FUNDAMENTAL HERMITE CONSTANTS
OF LINEAR ALGEBRAIC GROUPS

TAKAO WATANABE

ABSTRACT. Let G be a connected reductive algebraic group defined over a global field k and
@ a maximal k-parabolic subgroup of G. The constant v(G, Q, k) attached to (G, Q) is defined
as an analogue of Hermite’s constant. This constant depends only on G, @ and k in contrast
to the previous definition of generalized Hermite constants ([W1]). Some functorial properties
of v(G, Q, k) are proved. In the case that k is a function field of one variable over a finite field,
Y(GLnp, Q, k) is computed.

Let k£ be an algebraic number field of finite degree over Q and let G be a connected
reductive algebraic group defined over k. In [W1], we introduced a constant v& attached to
an absolutely irreducible strongly k-rational representation m: G — GL(V;) of G. More
precisely, if G(A) denotes the adele group of G and G(A)! the unimodular part of G(A), it
is defined by

G _ ] 2/[k:Q]
= Dhax | min |7 (g7) x| ,
where x, is a non-zero k-rational point of the highest weight line in the representation space
Vr and || - || is a height function on the space GL(V;(A))V; (k). This constant is called a
generalized Hermite constant by the reason that, in the case when k = Q, G = GL,, and
T = 7q is the d-th exterior representation of GL,,, yde" is none other than the Hermite -
Rankin constant ([R]):

t t
ng = max min det(‘z;gg9x;)1<i j<d
n, -

9EGLL(R) 3, .oz €Z" | det g|2d/n
TN Axg#0
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2 FUNDAMENTAL HERMITE CONSTANTS

When GL,, is defined over a general k, then v& dL” coincides with the following generalization
of v,.4 due to Thunder ([T2]):

H,(X)?
n k)= y s
Vn,d (k) g I A) X O (k) | det g 22/l

where Grg(k™) is the Grassmannian variety of d-dimensional subspaces in k" and H, a
twisted height on Grg(k™). In a general G, ’yf has a geometrical representation similarly to
Yn,d(k). In order to describe this, we change our primary object from a representation 7 to
a parabolic subgroup of G. Thus, we first fix a k-parabolic subgroup @ of G, and then take
a representation m such that the stabilizer @, of the highest weight line of 7 in G is equal
to Q. The mapping g — m(g~ 1)z, gives rise to a k-rational embedding of the generalized
flag variety Q\G into the projective space PV,. Taking a k-basis of V(k), we get a height
H, on PV, (k), and on Q(k)\G (k) by restriction. In this notation, v& is represented as

¢ — max min  H.(xg)*.

geG(A)t zeQ(k)\G (k)

In this paper, we investigate v& more closely when @ is a maximal k-parabolic subgroup
of G. Especially, we shall show that 7 and H, are not essentials of the constant v&, to
be exact, there exists a constant v(G, @, k) depending only on G, @ and k such that the
equality ¢ = v(G, Q, k) holds for any 7 with Q, = Q, where c, is a positive constant
depending only on 7. This v(G, @, k) is called the fundamental Hermite constant of (G, Q)
over k. We emphasize that there is a similarity between the definition of v(G, @, k) and
a representation of the original Hermite’s constant v, 1 as the maximum of some lattice
constants. Remember that -, 1 is represented as

7,11/12 = max min{7 > 0: B} NgZ"™ # {0}},

geGL, (R)

| det g|=1
where B, stands for the ball of radius 7' with center 0 in R™. Corresponding to R", we
consider the adelic homogeneous space Yo = Q(A)'\G(A)! as a base space. The set X¢
of k-rational points of Q\G plays a role of the standard lattice Z™. In addition, there is a
notion of "the ball” B of radius T" in Yq, whose precise definition will be given in Section
2. Then v(G, Q, k) is defined by

G, Q. k) = in{T >0: BpNX .
(G, Q. k) gerg%gf)lmm{ N Xqg # 0}

Independency of v(G, @, k) on m and H, allows us to study some functorial properties
of fundamental Hermite constants. For instance, the following theorems will be verified in
Section 4.
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Theorem. If 3: G — G’ is a surjective k-rational homomorphism of connected reductive
groups defined over k such that its kernel is a central k-split torus in G, then v(G,Q, k) =

G, B(Q), k).

