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Abstract

In ([CT]), Colliot-Théléne conjectures the following:

Let F' be a function field in one variable over a number field, with field
of constants k and G be a semisimple simply connected linear algebraic
group defined over F. Then the map H'(F,G) — [Tco, H'(F,,G) has
trivial kernel, 2; denoting the set of places of k.

The conjecture is true if G is of type 'A*, i.e., isomorphic to SL;(A)
for a central simple algebra A over F' of square free index, as pointed out
by Colliot-Thélene, being an immediate consequence of the theorems of
Merkurjev-Suslin ([S1]) and Kato ([K]). Gille ([G]) proves the conjecture
if G is defined over k and F = k(t), the rational function field in one
variable over k. We prove that the conjecture is true for groups G defined
over k of the types ?A*, By, Cn, D, (D4 nontrialitarian), G2 or Fy; a
group is said to be of type 2A*, if it is isomorphic to SU(B, T) for a central
simple algebra B of square free index over a quadratic extension k' of k
with a unitary &'|k involution 7.

1 Introduction

Let k be a number field and G a semisimple, simply connected linear algebraic
group defined over k. Then the Hasse principle holds for principal homogeneous
spaces for G over k, i.e., the natural map H'(k,G) — [l,ey, H' (ky,G) is
injective, Vi denoting the set of real places of k and for v € Vi, k, is the
completion of k with respect to v, (cf. [PR]).

Let X be a smooth, geometrically integral curve over a number field. Let
k(X)) be the function field of X, with field of constants k. Let Qj denote the set
of places of k and for v € Qy, let k,(X) denote the function field of the curve
X4, . Let G be a linear algebraic group defined over k(X). Let ITT* (k(X), G) be
the kernel of the map of pointed sets

H'(k(X),G) = [[ H'(ke(X),G).
vEQ

The following conjecture was made by Colliot-Théleéne ([CT]) in the 2-dimensional
context.



Conjecture: If G is a semisimple, simply connected linear algebraic group
defined over k(X), then ITT* (k(X), G) is trivial.

In the case when G is defined over k and X is P!, Gille [G] has shown that
I (k(X),G) is trivial. The fact that III'(k(X),G) is trivial, if G is of type
A, isomorphic to SLi(A) where A is a central simple algebra with square
free index, follows immediately from the theorems of Merkurjev-Suslin (cf. 2.1)
and Kato (cf. 2.3) and is known to experts for a long time. In this article
we study IIT'(k(X), @), for G defined over the number field k. We show that
this set is trivial if G is of type B, C, and D,, (D4 non-trialitarian). We also
prove that if G is of type 2A*, i.e., isomorphic to SU(B, ) where B is a central
simple algebra over a quadratic extension k" of k of square free index with a k’|k
involution 7, then ITT* (k(X), G) is trivial. We show from the structure theorems
of Cayley algebras and exceptional Jordan algebras due to Springer, that if G
is of type G or Fjy, then III' (k(X), G) is again trivial. The main ingredients in
the proofs of the theorems stated above are higher dimensional class field theory
results due to Kato (cf. [K]) and Jannsen (cf. [J]), results of Arason, Elman and
Jacob concerning Witt groups of function fields in one and two variables over
number fields (cf. [AEJ2], [AEJ3]), results of Merkurjev-Suslin on reduced norm
criterion in terms of cohomology (cf. [S1], §24), theorems of Merkurjev on norm
principle for algebraic groups (cf. [M2]) and results of Suresh on the structure
of mod 2 Galois cohomology in degree 3 (cf. [Su]). The original conjecture is
open for G defined over k(X); it is open even when G is defined over k.

2 Some known results

We record in this section several results which we shall use in this paper. The
first theorem is a result of Merkurjev and Suslin. It gives a criterion for an
element in a central division algebra over a field F, to be a reduced norm, in
terms of the Galois cohomology group H?3(E,Q/Z(2)).

Theorem 2.1 (Suslin, [S1], §24, Theorem.24.4). Let E be a field of charac-
teristic p > 0. Let D be a central division algebra of square free index n over
E, with n coprime to p. Then A € E* is a reduced norm from D if and only if
(AU (D) =0 in H3(B, u5?).

The next theorem is a norm principle due to Merkurjev for Spin groups. Let
A be a central simple algebra of degree 2n > 4 over a field F of characteristic
different from 2 and o be an orthogonal involution on A. Let h be a hermitian
form over (A4, c). We have an exact sequence of algebraic groups (cf. §4 and §5
for details),
1 — pg — Spin(h) — SU(h) — 1

which induces the cohomology exact sequence,

SU(h)(E) > E*/E*> — HY(E, Spin(h)) — H'(E, SU(h))



The map § is the spinor norm map and we abbreviate Sn(hg) = image of § in
E*/E*2. The norm principle of Merkurjev states:

Theorem 2.2 (Merkurjev, [M2], 6.2) With notation as above, the image of
the spinor norm homomorphism Sn(hg) is equal to the subgroup of E*]E*?
generated by the images of the norm groups Ny p(L*) over all finite extensions
L|E such that the algebra Ay, is split and the hermitian form hy, is isotropic.

We next state a theorem due to Kato. Let X be a proper smooth geomet-
rically integral curve defined over a number field k. Let F' be the function field
of X and F;, the function field of Xy, .

Theorem 2.3 (Kato, [K]) With notation as above and for any positive integer
n, the canonical map

H*(F,Z/n(2)) — ] H*(F.,Z/n(2))
vEQ

18 1njective.

The following theorem due to Jannsen is an analogue of Kato’s theorem for
surfaces.

Theorem 2.4 (Jannsen, ([J]) Let E be a function field in two variables over a
number field k, then the restriction map

HY(E,Q/Z(3)) — € H*(E.ky,Q/Z(3))

vEQ

18 1njective.

Theorem 2.4 is true if we replace Q/Z(3) by Z/27Z. This follows from the
above result of Jannsen and due to the surjectivity of the map K (E) —
H3(E,Z/2Z), where KM (E) is the Milnor K group, which is a consequence of
theorems of Merkurjev-Suslin ([MS]) and Rost.

For a field F we denote the mod 2 Galois cohomology ring H*(E,Z/2Z) by
H*(E). Let GW(E) = @,-, I["(E)/I""!(E) be the graded Witt ring of E. We
identify H!(E) with E*/E*? and for a € E*, we denote by (a) the corresponding
element in H!(E). Arason (cf. [A], Satz 4.8) has shown that the assignment
<l,—a; >® - -® < 1l,—a, > (a1)U---U(ay), for aj,---,a, € E* is a
well defined map e, from the set of n-fold Pfister forms to H™(E). The group
I"(E) is generated by n-fold Pfister forms. The Milnor conjecture says that for
every positive integer n, the maps e on the set of n-fold Pfister forms extend to
homomorphisms from I"(E) — H™(E), which are again denoted by e%, and the
induced maps €%, : I"(E)/I""1(E) — H"(E) are isomorphisms. Arason, Elman



and Jacob have proved Milnor conjecture for function fields in two variables over
a number field, (cf. [AEJ1], proposition 5.9 and [AEJ3], theorem 1.5). The deep
theorems of Merkurjev-Suslin and Rost (cf. [MS]) and Jacob-Rost (cf. [JR]) are
used in the proof. In particular, they prove the following:

Theorem 2.5 Let E be a field of transcendence degree at most 2 over a number
field. Then the map €}, induces an isomorphism of the graded Witt ring GW (E)
with the mod 2 Galois cohomology ring H*(E).

Finally, we shall state a theorem of Suresh which will be used in this paper.

Theorem 2.6 With the same notations as in (2.3), for any element & in H3(F)
and a ternary form < a,b,c > over F, there exists f € F* such that

1. f is a value of < a,b,c >
2. For every finite non-dyadic place v of k, &g, (7) = 0.

3. For every dyadic place v of k, such that —abc is a square in Fy, £p (/5) =
0.

For a proof, see [Su].

3 The cases of inner type A, and C),

Let D be a central division algebra of index n over a field £ with n co-
prime to the characteristic of E. We have an invariant (cf. [Se2]), for ele-
ments of H'(E, SL, p) with values in H3(E, u®?), defined as follows. The set
HY(E,SL, p) is in bijection with E*/Nrd(D*). Given A € E*, the invari-
ant associated with its class (\) € E*/Nrd(D*) in H3(E, u%?) is the element
(AN U(D).

Throughout this section, k denotes a number field and F' the function field of
a smooth geometrically integral curve X over k. Let 2, denote the set of places
of k and for v € Q, let F,, = k,(X) be the function field of the curve X, . Let
D be a central division algebra of square free index n over F'. Then the map
HY(F,SL, p) — H3(F,u2?) defined by this invariant is injective (cf. 2.1). By
a theorem of Kato, the map H?(F, u3?) — [[,cq, H>(Fy, p3?) is injective (cf.
2.3). Hence the map H*(F,SL, p) — [] HY(F,,SL, p) is injective. Thus,
we have,

vEQ

Proposition 3.1 Let k be a number field and X a smooth geometrically integral
curve over k. Let F = k(X)) be the function field of X. Let G = SLy, (D), with
D a central division algebra over F' with square free index. Then, H_Il(F, G) is
trivial.



For non zero elements a, b in a field E, with char E # 2, we denote by
(a, b)g, the quaternion algebra over E, generated by the elements i, j, with
i?=a, j2=>band ij = —ji.

We now consider linear algebraic groups of type C,,. Let D be a quaternion
division algebra over F' and 7y the standard involution on D. Let h be a her-
mitian form over (D, 7y) and G = Sp(h), the symplectic group of h. Then G is
a simply connected group of type C,,. The set H(F, Sp(h)) is in bijection with
the set of isomorphism classes of hermitian forms over (D, 1) of the same rank
as h. Given a hermitian form h' over (D, 1), there is an associated quadratic
form ¢ over F defined by ¢n/(y) = h'(y,y), for y in the underlying space which
supports h'. In fact, if b’ is represented by the diagonal matrix < A1, -+, A, >,
qn is represented by the matrix < A1,---, A\, > ®np, where np denotes the
norm form on the quaternion algebra D. By a theorem of Jacobson (cf. [S], pg.
352), two hermitian forms h and h’ are isomorphic over (D, 7y) if and only if g,
and gp+ are isomorphic as quadratic forms.

Let hy and hy be hermitian forms of the same rank as h, representing ele-
ments &; and & in HY(F, Sp(h)). Then gn, L (—qun,) is an element of I3(F). If
(&1)y = (&2), in HY(F,, Sp(h)), for every v € Q, then hy L (—hs) is hyperbolic
over F,, for all v € Q. This implies that the class of ¢n, L (—qn,) is equal
to zero in I3(F,), for all v € Q. By ([AEJ2], theorem 4), g5, L (—qp,) is
hyperbolic over F; i.e., hy & hy and & = & in HY(F, Sp(h)). Thus the map
HY(F,Sp(h)) — [Toeq, H'(Fy, Sp(h)) is injective. In particular, we have

Proposition 3.2 Let k be a number field and F' be the function field of a smooth
geometrically integral curve X over k. Let G be a simply connected group of type
C,, defined over k. Then T (F,G) is trivial.

