H^3(F, \mu_2).$$

By Lemma 3 we have

$$\operatorname{disc}(T_{\rho}^{+} - T_{\rho_{0}}^{+}) = \operatorname{disc} \rho \operatorname{disc} \rho_{0}.$$

The computation of $e_2(T_\tau)$ in [10, Theorem 1] or [5] completes the proof.

Remark. If σ and σ_0 are symplectic, the Arason invariant $e_3(T_{\sigma}^+ - T_{\sigma_0}^+)$ is the discriminant $\Delta_{\sigma_0}(\sigma)$ investigated in [1].

3. Involutions of the first kind

In this section, A is a central simple F-algebra of even degree, and σ is an involution of the first kind on A. We assume ind A divides $\frac{1}{2} \deg A$, i.e. $A \simeq M_2(A_0)$ for some central simple F-algebra A_0 , so that A carries a hyperbolic involution σ_0 of the same type as σ . If σ is orthogonal, we assume disc $\sigma = 1$ (= disc σ_0), so that in all cases $T_{\sigma}^+ - T_{\sigma_0}^+ \in I^3 F$, by Lemma 3.

5. Proposition. The map θ_1 : $Sim(A, \sigma) \to H^4(F, \mu_2)$ defined by

$$\theta_1(g) = (\mu(g)) \cup e_3(T_{\sigma}^+ - T_{\sigma_0}^+)$$

induces a homomorphism

$$\Theta_1$$
: $\operatorname{PSim}^+(A,\sigma)/R \to H^4(F,\mu_2)$

Moreover, for all $g \in Sim(A, \sigma)$, we have

$$\theta_1(g) \cup (-1) = 0$$
 in $H^5(F, \mu_2)$.

Proof. In view of the isomorphism (1), it suffices to show that for every finite field extension L/F such that $(A, \sigma) \otimes_F L$ is hyperbolic and for every $x \in L^{\times}$,

$$(N_{L/F}(x)) \cup e_3(T_{\sigma}^+ - T_{\sigma_0}^+) = 0$$
 in $H^4(F, \mu_2)$.

The projection formula yields

$$(N_{L/F}(x)) \cup e_3(T_{\sigma}^+ - T_{\sigma_0}^+) = \operatorname{cor}_{L/F}((x) \cup e_3(T_{\sigma}^+ - T_{\sigma_0}^+)_L).$$

Since σ_L is hyperbolic, the involutions σ_L and $(\sigma_0)_L$ are conjugate, hence

$$e_3(T_{\sigma}^+ - T_{\sigma_0}^+)_L = 0.$$

For the last equality, observe that (2) yields the following equations in WF:

$$T_{\sigma} + T_A = \langle 1, 1 \rangle T_{\sigma}^+$$
 and $T_{\sigma_0} + T_A = \langle 1, 1 \rangle T_{\sigma_0}^+$

hence

$$T_{\sigma} - T_{\sigma_0} = \langle 1, 1 \rangle (T_{\sigma}^+ - T_{\sigma_0}^+).$$

Since σ_0 is hyperbolic, we have $T_{\sigma_0}=0$. Moreover, for $g\in \mathrm{Sim}(A,\sigma)$ the map $x\mapsto gx$ is a similar similar with multiplier $\mu(g)$, hence

$$\langle 1, -\mu(g) \rangle T_{\sigma} = \langle 1, -\mu(g) \rangle \langle 1, 1 \rangle (T_{\sigma}^+ - T_{\sigma_0}^+) = 0.$$

Since

$$e_5(\langle 1, -\mu(g) \rangle \langle 1, 1 \rangle (T_{\sigma}^+ - T_{\sigma_2}^+)) = \theta_1(g) \cup (-1),$$

the proposition follows.