Theorem. If Ry,, denotes the functor of restriction of scalars for a subfield £ C k, then
Y(Rie(G), Riye(Q), £) = v(G,Q, k).

Theorem. If both Q) and R are standard maximal k-parabolic subgroups of G and Mg s a
standard Levi subgroup of R, then one has an inequality of the form

7(G7 Qa k) < ’Y(MRv MR N Q7 k)wl’Y(G> R7 k)wz ’
where w1 and wy are rational numbers explicitly determined from () and R.

These theorems are including the duality theorem: =, ;(k) = v n—j(k) for 1 <j<mn-—1
and Rankin’s inequality ([R], [T2]): Yn.i(k) < vj.i(k)yn (k)7 for 1 <i<j<n—1asa
particular case.

Since no any serious problem arises from replacing k£ with a function field of one variable
over a finite field, we shall develop a theory of fundamental Hermite constants for any
global field. In the case of number fields, the main theorem of [W1] gives a lower bound
of v(G, @, k). An analogous result will be proved for the case of function fields in the last
half of this paper. The case of G = GL, is especially studied in detail because this case
gives an analogue of the classical Hermite — Rankin constants. When £ is a function field,
it is almost trivial from definition that v(G, @, k) is a power of the cardinal number g of the
constant field of k. Thus, the possible values of v(G, @, k) are very restricted if both lower
and upper bounds are given. This is a striking difference between the number fields and the
function fields. For example, it will be proved that v(GL,,Q, k) = 1 for all maximal @ and
all n > 2 provided that the genus of k is zero, i.e., k is a rational function field over a finite
field.

The paper is organized as follows. In Section 1, we recall the Tamagawa measures of
algebraic groups and homogenous spaces. In Sections 2 and 3, the constant (G, Q, k)
is defined, and then a relation between v(G,@Q,k) and v¢ is explained. The functorial
properties of v(G, @, k) is proved in Section 4. In Section 5, we will give a lower bound of
v(G, Q, k) when k is a function field, and compute v(GL,, @, k) in Section 6.

Notation. As usual, Z, Q, R and C denote the ring of integers, the field of rational, real and
complex numbers, respectively. The group of positive real numbers is denoted by R7.

Let k be a global field, i.e., an algebraic number field of finite degree over Q or an algebraic
function field of one variable over a finite field. In the latter case, we identify the constant



4 FUNDAMENTAL HERMITE CONSTANTS

field of k with the finite field F, with g elements. Let 2U be the set of all places of k. We
write U, and Uy for the sets of all infinite places and all finite places of k, respectively.
For v € U, k, denotes the completion of k at v. If v is finite, O, denotes the ring of integers
in k,, p, the maximal ideal of O,, f, the residual field O, /p, and g, the order of f,. We
fix, once and for all, a Haar measure yu, on k, normalized so that u,(9,) =1 if v € Uy,
ty([0,1]) = 1 if v is a real place and p,({a € k,: aa < 1}) = 27 if v is an imaginary
place. Then the absolute value |- |, on k, is defined as |a|, = p,(aC) /1, (C), where C'is an
arbitrary compact subset of k, with nonzero measure.

Let A be the adele ring of &, |- [4 = [, cq; | - [ the idele norm on the idele group A* and
pa = ][, eq Mo an invariant measure on A. The measure py is characterized by

| Dy |2 (if k£ is an algebraic number field of discriminant Dy).

A/k) =
pa(A/k) { qok)—1 (if k is a function field of genus g(k)).

In general, if u4 and pp denote Haar measures on a locally compact unimodular group A
and its closed unimodular subgroup B, respectively, then pp\pa (resp. pa/pp) denotes a
unique right (resp. left) A-invariant measure on the homogeneous space B\ A (resp. A/B)
matching with p4 and pp.

1. Tamagawa measures.

Let G be a connected affine algebraic group defined over k. For any k-algebra A, G(A)
stands for the set of A-rational points of G. Let X*(G) and X (G) be the free Z-modules
consisting of all rational characters and all k-rational characters of GG, respectively. The
absolute Galois group Gal(k/k) acts on X*(G). The representation of Gal(k/k) in the
space X*(G) ®z Q is denoted by o¢ and the corresponding Artin L-function is denoted
by L(s,0¢) = Hvemf L,(s,06). We set 0i(G) = lims_1(s — 1)"L(s,0a), where n
rank X} (G). Let w® be a nonzero right invariant gauge form on G defined over k. From w
and the fixed Haar measure pu, on k,, one can construct a right invariant Haar measure w
on G(k,). Then, the Tamagawa measure on G(A) is well defined by

G
G
v

wi = pa(A/k)T I CwG W

where
wG = I «¢ and w§ =ox(@) " [ Lo(1,06)5 .