Proof. We just need to remark that the only division algebras with involutions
of first kind over number fields are quaternion algebras (cf. [S], 10.2.3). O

4 The case of quadratic and hermitian forms

We continue with the same notation as in §2. The aim of this section is to prove
the following two theorems.

Theorem 4.1 Let q be a quadratic form of rank greater than or equal to 3, over
a number field k. Then III'(F, Spin(q)) is trivial.

Let K = k(v/d) be a quadratic field extension of k. Let FK = F(v/d) and
let 7 denote the non-trivial automorphism of F'K over F.

Theorem 4.2 Let h be a hermitian form over (FK, ), of rank at least 2. Then
I (F, SU(h)) is trivial.



We begin with the following

Proposition 4.3 Let q be a quadratic form of rank greater than or equal to 3,
over a number field k. The map

F*/F*Q /F*2
Sn(qr) H Sn(qF,,)

18 1njective.

Proof. case.l. rank(q) = 3 : For any A € F*, since Sn(\q) = Sn(q), after
scaling we may assume that ¢ =< 1,a,b >, for some a,b € k*. Let D =
(=a, =b)p. Then Sn(qr) = Nrd(D*) modulo squares. If a € F* is a local
spinor norm then « is a reduced norm from D locally and by (3.1), « is a
reduced norm from D and hence a spinor norm from ¢p.

case.2. rank(q) = 4 : Suppose disc(q) = 1. After scaling we assume that
g =< 1l,a,b,ab >. Then Sn(qr) =Nrd((—a, —b)}) modulo squares and the
proof follows as in case 1.

Suppose disc(q) = d. By scaling we may assume that ¢ =< 1,a,b,abd >.
We have Sn(qr) = Nrd((—a, =b)p/z) N F* modulo squares (cf. [KMRT],
15.11). Let a € F* be such that o € Sn(qp,), for every v € Q. Then «
is a reduced norm from (—a, _b)(F(\/E))wv for all w € Q5. By (3.1), a €
Nrd(—a, =b) p(yg) N F* = Sn(gr) modulo squares.

case.3. rank(q) = 5 : Let d = disc(q). Then the form ¢ L< —d > is a
six dimensional form over the number field k, which is indefinite and hence is
isotropic (cf. [S], 6.6.6). Thus, g represents d and after scaling, we may assume
that ¢ < d,1,a,b,ab >. Hence ¢ is a Pfister neighbour for the Pfister form
@1 =< 1l,a>® <1,b>® < 1,d > By the norm principle (cf. 2.2), spinor
norms for gqp are products of norms from finite extensions of F' where ¢ is
isotropic. As g is isotropic if and only (1) is hyperbolic, spinor norms for gp
are products of norms from finite extensions of F' where (q1)r is hyperbolic. Let
a € F* be a spinor norm locally for all v € Qy, for gr. Then for every v € Qy,
is a similarity factor for (q1)r, (cf. [L], Ch. 7, 4.5). Hence the form < 1, —a > ¢1
in I*(F) is zero in I*(F,), for every v € Q. As I*(F) — [loca, I*(F,) is
injective (cf. [AEJ2], theorem 4), we have < 1, —a > ¢ is zero in W(F), i.e.,
« is a similarity factor for ¢; over F. Hence « is represented by ¢ over F. As
¢1 is a Pfister form, « is a spinor norm of ¢; over F. By the norm principle (cf.
2.2), Sn(q1r) = Sn(qr) and hence « is a spinor norm of g over F.

case.4. rank(q) > 6 : We complete the proof by induction on rank(q). Let
q = q1 L g9, with rank(¢q1) = 5. Let disc(q1) = d. After scaling g, we assume
that ¢1 &< d,1,a,b,ab >, as in case.3. Let a € F* be a spinor norm locally for
qr. Let I(Y) = F(v/—a), with [ denoting the field of constants in F'(y/—a) and
Y a curve over [.



Let ¢ =< d,1,a,b >1 go. Since rank(q’) > 5, ¢’ is isotropic over [,, and
hence over [,,(Y'), for every finite place w of I. Let w be a real place, where ¢’
is definite. Since ¢’ represents 1, the elements a, b and hence ab are all positive
at [, and hence over k,, where v is the restriction of w to k. Since « is a spinor
norm of g over F,, a is a sum of squares in F, and hence in [,,(Y"). Since —« is
a square in l,,(Y), it follows that —1 is a sum of squares in [,,(Y), i.e., 1,,(Y") has
no ordering. This implies that cd(l,(Y)) < 1, (cf. [Sel]). Thus ¢’ is isotropic
over 1,,(Y). In particular, for each w € €}, every element of {,,(Y)* is a spinor
norm for (¢');, (vy- By induction hypothesis, Sn(q’) = {(Y)*/I(Y)*?. By the
norm principle (cf. 2.2), a being a norm from {(Y’), is a spinor norm for ¢’ and
hence for q. |

Remark 4.4 In the case of quadratic forms of rank 3 or 4, the proposition 4.3
holds more generally for forms over the function field F, i.e., if q is a quadratic
form over F of rank 3 or 4, then the map

* *2 * *2
FUE? o BE

Snlgr) 25 Snlar,)

is injective. The proof given in the proposition works as well in these cases.
Proof of theorem 4.1. We have an exact sequence of algebraic groups:

1 —— 2 —— Spin(q) SN SO(q) —— 1

which gives rise to an exact sequence of pointed sets:

SO(@)(F) —25 F*JF*2 5 H(F, Spin(q)) —— HY(F, SO(q)) ——s H2(F, ).

The map §° is induced by the spinor norm. The set H!(F,SO(q)) classifies
isomorphism classes of quadratic forms, with the same rank and discriminant as
q. For aclass [¢'] € HY(F,S0(q)), 6*([¢']) = ¢(¢' L (—q)), where c s the Clifford
invariant of (¢ L (—q)). Thus the image H'(F,Spin(q)) — H'(F,SO(q)),
consists of classes of quadratic forms ¢’ with the same rank, discriminant and
Clifford invariant as ¢; in particular, ¢’ L (—¢q) € I*(F). We have a commutative
diagram with exact rows:

* *2 60 .
L —— G » H'(F, Spin(q)) ———— H'(F, SO(q))

L | |

* *2 50 . n
1—TT,eq, % 2 Toeq, HY(Fu, Spin(ar,)) —= [yeq, H(Fy, SO(qr,))

Let &£ € HY(F, Spin(q)) be such that &, = 1, for all v € Q. The element
n(&€) corresponds to the class of a quadratic form ¢’ over F with ¢’ L (—q) €



I3(F). By the commutativity of the above diagram, (¢’ L (—q))F, is zero in
I3(F,), for all v € Q. By ([AEJ2], theorem 4), we have an injection I*(F) —
[Toeq, I’(Fy). Thus ¢’ L (—q) is equal to zero in I?(F). By Witt’s cancellation
theorem, ¢’ = ¢ and £ lies in the kernel of 7. Hence there exists a € F*, such
that §°([a]) = £. From the commutativity of the above diagram, it follows that
« is locally a spinor norm, for all v € Q. The theorem now follows from the
proposition 4.3. O

Recall that if E is a field of characteristic different from 2 and L is a
quadratic extension of E, with ¢ denoting the non trivial automorphism of
L over E, W(L|E, o) denotes the Witt group of o-hermitian forms. We have
a homomorphism of groups W(L|E,o) — W(E), given by associating to any
h € W(L|E, o), the quadratic form g, defined as g, (z,z) = h(z,z), for any =
in the space supporting h. This gives rise to the following exact sequence:

1 — W(L|E, o) — W(E) — W(L)

where the map W(E) — W(L) is given by scalar extension from F to L. In
fact if L = E(v/d), for some d € E*, then the image of W(L|E, o) in W(E) is
the subgroup W(E). < 1,—d >, (cf. [S], 10.1.3).

Proof of theorem 4.2. We have the following exact sequence of algebraic
groups
1 — SU(h) = U(h) = Rpgp(Gm) — 1

where for any extension L of F',
R}J’K\F(Gm)(l’) = (LK) ={z € (LK)" | Nrgip (z) =1},

As Nrd : U(h)(F) — (FK)*! is surjective, the above sequence gives rise to the
following exact sequence of pointed sets,

1 — HY(F,SU(h)) % HY(F,U(h)).

The set H(F,U(h)) classifies isomorphism classes of hermitian forms, with the
same rank as h. An element of H!(F,SU(h)) maps under 7 to the class of a
hermitian form with the same rank and discriminant as h. We have the following
commutative diagram,

11— HY(F,SU(h)) ———— HY(F,U(h))

1 1

1— [leq, H' (Fo, SU(R) =5 [T,eq, H'(F, U(R))

Let ¢ € HY(F,SU(h)) be locally trivial in H(F,,SU(h)), for every v € Q.
The element 7)(€) corresponds to the class of a hermitian form b’ over (FK, 1)
with rank and discriminant of h’ same as those of h. Moreover, (h L (=h'))F,
is the hyperbolic form locally, for every v € Q. The hermitian forms h and
I’ correspond to quadratic forms ¢, and g over F respectively such that the



rank, discriminant and Clifford invariants of g/ are the same as those of gy.
Hence the form g5 L (—gqn/) € I*(F). Further, the form g, L (—qu) is locally
zero in I3(F,), for every v € Q. By ([AEJ2], theorem 4), g5, L (—gp/) is zero in
I3(F). Hence h 2 I/ over (FK,7) and n(£) is trivial. Since kernel(n) is trivial,
£ is trivial. a

5 A classification theorem for hermitian forms
over division algebras with an orthogonal in-
volution

Let E be a field of characteristic different from 2 and L a quadratic field ex-
tension of E with o denoting the nontrivial automorphism of L over E. Let

U, (L, o) denote the unitary group of the hyperbolic form < _OI I(;L > over
(L,0). If h is a hermitian form over (L, o) of rank 2n, it defines an element &;, €
HY(E,Us,(L,0)). The set H'(E,SUs,(L,0)) injects into H'(E,Us,(L,0)),
the image consisting of hermitian forms over (L,o) of rank 2n and trivial
discriminant. Hence if h has trivial discriminant, &, defines an element in
HY(E,SUs,(L,0)). The Rost invariant of &, is the Arason invariant of the
quadratic form ¢, associated to h (see §4 and [BP2], §3); i.e., the Rost invariant
of an even rank hermitian form over (L, o), with trivial discriminant is the same
as the Arason invariant of the associated quadratic form in I3(E).

We next recall (cf. [BP2], §3) the Rost invariant associated to a hermitian
form over a central division algebra D over any field F, with an orthogonal
involution 7. Let h be a hermitian form over (D, 7). We denote by R}, the Rost
invariant on H'(E, Spin(h)) which takes values in H*(E,Q/Z(2)). Its values on

the subset gnéf};j C HY(E, Spin(h)) are given by [A] — (A)U(D), (cf. [KMRT],
831.B, pp. 437). If h is a hermitian form of rank 2n, trivial discriminant and

trivial Clifford invariant, the class of h defines an element in H'(E, Uy, (D, 7)),

I, 0
which admits a lift ¢ € H'(E, Spins, (D, 7)) under the composite map :

where Us, (D, 7) is the unitary group of the hyperbolic form ( 0 In ),

HY(E, Sping, (D, 1)) — HY(E, SUs, (D, 7)) — H(E, Uz, (D, 7))

The Rost invariant of h, denoted as R(h) is defined to be R(h) = [R(§)] €
H3(E,Q/Z(2))/H (E, u3) U (D), (cf. [BP2], §3). If D = E this invariant
coincides with the Arason invariant. We recall the following lemma, (cf. [BP2],
3.6).