6. **Proposition.** Let $(A, \sigma) = (B, \rho) \otimes (C, \tau)$, where B and C are central simple F-algebras of even degree and ρ , τ are involutions of the first kind. Suppose ind B divides $\frac{1}{2} \deg B$ and ρ is orthogonal. For $g \in \mathrm{GO}^-(B, \rho)$, we have $g \otimes 1 \in \mathrm{Sim}^+(A, \sigma)$ and

$$\theta_1(g \otimes 1) = \begin{cases} 0 & \text{if deg } C \equiv 0 \bmod 4, \\ [B] \cup [C] & \text{if deg } C \equiv 2 \bmod 4. \end{cases}$$

Proof. For $g \in GO(B, \rho)$, we have

$$\sigma(q \otimes 1)q \otimes 1 = \rho(q)q = \mu(q)$$

and

$$\operatorname{Nrd}_A(q \otimes 1) = \operatorname{Nrd}_B(q)^{\operatorname{deg} C}$$

so $g \otimes 1 \in \operatorname{Sim}^+(A, \sigma)$.

Since ind B divides $\frac{1}{2} \deg B$, we may find a hyperbolic orthogonal involution ρ_0 on B, and set $\sigma_0 = \rho_0 \otimes \tau$, a hyperbolic involution on A of the same type as σ .

If τ is symplectic, Lemma 4 yields

$$e_3(T_{\sigma}^+ - T_{\sigma_0}^+) = \begin{cases} 0 & \text{if } \deg C \equiv 0 \bmod 4, \\ (\operatorname{disc} \rho) \cup [C] & \text{if } \deg C \equiv 2 \bmod 4. \end{cases}$$

The proposition follows by taking the cup-product with $(\mu(g))$, since $(\mu(g)) \cup (\operatorname{disc} \rho) = [B]$ by [9, Theorem A] (see also [4, (13.38)]).

Suppose next τ is orthogonal. By Lemma 4,

$$e_3(T_{\sigma}^+ - T_{\sigma_0}^+) = \begin{cases} (\operatorname{disc} \rho) \cup (\operatorname{disc} \tau) \cup (-1) & \text{if } \operatorname{deg} C \equiv 0 \operatorname{mod} 4, \\ (\operatorname{disc} \rho) \cup ((\operatorname{disc} \tau) \cup (-1) + [C]) & \text{if } \operatorname{deg} C \equiv 2 \operatorname{mod} 4. \end{cases}$$

Using again the equation $(\mu(g)) \cup (\operatorname{disc} \rho) = [B]$ and taking into account the equation $(-1) \cup [B] = 0$, which follows from [9, Corollary 1.13], we obtain the formula for $\theta_1(g \otimes 1)$.

Using Proposition 6, it is easy to construct examples where $\theta_1 \neq 0$. For these examples, the map Θ_1 of Proposition 5 is not trivial, hence $\mathbf{PSim}^+(A, \sigma)$ is not R-trivial.

7. Corollary. Let Q, H be quaternion F-algebras satisfying

$$(-1) \cup [H] = 0 \text{ in } H^3(F, \mu_2)$$
 and $[H] \cup [Q] \neq 0 \text{ in } H^4(F, \mu_2).$

Let $A = M_{2r}(H) \otimes M_s(Q)$, where r is arbitrary and s is odd. Let ρ be an orthogonal involution on $M_{2r}(H)$ which admits improper similitudes (see Lemma 1), and let τ be any involution of the first kind on $M_s(Q)$. Then $\mathbf{PSim}^+(A, \rho \otimes \tau)$ is not R-trivial.

To obtain explicit examples, we may take for F the field of rational fractions in four indeterminates $F = \mathbb{C}(x_1, y_1, y_2, y_2)$ and set $H = (x_1, y_1)_F$, $Q = (x_2, y_2)_F$. Note that the degree of A can be any multiple of 8 and that the conditions on Q and H in Corollary 7 imply ind A = 4. Indeed, if there is a quadratic extension of F which splits Q and H, then $[H] \cup [Q]$ is a multiple of $(-1) \cup [H]$.