VEY o veVy

For each g € G(A), we define the homomorphism 9¢(g): X;(G) — R by 9¢(g9)(x) =
Ix(g)|a for x € Xj(G). Then ¥¢ is a homomorphism from G(A) into Homz (X} (G),R%).
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We write G(A)* for the kernel of ¥¢. The Tamagawa measure wgayr on G(A)' is defined
as follows:

e The case of ch(k) = 0. If a Z-basis x1,- - - , xn of X}:(G) is fixed, then Homz(X}(G),RY)
is identified with (R} )™ and 9 gives rise to an isomorphism from G(A)'\G(A) onto (R})".
Put the Lebesgue measure dt on R and the invariant measure dt/t on RY. Then wg(a)
is the measure on G(A)! such that the quotient measure wg(A)l\wg is the pullback of the

measure [, dt;/t; on (RY)" by Jg. The measure wg sy is independent of the choice of a
Z-basis of X} (G).

e The case of ch(k) > 0. The value group of the idele norm |- |4 is the cyclic group ¢*
generated by g (cf. [We2]). Thus the image Imi¢ of ¥¢ is contained in Homgz (X} (G), ¢%) and
G(A)! is an open normal subgroup of G(A). Since the index of Im¥¢ in Homgz (X} (G), ¢%)
is finite ([Oe, I, Proposition 5.6]),

(L1) i = (log )" [Homy (X} (@), ¢%) : Imd]

is well defined. The measure wg(a): is defined to be the restriction of the measure (dg)tw§
to G(A)L.

In both cases, we put the counting measure we k) on G(k). The volume of G(k)\G(A)?
with respect to the measure wg = wg k) \wg(a) is called the Tamagawa number of G and
denoted by 7(G).

In the following, let G' be a connected reductive group defined over k. We fix a maximally
k-split torus S of GG, a maximal k-torus S; of G containing S, a minimal k-parabolic subgroup
P of G containing S and a Borel subgroup B of P containing S;. Denote by ®; and
Ay the relative root system of G with respect to S and the set of simple roots of @
corresponding to P, respectively. Let M be the centralizer of S in G. Then P has a Levi
decomposition P = MU, where U is the unipotent radical of P. For every standard k-
parabolic subgroup R of G, R has a unique Levi subgroup Mg containing M. We denote by
Ug the unipotent radical of R. Throughout this paper, we fix a maximal compact subgroup
K of G(A) satisfying the following property; For every standard k-parabolic subgroup R
of G, K N Mr(A) is a maximal compact subgroup of Mpr(A) and Mpr(A) possesses an
Iwasawa decomposition (Mr(A) NU(A))M(A)(K N Mg(A)). We set KMr = K N Mg(A),
PRE=MrNPand UR=MrnNU.

Let R be a standard k-parabolic subgroup of G and Zi be the greatest central k-split
torus in Mp. The restriction map X; (Mgr) — X} (Zg) is injective. Since X (Mp) has the
same rank as X (Zg), both indexes

dr = [X}(Zg) : X;,(Mp)] and dg = [X}(Zr/Zc) : Xp(Mr/Zc)]



6 FUNDAMENTAL HERMITE CONSTANTS

are finite. We define another Haar measure vy, (a) of Mz(A) as follows. Let wj! and ng
be the Tamagawa measures of M(A) and UR(A), respectively. The modular character 6,z
of PE(A) is a function on M (A) which satisfies the integration formula

/ F(mum™=)dwl " (u) = 6pa(m) " / F(w)dwl " (w).
UR(A)

UR(A)

Let vy nmy be the Haar measure on K*® normalized so that the total volume equals one.
Then the mapping

fre f(nmh)dpr(m) = dwf " (u)dwh! (m)dvgern (h),  (f € Co(Mr(A)))
UR(A)XM(A)x KMR

defines an invariant measure on Mg(A) and is denoted by vps,a). There exists a positive
constant C'r such that
M
Wa S CRVMR(A) .