Lemma 5.1 Let (D,7) be a central division algebra with an orthogonal in-
volution over a field E. Let h be a hermitian form over (D,T). Let & €



HY(E,Spin(h)) and h' the hermitian form over (D,T), associated to the im-
age of & in HY(E,U(h)). Then [Ry(£)] = R(W L (=h)) in

Let k be a number field. We denote by Vj, the set of real places of k.

Lemma 5.2 Let k be a number field and M a function field in two variables

over k. Then the map H"(M) — [y, H"(M.ky) is injective, for n >'5.

Proof. Let n > 5. Let £ € H"(M) be trivial in H"(M.k,), for every v € V.
As every real closure of M contains a real closure of k, by ([AEJ1], 2.2), £ is a
(—1)-torsion element in H™(M). We have the following exact sequence,

H"(M(v=1)) === H"(M)

l(_nu

H" (M (V=1)) ¢5g— H"H (M)

As k is a number field, ved(k) < 2 and hence ved(M) < 4and H™ (M (v/—-1)) =
for r > 5. In view of the above exact sequence, as n > 5, we have (—1) U
H"(M) — H"*1(M) is an isomorphism. As ¢ is (—1)-torsion in H"(M), £ is
zero in H™(M). a

We record the following lemma, which is a consequence of a theorem of
Jannsen (cf. 2.4) and a theorem of Arason-Elman-Jacob (cf. [AEJ1], 2.2).

Lemma 5.3 Let k be a number field and M a function field in two variables
over k. Then the map I*(M) — [[,ey, I*(M.ky) is injective.
Proof. Let g € I*(M) with gpsx, = 0 locally for all v € Q. Since €7, is well
defined (cf. [AEJ1], 1.2), we have the following commutative diagram for each
n:

In(M) E— HvEQk In(MkU)

n n
CM‘[ eMl

H" (M) —— [l eq, H"(M.ky)

In view of this commutative diagram, the remark following (2.4) and since €},
is an isomorphism (2.5), it follows that ¢ € I°(M). Since q is locally zero, using
the above commutative diagram for n = 5, we see that e3,(g) is locally trivial
in H®(M.k,), for every v € Q. By the preceding lemma (5.2), we have e3,(q)
is zero in H%(M). Hence q € I°(M). Repeating this argument, we get that
q € N,>5 1" (M) and hence is zero, by Arason-Pfister’s theorem (cf. [S], 4.5.6).
O
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Theorem 5.4 Let k be a number field and let F = k(X)) be the function field of
a smooth, geometrically integral curve X over k. Let D be a quaternion division
algebra over F', with an orthogonal involution o. Let hy and ho be two hermitian
forms over (D, o) with the same rank and discriminant. Suppose further that
c¢(hy L (=h2)) =0 and R(hy L (—h2)) = 0. Suppose hy and he are equivalent
over F,, for all v € Qy, then hi = hs.

Proof. Let L be a quadratic extension of F' contained in D such that o restricted
to L is identity. Let u € D* be such that o(p) = —p and Int(u) restricted to L
is the non-trivial automorphism 7y of L over F' (cf. [BP2], §3.2). The involution
7 = Int(u) o o on D, being symplectic is the canonical involution on D. Let
L =1(Y), where [ is the field of constants in L. For v € Qy, let F, = k,(X) be
the function field of the curve X3, and L, = L ®r F,. We have the following
commutative diagram with exact rows, (cf. [BP2], 3.2).

W(D,7) — " S W(L|F,7) — s W(D,0) — s W(L)

! ! ! l

Hveﬂk W(DFMT) 2) HveQL W(LU|FU7 TO) i) Hueﬂv W(DFU’U) E} HUte W(LU)

Let h = hy L (—hg). Then h has even rank, trivial discriminant, trivial
Clifford invariant and trivial Rost invariant. Further h is zero in W(Dp,, o), for
every v € Q. The element m3(h) € W(L) has even rank, trivial discriminant
and trivial Clifford invariant and hence belongs to I3(L). Further, m2(h) is
zero in W(L,,), for every w € Q;. By ([AEJ2], theorem 4), mz(h) is zero in
I*(L). Thus there exists hg € W(L|F, 7o) such that p(hg) = h. The rank
of hg is even. We show that the lift hy € W(L|F, 1) may be modified so
as to have trivial discriminant. Let o = disc(ho) € F*/Npp(L*). We have
c(p(hg)) = (L)U(a) € Br(F)/(D), (cf. [BP1], 3.2.3). Since ¢(p(ho)) = ¢(h) = 0,
we have (L) U (a) = 0 or (L) U (a) = (D) € Br(F). If (L) U (a) = 0, then
disc(hg) = 1. Suppose (L) U (a) = (D). Let L = F(y/a) so that D = (a, a)F.
The image of the form < 1 > W(D, ) under the map m; in W(L|F, 1), is
simply (< 1, —a >), which has discriminant a in F*/Npp(L*). Modifying hg
by 7m1(< 1 >), we may assume that disc(hg) = 1.

We now show that the lift hy of A may be modified to have trivial Rost
invariant. Let rank(hg) = 2n. Let SU(u"'y/aHs,,) be the special unitary
group with respect to the hermitian form p~=ty/aHs, over (D, o). The inclusion
SUs, (L|F,79) — SU(u='\/aHs,) gives rise to an injection SUs, (L|F, 7o) —
SUsz, (D, o) (by a choice of an isomorphism pu~'/aHa, = Ha, (cf. [BP2], pg.
671). This lifts to a homomorphism pg : SUs, (L|F,79) — Sping,(D,o). We
have the following commuting diagram:

& > Sping, (D, o)

SUgn(L|F, TO)



which yields a corresponding diagram:

PO

HY(F, SUs,,(L|F, 7)) > HY(F, Sping, (D, o))

; —

HY(F,Us,(D, o))

The map p at the level of Witt groups is induced by the map p, (for varying
n). Indeed for the hermitian form hg, R(ho) = Rspins, (D, (po(ho)), (cf. [BP2],
3.20). Since R(p(hg)) = R(h) = 0, there exists A € F*, such that R(hg) =
(M) U (D). The element, m1(< 1,—A >) has the associated quadratic form
< 1,—A > ®np, np denoting the norm form of D over F' and has Rost invariant
(AN) U (D). Modifying hg by m1(< 1,—X >), we may assume that R(hg) = 0.
Thus, the quadratic form associated to hg, qs,, defines an element in I*(F).

The image of 7 consists of hermitian forms f whose associated quadratic
forms ¢y, are multiples of np. Since h = p(ho) is locally trivial over F,, for
every v € i, hop, is in the image of 7, and hence gy, is a multiple of np over
F,, for every v € Q.

Let C be the conic defined by aX? + bX3 — 1 over F. Then F(C) is a 2
dimensional field over k and np is zero over F(C) (cf. [S], 5.2, (iv)). Hence
the class of g5, in I*(F,(C)) is zero, for all v € Q. The map I*(F(C)) —
[T,cq, I*(Fy(C)) being injective (cf. 5.3), gn, is zero in I*(F(C)) and hence is
a multiple of of np (cf. [S], 5.4, (iv)). It follows that hg is in the image of m
and hence p(hg) =h =0in W(D, o). O

6 Hasse principle for groups of type D,, (D4 non-
trialitarian)

Let (D,0) be a central simple algebra over a field E with an orthogonal in-
volution. Let L|E be an extension which splits D and let ¢ : (D,0) ® g L =
(M, (L), 74,) be a splitting with o ® 1 transported to the adjoint involution on
M, (L) corresponding to a quadratic form gg over L. The form qg is determined
upto a scalar. Let h be a hermitian form over (D,0) ® g L. Then by Morita
theory with respect to ¢, h is equivalent to a quadratic form g over L. The sim-
ilarity class of ¢ is uniquely determined by h and is independent of the choice
of ¢ and ¢g. The form h is isotropic if and only if ¢ is isotropic. In particular,
Sn(hr) = Sn(qr)-

Lemma 6.1 Let (D, o) be a quaternion algebra with an orthogonal involution
over a local field k. Let h be a hermitian form of rank 3 over (D,o) and o}, the
involution on M3(D), adjoint with respect to h. Suppose disc(op,) & k*2. Then
h is isotropic.
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Proof. Let 7 be the canonical symplectic involution on D. Let 0 = IntuoT, for
some u € D*, such that 7(u) = —u. The hermitian form h corresponds under
scaling by u, to a skew hermitian form h; with respect to 7 (cf. [BP1], §1.3).
The involution 74, on M3(D) adjoint with respect to hq, corresponds with oy,
Then det(hy) = disc(ty,) = disc(op) (cf. [KMRT], 7.2). By the hypothesis on
h, disc(oy) € k*?. Hence det(hy) is not in k*? and by ([S], 10.3.6), hy and hence
h is isotropic. O

Theorem 6.2 Let (D, o) be a quaternion division algebra over a number field
k with an orthogonal involution o and let h be a hermitian form over (D, o) of
rank at least 2. Let F' = k(X) be the function field of a smooth geometrically
integral curve X over k. For each v € Qy, let F,, be the function field of the
curve Xy, . Then the map

LA s T
Sn(hp) Q. Sn(th)

18 1njective.

Proof. Suppose rank(h) = 2. Let § = disc(h) € k*/k*?. The Clifford al-
gebra C' = C(My(D),,)), is a quaternion algebra over k(v/9) and Sn(hp) =
Nrd(CF(\/g)) N F* modulo squares, (cf. [KMRT], 15.11). Let A € F"* be a local
spinor norm for Ar. Then A is a reduced norm from C' ® g F,,, for every place
v of k and by (3.1), C being a quaternion algebra, A is a reduced norm from
Cr(vs) and belongs to Nrd(Cp( /5) N F* = Sn(hp) modulo squares.

Let rank(h) =n > 3. Let A € F* be a local spinor norm for Ax. Then A is a
reduced norm from Dp, (cf. 2.2 and 3.1). Let L be a quadratic extension of F'
such that Dy, is split and A = Ny p(u), for some o € L*. The element A is also a
norm from F(v/=X). By ([W], Lemma 2.13), there exists # € L(v/—\) such that
Npy=mr(0) = v2), for some v € F*. By (2.2), it suffices to show that every

element of L(y/—\)* modulo squares is contained in Sn(hp/=x)). We note that
for every ordering v of k where Dy, is split and hy, is definite, A € FJ being a
spinor norm of hf, is a sum of squares so that L(y/—\) .k, has no orderings.
In particular, if [ is the field of constants of L(v/—\) and L(v/=)\) = I(Y), YV
a curve over [, for any ordering w of | extending v, l,,(Y") has no ordering. We
rename | = k and ¥ = X and assume that D ®j k(X) is split and for every
ordering v of k where Dy, is split and hg, is definite, k,(X) has no orderings;
in particular, cd(k,(X)) < 1. We then show that every A € k(X)* is a spinor
norm for hyx). This is done by induction on rank(h).