Other examples can be obtained from Proposition 2.

8. Corollary. Let (B, ρ) be a central simple algebra of degree 4 and index 2 with orthogonal involution of nontrivial discriminant over a field F_0 . Let $F = F_0(x, y)$ be the field of rational fractions in two indeterminates x, y over F_0 , and let (C, τ) be a central simple F-algebra with involution of the first kind such that

$$\deg C \equiv 2 \bmod 4 \qquad and \qquad [C] = (x) \cup (y) \in H^2(F, \mu_2).$$

Then $\mathbf{PSim}^+(B \otimes C, \rho \otimes \tau)$ is not R-trivial.

Proof. Proposition 2 yields an extension L_0/F_0 such that ρ_{L_0} admits an improper similitude g and B_{L_0} is not split. Set $L = L_0(x, y)$. By Proposition 6,

$$g \otimes 1 \in \mathbf{Sim}^+(B \otimes C, \rho \otimes \tau)(L)$$
 and $\theta_1(g \otimes 1) = [B_L] \cup (x) \cup (y)$.

Since $[B_{L_0}] \neq 0$, taking successive residues for the *x*-adic and the *y*-adic valuations shows that $\theta_1(g \otimes 1) \neq 0$. Therefore, $\mathbf{PSim}^+(B \otimes C, \rho \otimes \tau)(L)/R \neq 1$, hence $\mathbf{PSim}^+(B \otimes C, \rho \otimes \tau)$ is not *R*-trivial.

4. Involutions of the second kind

We assume in this section that (A, σ) is a central simple algebra with unitary involution over F. In this case, the group of similitudes is connected,

$$\operatorname{\mathbf{Sim}}^+(A,\sigma) = \operatorname{\mathbf{Sim}}(A,\sigma)$$
 and $\operatorname{\mathbf{PSim}}^+(A,\sigma) = \operatorname{\mathbf{PSim}}(A,\sigma)$.

We denote by K the center of A and write $K = F[X]/(X^2 - \alpha)$. We assume the degree of A is even, deg A = n = 2m, and denote by $D(A, \sigma)$ the discriminant algebra of (A, σ) (see [4, §10] for a definition).

9. Lemma. $D(A, \sigma)$ is split if (A, σ) is hyperbolic.

Proof. The lemma is clear if A is split, for then σ is adjoint to a hyperbolic hermitian form h and $[D(A,\sigma)]=(\alpha)\cup(\operatorname{disc} h)$ by [4, (10.35)]. The general case is reduced to the case where A is split by scalar extension to the field of functions $L=F\left(R_{K/F}\left(\operatorname{SB}(A)\right)\right)$ of the Weil transfer of the Severi-Brauer variety of A. Indeed, $A\otimes_F L$ is split and the scalar extension map $\operatorname{Br}(F)\to\operatorname{Br}(L)$ is injective by $[9,\operatorname{Corollary}\ 2.12]$.

10. Proposition. Suppose $A^{\otimes m}$ is split. The map $\theta_2 \colon \operatorname{Sim}(A, \sigma) \to H^3(F, \mu_2)$ defined by

$$\theta_2(g) = (\mu(g)) \cup [D(A, \sigma)]$$

induces a homomorphism

$$\Theta_2$$
: $PSim(A, \sigma)/R \to H^3(F, \mu_2)$.

Moreover, for any $g \in Sim(A, \sigma)$,

$$\theta_2(g) \cup (\alpha) = 0$$
 in $H^4(F, \mu_2)$.

Proof. In view of the isomorphism (1), it suffices to show that for every finite field extension L/F such that $(A, \sigma) \otimes_F L$ is hyperbolic and for every $x \in L^{\times}$,

$$(N_{L/F}(x)) \cup [D(A, \sigma)] = 0$$
 in $H^3(F, \mu_2)$,

and that for every $\lambda \in K^{\times}$,

$$(N_{K/F}(\lambda)) \cup [D(A,\sigma)] = 0$$
 in $H^3(F,\mu_2)$.