We have the following compatibility formula:

(1.2) F(g)duf(g) = <€

_Ce / F(umh)é g (m) = dwV" dwe (m)dvi (h)
G(A) CR JUp(a)x Ma(a)x K

for f € Co(G(A)), where §" is the modular character of R(A).

On the homogeneous space Y = R(A)'\G(A)!, we define the right G(A)!-invariant
measure wy, by wra) \wga). We note that both G(A)' and R(A)" are unimodular.

2. Definition of fundamental Hermite constants.

Throughout this paper, ) denotes a standard maximal k-parabolic subgroup of G. There
is an only one simple root a € Ay such that the restriction of o to Zg is non-trivial. Let
ng be the positive integer such that néla\zQ is a Z-basis of X} (Zg/Zg). We write ag

and ag for néla|ZQ and &\QnélabQ, respectively. Then & is a Z-basis of the submodule
X1 (Mq/Za) of X5(Zg/Za). If we set eq = ng dim Ug and € = ng dim Ug /dg, then

5o(2) = lag(2)|5® and 6g(m) = |ag(m)[52

holds for z € Zg(A) and m € Mg(A).

Define a map zg: G(A) — Zg(A)Mg(A)'\Mg(A) by 2g(9) = Za(A)Mg(A)'m if g =
umh, u € Ug(A),m € Mg(A) and h € K. This is well defined and a left Zg(A)Q(A)!-
invariant. Since Zg(A)! = Zg(A) N G(A)! € Mg(A)!, zg gives rise to a map from Yy =
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QA)'\G(A)! to Mg(A)'\(Mg(A) N G(A)!). Namely, we have the following commutative
diagram:
Yo — 5 Mo(4)"\(Mo(4) N G(A)")

l !

Za(B)QANG(A) ——  Zg(A)Mg(h)'\Mq(A)
In this diagram, the vertical arrows are injective, and in particular, these are bijective if
ch(k) = 0. We further define a function Hg: G(A) — R} by Hq(g) = |ag(2¢(g))|," for
g € G(A). This has the following property:
e The case of ch(k) = 0. Let Z/ and 25 be the subgroups of Zg(A) and Zg(A),
respectively, defined as in [W1]. Then Hg gives a bijection from ZZ;\Z&S onto RY. If
(Hg] Zi\ Z;g)_l denotes the inverse map of this bijection, then the map

iQ: RY XK —Yq: (t,h) — Q(A)l(HQ|Zg\Z$)_1(t)h

is surjective.

e The case of ch(k) > 0. The value group |ag(Mg(A)NG(A)!)|s is a subgroup of ¢Z. Let
g0 = qo(Q) be the generator of |Ag(Mg(A) N G(A)!)|s that is greater than one. Then Hg
gives a surjection from Yy onto the cyclic group q>.

We set Xg = Q(k)\G(k), which is regarded as a subset of Y. Let Br = {y €
Yo: Ho(y) <T} for T > 0. The volume of By is given by

_Cedq 2, (ch(k) = 0)
C’QdGeQ

wy, (Br) = [logy, Tleq

CGd*Q 0
CQdE 1 — qo_gQ

(ch(k) > 0)
where [log, 77 is the largest integer which is not exceeding log, T (cf. [W1, Lemmal] and
Lemma 1 in §5).

Proposition 1. For T > 0 and any g € G(A)', Br N Xqg is a finite set. Hence, one can
define the function

To(g) =min{T > 0: BN Xgg # 0} = min Hg(y)
y€EXQg

on G(A)'. Then the mazimum

G,Q,k) = r
(G, Q, k) jlnax @(9)
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exists.

Proposition 1 will be proved in the next section.

Definition. The constant (G, @, k) is called the fundamental Hermite constant of (G, Q)
over k.

We often write y¢ for v(G, @, k) if k and G are clear from the context. The constant v
is characterized as the greatest positive number Ty such that By N Xggr = 0 for any T' < T
and some gr € G(A)! . Tt is obvious by definition that v € ¢Z if ch(k) > 0.