Suppose rank(h) = 3. Let Sy be the set of real places of k such that Dy, is
split and hy, is indefinite. Let Sy be the set of dyadic places of k such that Dy,
is split and disc(oy,) € k2. Let Ss be the set of dyadic places of k such that
Dy, is not split and disc(oy,) € ki?. For v € Sy U S, hy, corresponds under
Morita equivalence to a quadratic form of rank 6 over k,,, which is isotropic. We
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choose a rank 1 subform < X3, > of hy,, such that under Morita equivalence,
< X3, > corresponds to the quadratic form < 1, —1 > over k,. For v € S; US>,
let < X1y, X2, > denote the orthogonal complement of < X3, > in hg,. For
v € S3, since Dy, is not split and disc(oy,) € k2, hy, is isotropic in view of 6.1.
We choose a rank 1 subform < X1, > of hy, such that < Xy, Stee Xon, Xay >
is hyperbolic. Using weak approximation, one can find a rank 1 subform < X; >
of h over k, such that for each v € S;1 U Sa U S5, < X7 >, =< X1, >. One can
choose a subform < X5 > in < X7 >+ such that < X5 >, =< Xa, >, for each
v € ST USUS3. Let < X1, X5 P X3 >. Clearly, < X3 >, =< X3, >, for
v € S1US3US3. Thus h =< X1, X5, X3 >. Since D is split over F', we choose an
isomorphism ¢ : (Dp,0) — (M2(F), T4, ), o being a rank 2 quadratic form over
F'. The isomorphism ¢ yields a Morita correspondence between hermitian forms
over Dp and quadratic forms over F. Let < X; >F correspond to < a’,b >
over F', < X5 >p correspond to < ¢’,d > over F' and < X3 >p correspond
to < €, f' > over F. Thus hp corresponds to the rank 6 quadratic form q =<
a' b,c,d e, f >. Since the spinor norm group is insensitive to scaling, we
replace ¢ by the form (a'd'd).q =< V', dd,a’t,d'a'Vc,ea't'd, fla’b/d >.
Renaming, we set ¢ =< —a,—b,ab,c,d,—cdd >, § = disc(q) = disc(op) €
k*/k*2. We note that the form < d,—cd§ >= a'b'c’ < ¢', f' >. We choose
g € F* such that g is a value of the quadratic form < ad,bd, —abd > and
such that for & = (A\) U (¢d) U (dd) € H*(F), &p, (g = 0, for every finite
nondyadic v € Q, and for every dyadic v € Q) where § € k2, (cf. 2.6). Set
a=gd € F*. Then « is a value of the quadratic form < a, b, —ab > over F'. The
form < —a, —b, ab > being isotropic over F(y/a), we have, ¢ =y < 1,—a >1<
—a >1< ¢,d,—cdd >, for some v € F*. Let ¢1 =< —a,c¢,d,—cdd >. Then
disc(q1) = g € F*/F*2. We claim that A is a spinor norm for ¢; locally, for
every v € Q. Over F(,/9), ¢ =< —6,c,d,—cdd > and the Clifford algebra
Clq1) = (cd,dd)p(yg)- For a finite v € Q such that v is nondyadic or v is
dyadic and § € kj?, over F,(/g), (\) UC(q1) = &p,(y5 = 0. As C(q1) is a
quaternion algebra over F,(y/g), A is a reduced norm from C(q:) and hence
[A] € Sn((q1)rF,), (cf. [KMRT], 15.11). For v € S; U Ss, by choice, the form
< d,—cdd >=d'bd <€, f >=dbd < X3, >=< 1,—1 > over F,. Hence
¢1 being isotropic over F,, A € Sn((q1)r,). For v € S5, over F,, a'b/d <
ab,c,d,—cdd > corresponds under Morita equivalence to < Xs,, X3, >. The
form < Xg,, X3, > being hyperbolic, < ab, ¢, d, —cdd > is hyperbolic and hence
< ¢,d,—cdé > is isotropic over F,. In particular, ¢; is isotropic and A €
Sn((q1)r,. For a real v € Q such that Dy, is split and hy, is equivalent to
a definite quadratic form, cd(k,(X)) < 1 and (¢1)x, being 4 dimensional is
isotropic. Hence A € Sn((q1)r,). Let v € Qi be a real place such that Dy, is
not split. We claim that (q1)p, is isotropic. Since every form of rank greater
than 1 over Dy, is isotropic, we have < X3, >=< —X3, >. As < X3, >
corresponds to the quadratic form < ¢’, f > over F,, we have 2 < ¢’, f' >= 0.
Since < d, —edd > a'b'd < €, f' >, we have < d, —cdd > is torsion in W(Fy,).
To show that (q1)p, is isotropic, it is enough to show that ¢; is isotropic over
F,(\/9). Over F,(\/9), q1 =< —0,¢,d,—cdd >= d(< 1,—cd > ® < 1,cd >).
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As < 1,—cd > is torsion, we have < 1,—cd > ® < 1,ed > is torsion over
Fy(\/9). As ved(F,(y/9)) < 1, I*(F,(,/g)) is torsion free. Hence ¢; is isotropic
over Fv(\/g_]) and hence over F,. Thus A is a spinor norm for ¢; over F,, for
every place v of k and hence by (4.4), A is a spinor norm for ¢; and hence for

h.

Suppose rank(h) = n > 4. Let Sy be the set of real places of k where Dy,
is split and hy, is isotropic. Let Sz be the set of finite places of k where Dy,
is not split. Let v € Sy. The form hy, being n dimensional, n > 4, is isotropic
over Dy . Let < o, > be a 1 dimensional subform of hj, such that < «, >+
is isotropic. Let v € S;. Since hy, is isotropic, choose a 1 dimensional subform,
< a, > of hy,, such that < «, > is isotropic. By weak approximation, one
may choose a 1 dimensional subform < a > of h such that < a >, =< a, >,
for v € S; U Sy. Let hy =< a >*. We claim that (h;)p, is isotropic over F,,
for every place v € Q. This is by choice for v € S; U Ss; in fact, (hy)g, itself is
isotropic. If v & S1USs, v real and Dy, is split, then hy, is definite, cd(F,) < 1
and (hi)r, being equivalent to a quadratic form of rank > 3, is isotropic. If
v € S1U Sy, v real and Dy, is not split, (h1)p, being of rank > 2 is isotropic.
If v € S;USo, v finite, Dy, being split, (h1)r, corresponds to a quadratic form
of rank at least 6 and hence is isotropic. Thus (h1)F, is isotropic and since
Dp, is split, Sn((h1)r,) = F;¥ modulo squares, for every v € Q. By induction,
Sn((h1)p) = F*/F*2. This completes the proof of the theorem. O

Corollary 6.3 With the same notation as in (6.2), let B be a central simple
algebra of degree 4 over k. If X € F* is such that A% is a reduced norm from
Bp,, for allv € Qy, then A\? is a reduced norm from Bp.

Proof. With notation as in [KMRT], there is an equivalence of categories
A3 = D3, (cf. [KMRT], 15.32). Under this equivalence, let the degree 4
algebra (B x B°P) over (k x k), with the switch involution, correspond to the
degree 6 algebra A over k with an orthogonal involution o, i.e., C(A,0) &
(B x B°?). We note that (A,0) = (M3(H), ), H a quaternion algebra over
k and h a rank 3 skew hermitian form over (H,7), 7 denoting the standard
involution of H. Further, Spin(A,o) = Spin(h). We denote the extension of
these algebras with involution to F by (Bp x By) and (Ap,o) respectively.
Then,

Sn(hp) = {p € F* | p* € Nrdg,(B}y) },modulo squares,

(cf. [KMRT], 15.34). Hence, the element A as in the statement of the corollary,
is locally a spinor norm for (Ap,, o), for every v € Q. By the above theorem
(6.2), A is a spinor norm for (Ap, o). By the description for the spinor norms
of (A, o) given above, A\? is a reduced norm for Br. This completes the proof
of the corollary. o

Remark 6.4 One does not know, even in the setting of the corollary, whether
local reduced norms are reduced norms from Bp.
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Theorem 6.5 With the same notation as in (6.2), let G be a semisimple simply
connected linear algebraic group defined over k, of type D,, (non-trialitarian).
Then the map
HY(F,.G)— [] H'(F..G)
veEQ

has trivial kernel.

Proof. We may assume without loss of generality that G is absolutely almost
simple. Hence G is isomorphic to Spin(h), where h is a hermitian form over
(D, o), for some central division algebra D with an orthogonal involution o over
k. Since D is 2 torsion, D is either a quaternion division algebra over k or
D =k. If D =k, then h is a quadratic form over k with rank(h) > 3 and the
theorem is proved in (4.1). So we may assume that D is a division algebra over
k. Let rank(h) = n. We have an exact sequence of linear algebraic groups,

1 — pg — Spin(h) — SU(h) — 1

which in turn gives rise to the following commutative diagram with exact rows:

SU(h)(F) ———— F*/F* —— H\(F, Spin(h)) —— H'(F, SU(h))

| ! ! !

HvEQk SU(h)(Fy) — Hyeﬂk FJ/FJQ — Hver H! (Fy, S’pin(h)) — Hver H! (Fva SU(h))

Let £ € HY(F, Spin(h)) be locally trivial in H'(F,, Spin(h)), for all v € Q.
Then under the composite map,

H'(F, Spin(h)) — HY(F,SU(h)) — H'(F,U(h))

the image of ¢ in H'(F,U(h)), defines a hermitian form h’ which has the same
rank and discriminant as h and further ¢(h’ L (—h)) = 0. Let Sping,(D,0)
and Us, (D, o) denote respectively the spin and unitary groups of the hyper-
bolic form ( f}n I(;L > . Let ¢ € HY(F, Sping, (D, o)) be a lift of b’ L (—h)
in HY(F,Uz,(D,0)). Then R(¢') = Rp(€), where Ry : H(F,Spin(h)) —
H3(F,Q/Z(2)) is the Rost invariant map (cf. 5.1). Since ¢ is locally triv-
ial, Rn(¢) € H3(F,Q/Z(2)) is locally trivial. Since D is a quaternion al-
gebra, Rp(€) in fact belongs to H?(F,Z/4AZ) and the map H3(F,Z/4Z) —
[loeq, H*(Fy, Z/AZ) is injective (cf. 2.3). Hence Ry (€) is trivial in H*(F,Z/4AZ).
Hence by the classification theorem (cf. 5.4), h = h' and the image of £
in HY(F,U(h)) is trivial. Let n be the image of ¢ in H'(F,SU(h)). Since
the nontrivial element in H'(F, SU(h)) which maps to the trivial element in
HY(F,U(R)) is not in the image of H!(F, Spin(h)) (cf. [BP2], 7.11), it follows
that 7 is trivial and hence in view of the exact sequence above, £ comes from an

*

element é € % By the commutative diagram above, 5 is locally trivial
and by (6.2), € and hence ¢ is trivial. |
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7 Rost invariant for special unitary groups

Let E be a field of characteristic different from 2 and L a quadratic field ex-
tension of E. Let (D, ) be a quaternion division algebra over L with a unitary
L|FE involution. Let Dy C D be a quaternion division algebra over F such that
D = Dgy.L and 7 restricted to Dg is the canonical symplectic involution on
Dy. For a hermitian form h over (D, 7), we denote the unitary and the special
unitary group with respect to h by U(h) and SU(h) respectively. We have the
following exact sequence of algebraic groups,

1 — SU(h) = U(h) = Rp p(Gm) — 1
which gives rise to the following exact sequence in Galois cohomology,

Uh)(E) " L % HY(E, SU(h)) — H'(E,U(h)) (%)
The next proposition computes the Rost invariant on the image of §. The
proposition is also a consequence of ([MPT], theorem 1.9) (see Appendix).