As in the proof of Proposition 5, we are reduced by the projection formula to proving that $D(A, \sigma)$ is split by K and by every extension L/F such that $(A, \sigma) \otimes L$ is hyperbolic. The latter assertion follows from the lemma. On the other hand, by [4, (10.30)] and by the hypothesis on B we have

$$[D(A,\sigma)_K] = [\lambda^m A] = m[A] = 0.$$

To prove the last part, we use the trace form T_{σ} defined as in Section 2,

$$T_{\sigma}(x) = \operatorname{Trd}_{A}(\sigma(x)x)$$
 for $x \in A$,

and its restrictions T_{σ}^+ , T_{σ}^- to $\mathrm{Sym}(A,\sigma)$ and $\mathrm{Skew}(A,\sigma)$ respectively. In the case of involutions of unitary type we have

$$T_{\sigma} = T_{\sigma}^{+} \perp T_{\sigma}^{-} = \langle 1, -\alpha \rangle T_{\sigma}^{+}.$$

The computation of the Clifford algebra of T_{σ}^+ in [4, (11.17)] shows that $T_{\sigma} \in I^3F$

$$e_3(T_\sigma) = (\alpha) \cup [D(A, \sigma)].$$

Now, for $g \in \text{Sim}(A, \sigma)$ the map $x \mapsto gx$ is a similitude of T_{σ} with multiplier $\mu(g)$, hence $\langle 1, -\mu(g) \rangle T_{\sigma} = 0$ in WF. Taking the image under e_4 yields

$$0 = (\mu(g)) \cup e_3(T_{\sigma}) = \theta_2(g) \cup (\alpha).$$

11. **Remarks.** (1) If ind A divides $\frac{1}{2} \deg A$, so that A carries a hyperbolic unitary involution σ_0 , then [4, (11.17)] and Lemma 9 yield

$$[D(A,\sigma)] = e_2(T_{\sigma}^+ - T_{\sigma_0}^+).$$

This observation underlines the analogy between θ_2 and the map θ_1 of Proposition 5. Note however that no hypothesis on the index of A is required in Proposition 10.

(2) For $g \in \text{Sim}(A, \sigma)$, the equation $\theta_2(g) \cup (\alpha) = 0$ implies that $\theta_2(g)$ lies in the image of the corestriction map $\text{cor}_{K/F} \colon H^3(K, \mu_2) \to H^3(F, \mu_2)$, by [4, (30.12)]. On the other hand, if the characteristic does not divide m, Corollary 1.18 of [8] yields an explicit element $\xi \in H^3(K, \mu_m^{\otimes 2})$ such that $\text{cor}_{K/F}(\xi) = \theta_2(g)$. In particular, if m is odd it follows that $\theta_2 = 0$.

The following explicit computation yields examples where $\theta_2 \neq 0$.

12. **Proposition.** Let ι be the nontrivial automorphism of K/F, and assume

$$(A, \sigma) = (B, \rho) \otimes_F (K, \iota)$$

for some central simple F-algebra with orthogonal involution (B, ρ) of degree n = 2m. Assume m is even. For $g \in GO^-(B, \rho)$ we have $g \otimes 1 \in Sim(A, \sigma)$ and

$$\theta_2(g \otimes 1) = (\alpha) \cup [B].$$

Proof. For $g \in GO^-(B, \rho)$,

$$\sigma(g \otimes 1)g \otimes 1 = \rho(g)g = \mu(g),$$

so $g \otimes 1 \in \text{Sim}(A, \sigma)$. By [4, (10.33)], we have

$$[D(A, \sigma)] = m[B] + (\alpha) \cup (\operatorname{disc} \rho).$$

Since m is even, the first term on the right side vanishes. The proposition follows by taking the cup-product with $(\mu(g))$, since $[B] = (\mu(g)) \cup (\operatorname{disc} \rho)$ by [9, Theorem A] (see also [4, (13.38)]).