Remark. Let EN/Q = Zg(A)Q(A)'\G(A). Then, for any g € G(A), Xgg is regarded as a
subset of Y. In some cases, it is more convenient to consider the constant

Y(G,Q,k) = max min H, .
V(G Q) gGG(}Ii)ye)%Qg Q)

In general, v(G, Q, k) < Y(G,Q, k) holds. If ch(k) = 0 or G is semisimple, then v(G, Q, k) =
(G, Q, k) because of Yo = Yg.

Remark. If ch(k) = 0, one can consider the more general Hermite constant defined by

(G, Q,D, k) = ncl% min{7 > 0: ig((0,7] x D) N Xgg # 0}
ge 1

for an open and closed subset D of K.

3. A relation between g and a generalized Hermite constant.

We recall the definition of generalized Hermite constants (W1, §2]). Let V. be a finite
dimensional k-vector space defined over k and m: G — GL(V}) be an absolutely irreducible
k-rational representation. The highest weight space in V; with respect to B is denoted by
rr. Let @ be the stabilizer of x, in G and A, the rational character of @), by which Q.
acts on x;. In the following, we assume Q = @), and 7 is strongly k-rational, i.e., x, is
defined over k. Then A, is a k-rational character of (). It is known that such 7 always
exists (cf. [Til], [W1]). We use a right action of G on V, defined by a-g = 7(g~!)a for
g € G and a € V;. Then the mapping g — x, - g gives rise to a k-rational embedding of
Q\G into the projective space PV,. We fix a k-basis e, - - , e, of the k-vector space V (k)
and define a local height H, on V,(k,) for each v € U as follows:

(!a1\3+-~+lan|%)1/2 (if v is real).
Hy(arer + -+ anen) = ¢ larly + -+ [anly (if v is imaginary).
Sup(|a1|v7"' 7|an|’u) (ifUGsIIf).
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The global height H, on Vi(k) is defined to be a product of all H,, that is, H(a) =
[I,cq Ho(a). By the product formula, H is invariant by scalar multiplications. Thus,
H, defines a height on PV, (k), and on X by restriction. The height H, is extended to
GL(Vx(A))PVz(k) by

Hy(¢a) = H H,(&va)

veY
for £ = (&) € GL(V;(A)) and @ = ka € PV, (k), a € V. (k) — {0}. Put

@mg(g) = Hﬂ(f(acﬂ 'g))/HTr(f:L'Tr)’ (g € G(A))~

Since this satisfies

Pre(99) = Ma(9) Ha®re(d), (g€ Q(A), ¢ € G(A)),

P, ¢ defines a function on Yy. We can and do choose a { € GL(V;(A)) so that ®, ¢ is right
K-invariant. Then, in the case of ch(k) = 0, the generalized Hermite constant attached to
7 is defined by

3.1 = in @ 2/[k:Q)
(3.1) e = max, min £(zg)

Let us prove Proposition 1. We take positive rational numbers e, and e, such that

€rx

e (2)]a = lag(2)|5m and  [Ax(m)|a = |Gg(m)["

for z € Zg(A)NG(A)! and m € Mg(A) N G(A)!. Then, by definition,

Ore(y) = Holy), (y € Yo).

Therefore, one has
BrNXg={xeXqg: Hy(6x) < Hy(Ex,)T%}.

Since §{z € PV (k): Hr(&x) < c} is finite for a fixed constant ¢ (cf. [S]), Br N Xg is a finite
set. If g € G(A)! is given, then there is a T;; > 0 depending on g such that Brg~! C Br,.
This implies that §(Br N Xgg) = §(Brg~' N Xg) is also finite. Furthermore, we obtain
1/ex

To(g) = min @,
olg) = min ®re(zg)

In [W1, Proposition 2], we proved in the case of ch(k) = 0 that the function in g € G(A)!
defined by the right hand side attains its maximum. The same proof works well for the case
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of ch(k) > 0 by using the reduction theory due to Harder ([H]). We mention its proof for the
sake of completeness. If necessary, by replacing G with G /(Kerm)?, we may assume Kerr is
finite. Let
S(A). ={z € S(A): |8(2)|,* <c forall B €A}
and
S(A), ={z€ S(A): ¢t <|8(2)|,* < c forall B €A}

for a sufficiently large constant ¢ > 1. By reduction theory, there are compact subsets
Q1 € P(A) and Q9 € G(A) such that K C Qs and G(A) = G(k)Q15(A)s. Set &(c) =
215(A) 22 NG(A)! and S(c) = Q15(A).Q NG(A)L. There is a constant ¢’ such that

min O, ¢(zwizwy) < O e(wizwa) < [Ax(2)[,"
JiEXQ

holds for all w; € Q4,2 € S(A). and ws € Q. The highest weight A\; can be written as a
Q-linear combination of simple roots modulo X} (Z¢a) ®z Q, i.e.,