Proposition 7.1 With the notation as above, for p € L*', R(6(p)) = Npjp(v)U
(Do) € H3(E,Q/Z(2)), where v € L* is such that p = v~ 7(v).

Proof. The element Ny g(v) U (Do) is well defined with respect to j, since for
any A € E*, Npp(v) U (Do) = Npjp(A\v) U (Do) in H*(E,Q/Z(2)). Let X,, be
the torsor corresponding to 6(u). Let E(X,) denote the function field of X,.
Rost has shown (cf. [G1], §2.3, theorem 1) that the kernel K, of the map

H(E,Q/Z(2)) = H*(E(X,),Q/Z(2)),

is a finite cyclic group generated by R(6(u)). We claim that R(6(x)) has order
at most 2. We choose a quadratic extension field M of E such that Dy,, is split.
Set ML = M®pgL. Then Dy, is split and Nrd : U(h)(M) — (M L)*! is surjec-
tive. Hence res(R(5(w))) is trivial in H3(M,Q/Z(2)) and cores(res(R(6(1)))) =
2. R(6(p)) = 0.

As the torsor X, has a rational point over the field E(X,), 0(u) is trivial
in H'(E(X,),SU(h)). Hence p € Nrd(U(h)(E(X,))) and by (cf. [KMRT], pg.
202), p = 67" 7(6), for some § € Nrd(Dg(x,)). Thus, N jp(v) U (Dog(x,)) =
Nigy E(X,) ‘E(X“)(H)U(DOE(X“)) in HS(E(XH), Q/Z(Z)) Since 6 € Nrd(DE(X,L)
by the norm principle (2.2), Nrg, p(x,)|E(x,)(#) € Nrd(Dop(x,)). Hence
Nps(v)U(Dog(x,)) = 0in H*(E(X,), Q/Z(2)) and Ny g(v)U(Do) € K,,. Since
K, is generated by R(6(p)), Npjg(v) U (Do) = R(6(p)) or Npjg(v) U (Do) = 0.
Suppose Ny g(v) U (Do) = 0. Then there exists a quadratic extension P of
E, such that Dy is split over P and Ny g(v) = Npjg(a), for some a € P*.
Set PL = P®p L. By (cf. [W], lemma 2.13), there exist 8 € (PL)* and
0 € E*, such that Npp,1(8) = v.0. As D is split over PL, by the norm prin-
ciple, (2.2), v.d € Nrd(D). As u = (v.6)"17(v.§), by (cf. [KMRT], pg. 202),

~—
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p € Nrd(U(h)(E)), §(u) is trivial and R(6(p)) = 0. Hence if p € L*! is not
in Nrd(U(h)(E)), then Npg(v) U (Dg) is not zero and hence coincides with
R(6(p)). Thus in either case, Ny gp(v) U (Do) = R(6(v)). O
Let Uay, (Dy, 79) denote the unitary group of the hyperbolic form ( IO Ig )

n
over (Dg,79). We denote the unitary group and the special unitary group with

respect to the hyperbolic form < IO Ig by Uan(D,7) and SUs,(D,T) re-

spectively. We have a natural inclusion Us, (Do, 79) < Usn(D, 7). Since 79 is
symplectic, the reduced norm of an element in Us, (Dy, 7o) has reduced norm 1
and we have the following diagram

Uzn (Do, 70) » SUsy (D, T)
U2n

which induces the following commutative diagram

(E Ugn Do,’ro E SUQTL(D T))

\/

YE,Usn (D, 7))

Proposition 7.2 With the notation as above, if [h] € H'(E,U(Dy, o)) then
R(h) = R(po(h))-

Proof. By (cf. [KMRT], pg. 436), there exists an integer n,, such that
np, R(h) = R(po(h)). We show that n,, = 1. Let X = Rpp(Xp) where
Xp is the Brauer Severi variety of D over L. Let M = E(X)(Xy, -, Xay).
Then Dy, is not split, since Br(E) — Br(E(X)) is injective, (cf. [MT], corol-
lary 2.12) and Dgyyz, = Dy is split. Let L = E(v/d). Then Doy = (a,d)yr, for
some a € M*. Let i, j € Dy, be such that i = a, j? = d, ij = —ji. We have
the splitting ¢ : Dops @ ML = My(ML), defined by,

. 0 1 . vVd 0
sion=(0 ). suen=(Y ).
An explicit computation shows that ¢ o7y, 0 ¢~ 1 = Int(qy) o T, where
(e v\ (@) )
z w )\ 71(y) 7(w)
and ¢ =< 1,—a >. Under Morita equivalence, through ¢, every rt-hermitian
form over (Djrr,7) corresponds to a M L|M hermitian form. The (Dysp,7)
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hermitian form h =< Xy, -, X, > corresponds to an M L|M hermitian form
represented by < Xi,---, X2, > ® < 1, —a >, whose Rost invariant is

(=)™ Xy. .-+ Xo,) U(a) U (d) = Pf(h) U (Dops) # 0, where Pf(h) is the
Pfaffian norm of h (cf. [KMRT], pg. 19). Since R(h) = Pf(h) U (Dy) (cf.
[KMRT], pg. 440), it follows that n,, = 1. 0

8 Classification theorems for hermitian forms
over quaternion division algebras with a uni-
tary involution

Let K = k(v/d) be a quadratic field extension of a field k of characteristic
different from 2 and (D, 7) be a quaternion algebra over K with a K|k involution
7. Let Dy C D be a quaternion k algebra such that 7 restricted to Dy is g, the
canonical involution of Dy and D = Dy K. We have D = Dy & Dyv/d. For any
hermitian form h over (D, 1), let

h(m?y) = h1<.’ll,y) + hg(l’,y)\/a, hz(mvy) € DOa for i = 1a 2.

Since 7(h(y,2)) = h(z,y) and 7(vV/d) = —V/d, it follows that 7o(h1(y,2)) =
hi(z,y) and 79(h2(y,x)) = —ha(z,y). Thus hy is a hermitian form over (Dg, 79)
and hg is a skew-hermitian form over (Dg, 7). Let pi(h) = hy and pa(h) = hs.
Clearly p;(h L ') = p;(h) L p;(h') for i = 1, 2. Suppose that h is hyperbolic.
Let W be a totally isotropic subspace of h, then W is also a totally isotropic
subspace for p;(h), for ¢ =1, 2. Thus we have homomorphisms

p1: W(D,7) — W(Dg, o)

and
p2: W(D,7) — W~ (Do, 10).

Let p : W(Dg,m9) — W(D,7) be the homomorphism defined as follows: Let
f be a hermitian form over Dy and Vj its underlying Dy vector space. Let
V =V, ® K and write V =V, @ VpVd. Define

P @181V, 220y2Vd) = f(x1,22)+ f(w1, y2)Vd— f(yr, 22)Vd— f(y1,y2)d.

It is easy to check that p is a well defined homomorphism. We also have
homomorphisms m; : W(K) — W(k), for i = 1,2, defined as follows. For
any quadratic form ¢ over K, write q(z,y) = qi(z,y) + ¢2(z,y)Vd, where,
gi(xz,y) € k, for i = 1,2. Then ¢; and ¢ are quadratic forms over k and
7i(q) = qi, for i = 1,2. Let 771 be the composition W(K) = W (k) — W (Dg, 10),
where the map W (k) — W (Dy, 79) is induced by base change.
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Proposition 8.1 (Suresh) The following sequence:
W (K) ™ W (Do, 70) £ W(D,7) 5 W~ (Do, 70) (+)
15 exact.

Proof. Let f be a hermitian form over Dy and Vj its underlying Dy-vector
space. Then the underlying vector space for pap(f) is Vo @ik K = Vo @ Vovd and
pap(f)(x1 ®@y1Vd, 22 Dy2Vd) = f(21,y2) — f(y1,22). Thus the space W = {z®
0|z € Vp} is a totally isotropic subspace for pap(f) and W+ = W. Therefore
p2p(f) = 0. Let h be an anisotropic hermitian form over D such that py(h) = 0.
In particular, there exists a vector x # 0 such that pa(h)(x,x) = ho(x,x) = 0.
This implies that h(z,z) = hi(z,z) = o € k. Since h is anisotropic a # 0.
Therefore we can write h =< a >_L h'. Tt is easy to see that p(< a >) =< a >
and induction on the rank of h, yields the exactness at W (D, ). We next show
that p7; = 0. For = a + bvd € K*, with a, b € k*, 71(< 6 >) € W(Do, 7o)
a bd
bd ad
form < a,adNg;(0) >. The form p7(< 0 >) € W(D, ), is also represented
by the form < a, adNg () >. Since < 1,dNg () > is equivalent to < 1, —1 >
over (D, 1), p71(< 6 >) =0. Thus p7; = 0. Suppose (Vp, h) is an anisotropic
hermitian form over (Dg,7p) such that p(h) = 0. Then there exists a vector
x1 4+ y1Vd # 0 € Vo @ Vp/d such that p(h)(z1 + nVd, 1 + ylﬂ) = 0. Then
h(z1,21) = h(y1,y1)d and h(z1,y1) = h(y1,21). Set a = h(y1,y1) and bd =
h(x1,11). Then 71(< a + bv/d >) is represented by the matrix ( b(ii Zé ),
which is the matrix representing h restricted to the subspace of Vj spanned by
(21,y1). The proof of the proposition now follows by induction on the rank of
h. a

Let K = k(v/d) be a quadratic field extension of a field k of characteristic
different from 2 and let D be a central division algebra over K with an involution
7 of second kind over K|k. Let SUs, (D, T) be the special unitary group with
o I,
I, 0
form over (D, 7) of even rank 2n and trivial discriminant. Then there exists
¢ € HY(k,SUs,(D, 7)), such that the image of ¢ in H*(k,Us,(D, 7)) is the
class of h. We say that the Rost invariant R(h) of h is zero, if there exists a
¢ € HY(k,SUs, (D, 7)) lifting the class of h and such that R(§) = 0, where R(€)
is the Rost invariant associated to &.

is represented by the matrix < >, which is equivalent to the diagonal

respect to the hyperbolic form Hs, = Let h be a hermitian

Lemma 8.2 Let K be a field such that ved(K) = n. For any field exten-
sion E of K, with [E : K| < 2 assume that the maps &, : I"(E)/I"TY(E) —
H"(E) are well defined isomorphisms for all r > 0. Then the map I"*1(K) —
C(Xg,2"M17Z) is surjective, X denoting the space of orderings of K.