Remark. If m is odd in Proposition 12, then the definition of θ_2 requires the extra hypothesis that B is split by K. Computation then shows that $\theta_2(g \otimes 1) = 0$ for all $g \in \text{GO}^-(B, \rho)$, as follows also from Remark 11.2 above.

13. Corollary. Let r be an arbitrary integer. Let H be a quaternion F-algebra, $\alpha \in F^{\times}$, $K = F[X]/(X^2 - \alpha)$, and let ι be the nontrivial automorphism of K/F. Assume

$$(-1) \cup [H] = 0 \text{ in } H^3(F, \mu_2)$$
 and $(\alpha) \cup [H] \neq 0 \text{ in } H^3(F, \mu_2).$

Let ρ be an orthogonal involution on $M_{2r}(H)$ which admits improper similitudes (see Lemma 1). Then $\mathbf{PSim}(M_{2r}(H) \otimes_F K, \rho \otimes \iota)$ is not R-trivial.

As in the previous section (see Corollary 8), alternative examples can be constructed from Proposition 2:

14. Corollary. Let (B, ρ) be a central simple algebra of degree 4 with orthogonal involution over a field F_0 . Assume B is not split and disc $\rho \neq 1$. Let $F = F_0(x)$ be the field of rational fractions in one indeterminate over F_0 , let $K = F(\sqrt{x})$ and let ι be the nontrivial automorphism of K/F. The group $\mathbf{PSim}(B \otimes_{F_0} K, \rho \otimes \iota)$ is not R-trivial.

Note that this corollary also follows from [7, Theorem 3].

References

- [1] G. Berhuy, M. Monsurrò, J.-P. Tignol, *The discriminant of a symplectic involution*. To appear in Pacific J. of Math.
- [2] J.-L. COLLIOT-THÉLÈNE, J.-J. SANSUC, La R-équivalence sur les tores. Ann. scient. Éc. Norm. Sup., 4^e série, ${\bf 10}$, 175–230 (1997).
- [3] P. GILLE, Examples of non-rational varieties of adjoint groups. J. Algebra 193, 728–747 (1997).
- [4] M.-A. KNUS, A.S. MERKURJEV, M. ROST, J.-P. TIGNOL, The Book of Involutions. Amer. Math. Soc. Coll. Pub. 44, AMS, Providence, RI, 1998.
- [5] D.W. Lewis, A note on trace forms and involutions of the first kind. Exposition. Math. 15, 265–272 (1997).
- [6] Y. Manin, Cubic forms. North-Holland, Amsterdam, 1974.
- [7] A. Merkurjev, R-equivalence and rationality problem for semisimple adjoint classical algebraic groups. Pub. Math. IHES 46, 189–213 (1996).
- [8] A. MERKURJEV, R. PARIMALA, J.-P. TIGNOL, Invariants of quasi-trivial tori and the Rost invariant. Preprint.
- [9] A. MERKURJEV, J.-P. TIGNOL, The multipliers of similitudes and the Brauer group of homogeneous varieties. J. reine angew. Math. 461, 13–47 (1995).
- [10] A. QUÉGUINER, Cohomological invariants of algebras with involution. J. Algebra 194, no 1, 299–330 (1997).
- [11] V.E. VOSKRESENKIĬ, A.A. KLYACHKO, Toroidal Fano varieties and root system. Math. USSR Izvestija 24, 221–244 (1985).

DÉPARTEMENT DE MATHÉMATIQUES, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, CH-1015 LAUSANNE, SWITZERLAND

 $E ext{-}mail\ address: gregory.berhuy@epfl.ch, marina.monsurro@epfl.ch}$

Institut de Mathématique Pure et Appliquée, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

E-mail address: tignol@math.ucl.ac.be