Proof. Let ¢ € C(Xk,2"1Z). By ([S], 3.6.1), there exists a quadratic form
qg € W(K), such that sgn(q) = 2™ ¢, for some m > 0. Multiplying ¢ by
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< 1,1 >®s if necessary, we may assume that ¢ € I""}(K). Suppose m > 0.
We have the following commutative diagram:

sgn

UK Y O(X, 207
| ént1 | mod2"+?

HU(K) " ok, 2)22)

where h,41 is as defined in (cf. [AEJ1], remark following theorem 2.3). Since
m > 0, the signature of ¢ modulo 2”2 is zero. We have an exact sequence in
Galois cohomology,

H(K(V=T)) “2s* 17 (K) "SY B+ (K) - H Y (K (V=1)).

Since ved(K) < n, H(K(y/~=1)) = 0, for r > n + 1, so that U(—1) is an
isomorphism. Thus H"*1(K) is (—1)-torsion free. By ([AEJ1], 2.2 and 2.3),
hn+1 is injective. Since hyy1(ent1(q)) = 0, ent1(q) = 0. Since €,7 is an iso-
morphism, ¢ € I"2(K). Since the map I"!(K) <L 2K is surjective
(cf.[AEJ1], pg. 22, remark following 1.16), there exists ¢g; € I"T(K), such that
[< 1,1 > ®q¢] = [q]. We have sgn(q;) = 2™ 1¢. Repeating the process, we
arrive at ¢ € I"T1(K) with sgn(q) = ¢. O

We have the following classification theorem for hermitian forms.

Theorem 8.3 Let K = k:(\/a) be a quadratic extension of a number field k. Let
kE(X) be the function field of a smooth geometrically integral curve X over k and
K(X) =K ® k(X). Let (D,7) be a quaternion division algebra over K(X),
with a K(X)|k(X) unitary involution 7. Let hy and hy be hermitian forms over
(D, 7) which have the same rank, discriminant and such that R(hy L (—hg)) =
0. Suppose further that hy and he are equivalent over k,(X), for every v € Q.
Then hl = hg.

Proof. Let h = hy L (—hy). Let Dy = (a,b)ix) C D be a quaternion algebra
over k(X), such that D = Dy .K(X) and 7 restricted to Dg is 79, 7o denoting
the canonical involution on Dy. Let C be the conic, aX? + bX2 — 1 = 0.
The algebra D ®(x) k(X)(C) is split and the hermitian form h over Dy x)(c)
corresponds by Morita equivalence to a hermitian form over K (X)(C)|k(X)(C),
which in turn corresponds to a quadratic form g(h) over k(X)(C), of even rank,
trivial discriminant and trivial Clifford and Rost invariants. Hence [¢(h)] €
I*(k(X)(C)). Further, [g(h)] is zero in W (k,(X)(C)), for every v € Qi. By
(5.3), I*(k(X)(C)) — [loea, I*(k,(X)(C)) is injective. Hence h is zero in
W(Dy(x)(c), 7). We have the following commutative diagram:

W (D, ) L W=Dy, 10)
! !
W(Dx(x)(c),T) = W_I(DOI«(X>(C>’TO)

with the second vertical map injective by (cf. [PSS]), so that pa(h) is zero in
W=1(Dy, ). Hence by 8.1, there exists i’ € W (Do, 10), such that p(h') = h.
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We show that A’ can be chosen to have trivial Pfaffian norm (cf. [KMRT],
pg. 19). Since R(h) = 0, there exists a lift £ € H(k(X), SUz,(D, 7)) of h
such that R(£) = 0. Since po(R') is also a lift of h in H'(k(X), SUa,(D, 7)),
by (cf. [KMRT], pg. 387, last paragraph), there exists u € K(X)*! such
that po(h')gz = 0(p), where & is a cocycle representing the cohomology class §
and ¢ is the connecting map in (x) for the groups (SUszn(h))g and (Uzn(h))g.
By (cf. (Gl §2.3, lemma 7), R(po(h');) = R(po(W)) + R(€). As R() = 0
we have, R(6(u)) = R(po(R')). By (7.2), R(po(h') = Pf(h') U (Dg). Let
p=v=t7(v), for some v € K(X)*. Then by (7.1), R(6(11)) = N (x) jk(x)(¥) U
(Do) = Pf(h') U (Dg). Hence Pf(h') = Ng(x)rx)¥). Nrd(z), for some
x € Dg. If b =< A1,--+, X2, >, then replacing h’ by the equivalent form
< A ar(z), -, Ao >, we assume that Pf(h') = Ng(x)|k(x)(v). Now replac-
ing A’ by the form h' 1< 1, =Nk (x)r(x) (V) >, we assume that P f(h') is trivial,
noting that p(< 1, =N (x) |k(x)(¥) >) = 0in W(D, 7).

We have, W (Do, 79) = W(k(X)).np,, under the map f — ¢y, where gs(x,x) =
f(z,z) and np, denotes the norm form of Dy, (cf. §3). If f X< Ay,---, A, >€
W (Dg, o) then gf =< A,---, A\, > Qnp,. Weset Qp =< A1,---, A, > as an
element of W (k(X)). We note that for f € W(Dy, 1), Pf(f) = disc(Qy).

As Pf(h') = 1, we have Qs € I*(k(X)). We claim that A’ is in the image
of 771'1.

Consider the exact sequence (%) locally, for a real place v of k such that
K, = K ® k, is a proper quadratic extension of k,. Since p((h'),(x)) = 0,
there exists f, € W(K,(X)) such that [(h'),(x)] = [T1(f,)]. Hence [gn] =
[(@n © 1Dy k0] = [T1(F) @ i) Since cd(K, (X)) < 1, Br(K, (X)) = 0,
so that Doy, (x) is split. Hence m1(fy) @ np, = m(fo ® nDOKU(X)) =0. In
particular, (h')x, (x) = 0. Consider a real place v of k, such that K, = K @k, is
isomorphic to K,,, x K,,, where w; and wg are two orderings of K, extending
the ordering v of k. Then the map I?(K,(X)) = I?(k,(X)) is surjective, so
that there exists f, € I?(K,(X)), such that m(f,) = (Qn )k, (x)- Let f, =
(fuwss fws). We define a continuous function ¢ on X'k (x), as follows. The space
Xk (x) is the union of open and closed sets X (x), w varying over the real
orderings of K. For an ordering w of K lying over an ordering v of k, we set
bw = sgnw(fo @ (np,)K,(x)). Since f, € I*(Ky(X)), ¢uw € C(Xk, (x), 16Z),
for every w € Xk, (x). By (8.2), there exists a quadratic form ¢, € I*(K (X)),
such that sgn,(g2) = ¢. We claim that g2 is a multiple of np,. Consider the
following commutative diagram:

I%K}X)) 9 I%K(f)(cn
HweXK I4(Kw(X)) - HweXK I4(Kw(X)(C))

If w is a finite place of K, I*(K, (X)) is zero, so that, (ic(g2))w is zero. Let

w be a real place of K. Since sgn.,(q2) = sgnw(fuw ® np,), g2 is Witt equiva-
lent to f, ® np,, since the signature is the only invariant for quadratic forms
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in I*(K,(X)). Hence g is split over K, (X)(C) and the element ic(g2) €
I*(K(X)(C)) is locally zero, for every w € Xx. By (5.3), ic(q2) = 0. Hence
g2 = q3 @ np,, for some g3 € W(K(X)). Clearly, gs is even dimensional. Since
@ = q3@np, € IYK(X)) and (q3 1< 1,—disc(q3) >) ® np, € I*(K(X)),
< 1,—disc(q3) > ®@np, € I*(K(X)) and being of rank 8 is zero. Replacing g3
by g3 L< 1,—(disc(qz)) > if necessary, we assume that ¢z € I*(K(X)). We
have,
SgTy (ﬁl (q3)) = SgTy (7Tl (%) X nDO)

= sgnu(mi(gs ® np,))

= sgny (1 (q2))

= sgny(m1(fo ® np,))

= 5gn,((Qn )k, (x) ® 1D, )-

Hence the form gn L (—qz,(g5)) € I*(K(X)) is torsion. Since I*(K(X)) is
torsion free (cf. [AEJ2|, cor.3), qnr L (—qx,(qg)) is equivalent to zero. Hence
R =71(g3) and p(h') = h is zero in W (D, 7). O

9 A classification theorem for hermitian forms
over division algebras of odd degree with a
unitary involution

Let k£ be a number field and X a smooth geometrically integral curve over k.
Let k(X) be the function field of X and for v € Q, let k,(X) denote the
function field of the curve Xy, . Let K be a quadratic field extension of k& and
K(X) = K ® k(X) and for v € Qp, let K,(X) = K ® ky(X). Let (D,7)
denote a central division algebra of odd degree over K (X) with a K(X)|k(X)
unitary involution 7. We prove the following classification theorem:

Theorem 9.1 Let the notation be as in the previous paragraph. Let hi and ho
in W (D, 1) be hermitian forms of the same rank and discriminant and such that
hi = ho, locally over k,(X), for every v € Q. Then hy = hy over k(X).

Proof. Let h = hy L (—hg). Then h has even rank, trivial discriminant and is
locally zero in W(Dg, (x),7). Let L be an odd degree field extension of k(X)
such that Drg, , r(x) is split, (cf. [BP1], 3.3.1). Let L =I(Y), where [ is the
field of constants of L. By Morita equivalence h corresponds to a hermitian form
over L ®j(x) K(X)|L and hence to a quadratic form g(h) over L. Moreover,
q(h) has even rank, trivial discriminant, trivial Clifford invariant and is locally
zero in W (l,,(Y)), for every w € Q;. Hence q(h) € I*(I(Y)) and is locally zero in
(1, (Y)), for every w € Q;. By ([AEJ2], theorem 4), q(h) is zero in W (I(Y)).
As L is an odd degree extension of k(X), by ([BL], theorem 2.1), h is zero in
W (D, 7). Hence hy = hs. a
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10 Hasse principle for some groups of type %4,

We begin with a result on the Hasse principle for special unitary groups of
hermitian forms over quaternion algebras with unitary involutions.

Theorem 10.1 Let (D, 7) be a quaternion division algebra over a number field
K, with a K|k unitary involution 7. Let X be a smooth geometrically integral
curve over k. Let k(X) be the function field of X and for each v € Q, let k,(X)
be the function field of the curve Xy, . Let K(X) = K®ik(X) and forv € Qy, let
K,(X) = K®ky(X). Let h be a hermitian form over (D, 7). Let SU(h) denote
the special unitary group of h. Then the natural map H(k(X),SU(h)) —
[Toeq, H' (ku(X),SU(h)) has trivial kernel.

Proof. Let £ € HY(k(X),SU(h)) be such that ¢ is locally trivial in
HY(k,(X),SU(h)), for every v € Q. Under the map H!(k(X),SU(h)) —
HY(k(X),U(h)), let £ map to the hermitian form h’. Then the hermitian form
R" L (—h) has even rank, trivial discriminant and is locally trivial. We claim
that the Rost invariant, R(h' L (—h)) is trivial. We first note that as & is
locally trivial, R(€) is locally trivial in H3(k,(X),Q/Z(2)) for every v € Q.
Hence R(&) is zero in H?(k(X),Q/Z(2)), by (2.3). We now consider the map
SU(h) — SU(h L (—h)), given by, f + (f,1). This gives rise to a map from
HY(F,SU(h)) - H'(F,SU(h L (=h))), and the image of ¢ under this map
corresponds to the hermitian form b’ 1 —h in H'(k(X),U(h L —h)). By (cf.
[KMRT], pg. 436), there exists an integer n;, such that n;R(¢) = R(i(§)). By
going over to a suitable field extension of k, where D is split and the Rost
invariant is computed, we see that n, = 1. Hence R(i(£)) = 0 and in particular,
R(h' L (—h)) = 0. Since b’ L (—h) is a hermitian form of even rank, trivial
discriminant, trivial Rost invariant and is locally trivial, by (8.3), we have h' = h
in W(D, 7). We have the following exact sequence of algebraic groups,

1 — SU(h) = U(h) — R}((X)UC(X)(GW) — 1
The above sequence gives rise to the following cohomology exact sequence,
U(h)(k(X)) 5 K*' — H'(k(X), SU(h)) — H' (k(X), U (h)).

Since £ maps to the trivial element in H'(k(X), U (h)), there exists v € K(X)*!
such that under the connecting map K(X)*' — H(k(X),SU(h)), the image
of v is €. Since £ is locally trivial, we have v € Nrd(U(h)(k,(X))) for every
v € Q. We show that the natural map

K(X)™'/ Nrd(U(h) — [T KX/ Nrd(U(h)(k.(X)))
veEQ

is an injection. By (cf. [KMRT], pg. 202), we have,

Nrd(U(h)(k(X))) {z7(2 ) | z€ Nrd(D)}

= Nrd(Us(D,7)(k(X))),
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where Us(D, ) is the unitary group of the hyperbolic form ( (1) (1) >, in di-

mension 2. We have the following commutative diagram,

1— K(X)*'/ Nrd(U(h)(k(X))) ——— HY(k(X), SUz(D, 1))

1 ! (4 %)

1= Iloeq, Ko(X)™/ Nrd(U(h) (ko (X)) — Il,eq, H' (ko(X), SU2(D, 7))
Thus, to complete the proof of the theorem, we show that the natural map

H'(k(X),SUs(D,7)) — [[ H'(ko(X),SU(D, 7))
vEQ

has trivial kernel.

Let D = Dy .K with the restriction of 7 to Dy being the canonical involution
on Dy. By (cf. [KMRT], 15.35 and 15.36), we have SUs(D, 7) = Spin(q), where
q=<1,—d >1 np,, where K = k(v/d) and np, denotes the norm form on the
quaternion algebra Dy. Hence there is a bijection

i H'(k(X), SUy(D, 7)) = H'(k(X), Spin(q))

and by (cf. 4.1), H'(k(X), Spin(q)) — [l,eq, H' (ks(X), Spin(q)) has triv-
ial kernel and hence H'(k(X), SUx(D, 7)) = [lyeq, H' (ko(X), SUa(D, 7)) has
trivial kernel. In particular, in diagram (x x x), the left vertical map is injective.
This completes the proof of the theorem. a

The following proposition will be used in the proof of (10.4).

Proposition 10.2 Let L be a quadratic field extension of a field E of charac-
teristic not 2. Let (A,0) be a central division algebra over L of even degree,
with a L|E unitary involution. Let h be a hermitian form over (A,c). Then for
any field extension M of E, we have,

NygprL(Nrd(U(h)(M))) € Nrd(U(h)(E)).

Proof. Set ML = M ®@g L. Let ¢r g and ¢ppp denote the non trivial
automorphisms of L over E and ML over M respectively. By (cf. [KMRT],
pg. 202), Nrd(U(h)(M)) = {zénpm(2)”" | 2 € Nrd(Dar)}. Let z €
Nypo(Nrd(U(R)(M))). Then z = NML|L(y¢ML|M(y)_1)a for some y €
Nrd(Dar). We note that Narr 2 (¢an v (y) = ér1e(Narrn(y)). As

Nurp o (Nrd(Darr)) € Nrd(D), setting t = Nasp,1(y), we have t € Nrd(D)
and x = L‘(;SLug(t_l)7 proving the proposition. O

Let (D, 7) be a division algebra with square free index over a number field
K, with a K|k unitary involution 7. Let X be a smooth geometrically integral
curve over k. Let k(X)) be the function field of X and for each v € Qy, let k,(X)
be the function field of the curve Xj,. Let K(X) = K ®j k(X) and for v € Q,
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let K,(X) =K ®; ky,(X). In the next part of this section we prove the Hasse
principle for groups of the form SU(h), where h is a hermitian form over (D, 7).
We begin with the following proposition.

Proposition 10.3 With notation as above, suppose further that (D, T) has odd
degree over K. Let h be a hermitian form over (D,7). Let K(X)*! = {z €
K(X)* | Ngx)k(x) (x) = 1}. Then the natural map

K(X)™ ) NrdUh)(k(X))) — ] Ko(X)™/ Nrd(U(h)(k,(X)))

vEQ,
18 1njective.

Proof. Let A € K(X)*! be locally in Nrd(U(h)(k,(X))), for every v €
Q. As degree D is odd, by a result of Suresh, (cf. [KMRT], pg. 202),
Nrd(U(h)(k(X))) = Nrd(Dj x)) N K(X)*. As D has square free index and A
is locally a reduced norm from Dy, (x), for every v € Q, by (3.1), A is a reduced
norm for Dy (x). Hence A € Nrd(Dj ) N K(X)*' = Nrd(U(h)(k(X))). O

Theorem 10.4 Let (D, 7) be a division algebra with square free index over a
number field K, with a K|k unitary involution 7. Let X be a smooth geomet-
rically integral curve over k. Let k(X) be the function field of X. Let h be
a hermitian form over (D,7). Let SU(h) denote the special unitary group of
h. Then the natural map H'(k(X),SU(h)) — [loeq, H'(k,(X),SU(h)) has
trivial kernel.

Proof. Let £ € HY(k(X),SU(h)) be such that £ is locally trivial in
HY(ky,(X),SU(h)), for every v € Q. Under the map H!(k(X),SU(h)) —
H(k(X),U(h)), let £ map to the hermitian form h’. Then the hermitian form
R’ L (—h) has even rank, trivial discriminant and is locally trivial. As ¢ is locally
trivial, the Rost invariant of &, R(€) is locally trivial in H3(k,(X),Q/Z(2)) for
every v € Q. Hence R(€) is zero in H?(k(X),Q/Z(2)), by (2.3). Consider the
map SU(h) — SU(h L (—h)), given by, f — (f,1), which gives rise to a map
from H'(F,SU(h)) - H'(F,SU(h L (=h))). The image of £ under this map
corresponds to the hermitian form A’ L —h in H'(k(X),U(h L —h)). As in
the proof of 10.1, one shows that R(i(£)) = 0. In particular, R(h’ L (—h)) = 0.
Hence b/ L (—h) is a hermitian form of even rank, trivial discriminant, trivial
Rost invariant and is locally trivial. We claim that h = ' over k(X).

Suppose the degree of D is odd. Then by the classification theorem (9.1),
h=hn.

Suppose the degree of D is even. Let D & H®y D', where H is a quaternion
division algebra over K and D’ is an odd degree division algebra over K. Let L
be an odd degree extension of k such that (D®y L, 7) = (M, (H®kL),04), where
o is a unitary L ®; K |L involution on H ®j L and o, the adjoint involution on
M, (H ®j, L) with respect to the hermitian form f over (H ®j, L, o), (cf. [BP1],
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3.3.1). Let I(Y) = L ® k(X), where [ is the field of constants in [(Y). Over
I(Y), by Morita theory, h’ 1 (—h) corresponds to a hermitian form h; over
(Hyyy,o) of even rank, trivial discriminant, trivial Rost invariant and such
that hy is locally zero in W (H,  (yy,0), for every w € Q. By (8.3), hy is zero in
W (H,yy,o) and hence b’ L (—h) is zero in W (Dyy, 7). Since [[(Y) : k(X)] =
[L : k] is odd, by ([BL], theorem 2.1), h* L (—h) is zero in W (Dyx),T) and
hence h = I/ and € maps to the trivial element in H!(k(X),U(h)).

We have the following exact sequence of algebraic groups,
1— SU(h) = U(h) — R}((X)m(x)(Gm) —1
The above sequence gives rise to the following cohomology exact sequence,

UR)(k(X)) ™5 K — H' (K(X), SU(h) — H' ((X), U(h)).

Since £ maps to the trivial element in H'(k(X),U(h)), there exists v € K (X)*!
such that under the natural map K(X)*' — H!(k(X),SU(h)), the image of v
is €. Since £ is locally trivial, we have v € Nrd(U(h)(k,(X))) for every v € .
We show that the natural map from

K(X)*/ Nrd(U(h)(k(X))) — ] Ko(X)*/ Nrd(U(h)(ky(X)))
vEQ,

is injective. If the degree of D is odd, then this follows from proposition 10.3.
Hence we assume that the degree of D is even. Let A € K(X)*! be locally in
Nrd(U(h)(k,(X))), for every v € Q. Let H, D', L, I(Y) and o be as in the
previous paragraph. As H'(I(Y), SU(h)) — [[,eq, H' (lo(Y), SU(h)) has triv-
ial kernel, (10.1), A considered as an element of I(Y)* is in Nrd(U(h)(I(Y))). By
proposition (10.2), we have Ny(y)g, «, x(x) [x(x)(U(R)(I(Y))) C Nrd(U(h)(k(X))).
As the dimension of L over k is odd, A>*1 € Nrd(U(h)(k(X))), for some pos-
itive integer r. We show that A2 € Nrd(U(h)(k(X))). We choose a quadratic
field extension N of k such that Hyg, k issplit. Then (Dng, i, 7) = (M2(D' ngok), T'),
for some N®j K|N unitary involution 7/. The division algebra D’ has odd degree
and arguing as in the case of odd degree algebras, we have, A € Nrd(U(h)(N ®y,
k(X))). Hence A2 € Nrd(U(h)(k(X))). Thus, A € Nrd(U(h)(k(X))) and the
proof of the theorem is complete. a

11 The groups G, and F

For any field E, characteristic E # 2, if G is a semisimple simply connected
absolutely almost simple linear algebraic group defined over E of type G, G is
isomorphic to Aut(C) where C is a Cayley algebra defined over E. The pointed
set HY(E,G) classifies isomorphism classes of Cayley algebras over E. Given
two Cayley algebras C' and C’, they are isomorphic if and only if their norm
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forms ne and ner are isomorphic. The norm form of a Cayley algebra is a 3-fold
Pfister form over F.

Let k& be a number field and X be a smooth geometrically integral curve
defined over k. Let F = k(X) be its function field and for every v € Qy, let
F, = k,(X) be the function field of Xj, . Let G be as above of type G2 over
the field F. Then G = Aut(C) for some Cayley algebra C over F. Let £ be an
element in H!(F,G) which is trivial in H(F,, G), for every v € Q. The element
¢ corresponds to a Cayley algebra C(§) over F. By hypothesis, n¢ = n¢ (e over
F, for every v € Q. Since the map I*(F) — [[,cq, I°(F,) is injective, (cf.
[AEJ2], theorem 4), nc = ne(e) over F so that C = C(¢) i.e., { is trivial.

For any field E of characteristic not 2 or 3, if G is a semisimple simply
connected absolutely almost simple linear algebraic group defined over F, of type
Fy, G is isomorphic to Aut(J), J being a 27 dimensional central simple Jordan
algebra over E. The set H!(E,G) classifies isomorphism classes of exceptional
central simple Jordan algebras over F. Given such a Jordan algebra J over
E, there are three invariants, f5(J) € H*(E), f5(J) € H*>(E) and g3(J) €
H3(E,Z/3Z), (cf. [Se2], §9). The algebra J is reduced if and only if g3(.J) = 0.
If J is reduced, the two invariants f3(J) and f5(J) completely determine the
isomorphism class of J, thanks to the classification theorems of Springer (cf.
[Sp], theorem 1).

Let k be an algebraic number field and k(X) as above. Let J be a 27
dimensional exceptional central simple Jordan algebra over k and G = Aut(J).
Since H'(k(v/—1),Fy) = (1), (cf. [Se2], §9.4), J is split over k(y/—1). Hence
g3(J) = 0 and J is reduced. Let £ € H!(F,G) be trivial locally at all places
of k. Let £ correspond to an exceptional Jordan algebra J’ over F. Since
J' = J® F, locally for all v in Qy, g3(J') = g3(J ® F,), for all v € Q. Since
H3(F,Z/3Z) — [La, H3(F,,Z/3Z) is injective (cf. 2.3), g3(J') = g3(J @ F) =
0. Hence J’ is reduced. Similarly, as f3(J') = f3(J ® F,), for every v € Qy, we
have f3(J') = f3(J @ F). Since f5(J') = f5(J ® F,), for every v € Qy, we have
fs(J") = f5(J®F) is in the kernel of the natural map H°(F) — [[,cx, H®(Fu),
Xr denoting all the orderings of F' and hence is torsion. As ved(F) = 3, H5(F)
is torsion free. Hence f5(J') = f5(J ® F), so that by Springer’s theorem,
J' 2 J®F and £ is trivial.

12 The Hasse principle

The aim of this section is to prove the Hasse principle stated in the introduction.
We say that a semisimple simply connected absolutely simple group over a field
E is of type A* if it is isomorphic to SL;(A) for a central simple algebra A over
E of square free index or if it is isomorphic to SU(B,7) for a central simple
algebra B over a quadratic extension L of E of square free index with an L|E
involution 7.
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Theorem 12.1 Let k be a number field and X a smooth geometrically integral
curve defined over k. Let k(X) denote the function field of X and for every
v € Q, let ky(X) denote the function field of the curve Xy,. Let G be a
semisimple simply connected linear algebraic group defined over k, which is the
product of the Weil restrictions of absolutely simple groups of types A*, By, Cy,
D,, (D4 non-trialitarian), Go, and Fy. Then the map

H'(k(X),G) — [ H'(k(X),G)
VEQ

has trivial kernel.

Proof. Recall that for a finite field extension L of a field E, if G = R p(G’)
is the Weil restriction of a linear algebraic group G’ defined over L, then
HYE,G) = HY(L,G"). The theorem is now a consequence of (3.1, 3.2, 4.1,
4.2, 6.5, 10.1, 10.4 and §11). 0

Appendix
Rost invariant for the special unitary groups

Let E be a field of characteristic different from 2 and L = E(Vd) be a
quadratic field extension of E. Let (D, 7) be a central division algebra over L
with a unitary L|E involution. For a hermitian form h over (D, ), we denote
the unitary and the special unitary groups with respect to h by U(h) and SU(h)
respectively. We have the following exact sequence of algebraic groups,

1 — SU(h) = U(h) = R 5(Gm) — 1
which gives rise to the following exact sequence in Galois cohomology,

Uh)(E) "= Lt S HY(E, SU(h)) — HY(E,U(h)).

The next theorem computes the Rost invariant on the image of 6.

Theorem With the notation as above, for p € L**,
R(3(n)) = Coresy p((v) U (D)) € H*(E,Q/Z(2)),

where v € L* is such that p = VT(V)71
Proof. We first show that Coresyg((v) U (D)) is well defined. Indeed, for
A € E*, we have

Corespg((vA)U (D)) = Corespp((v)U (D)) + Coresyg((A) U (D))
= Corespp((v)U (D)) + (N UCoresp g(D)
= Coresyp((v)U (D)),

since Corespp(D) = Set £ = Corespp((v) U (D)). If (u) = 1, ie
w € Nrd(U(h)(E))* then v can be chosen to be in Nrd(D)* (cf. [KMRT], pg
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202). Hence (v) U (D) = 0 and & = 0. Further, R(§(x)) = 0. Hence, in this
case, R(d(p)) = £ = 0. We now assume that 6(u) # 1. By ([ MRT], pg.438),
we have, R(6(u))r = (p) U (D) = (v) U (D) + (r(v)) U(D~') = £,. Hence
corestricting to E, we get, 2. R(6(n)) = 2.¢€.

case.l. Suppose degree (D) is odd. We choose a field extension M of E of
degree n, with n odd, such that D @ g (M ®g L) is split. Set ML = M ®p L.

Since D is split over ML, {3y = 0. Further, U(h)(M) — Nrd (ML)*! is surjective,
so that §(u)nr = 1. Hence R(6(p))nr = 0. Since Coresyy g o res coincides with
multiplication by n, we have n.£ = n. R(6(n)) = 0. As 2.& = 2. R(6(p)), we
have £ = R(6(u)).

case.2. Suppose degree (D) = 2", for some positive integer n. Let v = a+bVd,
for some a, b€ E. As u & Nrd(U(h)(E)), we have, b # 0. Consider the rational

function field E(t). We extend the base field E to E(t). Set p; = ﬁzg and

vy = t+bVd. Let X, be the torsor corresponding to &(u;) € H'(E(t), SU(h)).
Let E(t)(X,,) denote the function field of X,,. By a result of Rost (cf. [G1],
§2.3, theorem 1), the kernel /C,,,, of the map

HP(E(t),Q/Z(2)) = H(E(t)(X,,), Q/Z(2)),

is a finite cyclic group generated by R(6(u¢)). Since §(pus) is trivial over E(t)(X,,),
pe € Nrd(U(h)(E(t))). Hence there exists A € E(t)(X,,)* such that X\.v; €
Nrd(Dg)(x,,)) (cf. [KMRT], pg. 202). Set & = Coresy g ((v) U (D)).
Then over E(t)(X,,), we have,

§tp()(x,,) = CoresLiy(x,,) B (x,,) (A v) U (D)) = 0.

Therefore & € KC,,,. Let s be the order of R(§(j¢)). Then there exists a positive
integer 7 < s such that § = r. R(6(pt)). Since &ppy = R(6(1e))nr)s 2-6 =
2. R(6(pt)) and hence (2r—2) R(6(ut)) = 0. Hence 2r—2 = si, for some positive
integer  and r = £ + 1. If [ is even, we have & = R(5(u)). Suppose [ is an
odd integer. Then & = (5 + 1)R(6(p¢)). In this case, we show that s = 2m,
where m denotes the exponent of D. Suppose s # 2m. We first note that
5-R(0(e)) pty = (& —R(6(pe))) vy = 0. We have, m. R(6(put)) ey = m-Ery =
m. ((ue) U (D)) = (pe) U (D™) = 0. Hence over E(t), 2m. R(d(p)) = 0. As s is
the order of R(0(j¢)), s divides 2m. As m is a power of 2, 5. R(6(ut))r) =0
and s # 2m, we have 2. R(6(put)) ity = 0. Let Oy_qy + H3(L(t),Q/Z(2)) —
H?(L,Q/Z(1)) denote the residue with respect to the prime (¢ —a) in L(t) (cf.
(G1], §1.3). We have, 81— (1) U(D)) = (D). Since R(3(u)) (o = (1) U (D)
and 2. R(6(pt)) .ty = 0, we have D2 = 0 in Br(L), which is a contradiction.
Hence s = 2m. Since m.&; = Coresp ) e ((ve) U (D™)) = 0, we have

(m+1).& = &
(5 + 1) R(6(ke))
(m+ 1). R(6(11)).

As 2.& =2.R(6(ue)) and m + 1 is odd, we have § = R(6(ue)).
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Let O be the ring of integers of the completion L((t—a)) of L(t) with respect
to the discrete valuation corresponding to the prime (¢t —a) on L(t). Let G be a
semi simple simply connected O group scheme with the special fibre isomorphic
to SU(h) over the residue field L at the prime (¢ — a). We have the following
commutative diagram (cf. [G1], theorem 2)

HVM@t?ﬂmpm)Rwynfp@W?%@ﬂﬁ)
HL(0,6)
1l
H'(L,SU(h)) By H3(L,Q/Z(2))

The torsor d(ut) over L((t — a)) comes from a torsor for G over O, since p; is a
unit in O and it specialises to d(u) in H'(L, SU(h)). In view of the above com-
mutative diagram, R(0(u))r((t—a)) = R(6(pe)) = Corespi—a))|B((t—a))(ve) U
(D)). Since characteristic E is coprime to m, v; = bV/d +t = bWd + a +

(t —a) = (a+ bVd).a™, for some a € L((t — a)). Set M = E((t — a))
and ML = L((t — a)). Hence Coresypjn((ve) U (D)) = Coresypn(((a +
bWd).a™)U (D)) = Coresyp((a+bvd) U (D)), + Coresypia((@™) U (D)).
Since Coresyrra((@™)U(D)) = Coresyrpa(()U(D™)) = 0, we have R(5(u)) vz =
CoresL‘E((aer\/E)U(D))ML. Since the map H3(L, Q/Z(2)) — H*(ML,Q/Z(2))

is injective, (cf. [G1], §1.3), we have R(d(u)) = Corespg((a+bVd) U (D)).

case.3. Suppose degree (D) = 2'.m, where m is odd. In this case, we
choose an extension M of E of odd degree n such that Djsg,r has degree
some power of 2. Set ML = M ®p L. By the previous case, R(0(u))y =
Corespyrpiv (V)U (D)) = Coresp g((v)U (D)) - Since Coresyrr s ores co-
incides with multiplication by n, we have n. R(0(u)) = n. Coresp g((v) U (D)).
As2.R(6(n)) = 2. Coresp g((v)U(D)), we have R(6(pn)) = Corespg((v)U(D)).
O

Remark The above result is also a consequence of a theorem of Merkurjev-
Parimala-Tignol, (cf. [MPT], theorem 1.9), in view of the following commutative
diagram

Nrd

U(h)(E) y [l —2 s HY(E, SU(h)) — HY(E,U(h))

| ! l !

PGU(h)(E) = H' (B, i) — H(E, SU(h)) — H'(E,U(h))

where PGU (h) is the projective unitary group with respect to h and p,r) =

N
kernel (R g(tn) ¥ 4n). The proof of Merkurjev-Parimala-Tignol, uses in-

variants of quasi-trivial tori.
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