Aels = > ¢gB mod X;(Za) ©z Q.
BEA

A crucial fact is ¢g > 0 for all § € Ay (cf. [W1, Proof of Proposition 2]). From this and the
above inequality, it follows

sup min @, ¢(xg) = sup min P, (zg).
ses@reXe ges(ey veXe

This implies that the function g — mingex, ®r¢(2g) attains its maximum since &(c)’ is
relatively compact in G(A)! modulo G (k). Therefore, the maximum

3.2 = max min P, ¢(x 1/ex
(3:2) Q= mmax min &(zg)

exists. This completes the proof of Proposition 1.

Next theorem is obvious by (3.1), (3.2), e, = EQEW, e = c?Qé\Q and [W1, Theorem 1].

Theorem 1. If ch(k) = 0, then the Hermite constant attached to a strongly k-rational

7'ep7'esentation T 18 given by
2e, /[k:Q
7y v ex/[ ] )

One has an estimate of the form

CQdGeQT(G) L/ee
. (Gici) =
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Ezxample 1. Let V be an n dimensional vector space defined over an algebraic number field k
and eq,--- ,e, a k-basis of V (k). We identify the group of linear automorphisms of V' with
GL,. For 1 < j <n—1, Q; denotes the stabilizer of the subspace spanned by ey, -- ,e;
in GL,, and 7j: GL, — GL(/\’ V) the j-th exterior representation. A k-basis of V. (k) =
N V (k) is formed by the elements e; = e;, A- - ‘Ae;, with I = {1 <4y <ip <--- <i; <n}.
The global height H, is defined similarly as above with respect to the basis {e;};. By
definition and H,(e; A--- Ae;j) =1, we have

(k) = vy = ’ H. (2 g)2/ 1+
Yn,j (k) = Vr, el o (x-9)

_ : Hy, (g1 A -+ A gay)?/ 0
= gl]foA min 25/ (nlk:Q))
ge n( )x1,~~~,$j€V(l€) ‘degg|A
T1 A Az Z£0

Let ged(j,n — j) be the greatest common divisor of j and n — j. It is easy to see that

-~ j(n—j) N : . . ged(j,n — 7)
4 dg, = ————J) = ged(j,n — =TI
34 ® = pdGn-py e =Ednmd) e n

Therefore,
G L, Qj, k) = (k) EQ/ (2 eedGn=y))

and in particular, y(GL,,, Q1,Q)%/™ is none other than the classical Hermite’s constant Yn,1-
By [T2] and [W1, Example 2|, we have

<|Dkv<n—j>/2n T sr Zi(d)

1/ ged(j,n—3)
. S GLn, Q ) k 9
Ress=1Gi(s) I, Zi(4) ) " o

2r1+r2 |Dk|1/2

" m v/ jn/ ged(j,n—j)
Y(GLy, Qi k) < | —————T(1+ =)"/"T'(1+n)™
/2 2

Y

where (i (s) denotes the Dedekind zeta function of k, I'(s) the gamma function, Zy(s) =
(m=5/2T(5/2))" ((27)*~°T'(s))"2(x(s), 71 and ro the numbers of real and imaginary places of
k, respectively. When j = 1, the next inequality was proved in [O-W]:

’Y<GLn[k:Q} ’ Q17 @) '

L, < |D,.|V/1FQ
’V(G anak)—‘ k‘ [k@]
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4. Some properties of fundamental Hermite constants.

First, we consider the exact sequence

1 A G

G —— 1

of connected reductive groups defined over a global field k. We assume the following two
conditions for Z:

(4.1) Z is central in G.

(4.2) Z is isomorphic to a product of tori of the form Ry /,(GL1), where each k'/k is a
finite separable extension and Ry, denotes the functor of restriction of scalars from k" to
k.

By [B, Theorem 22.6], the assumption (4.1) implies that P’ = g(P), S’ = (3(S) and
Q' = B(Q) give a minimal k-parabolic subgroup, a maximal k-split torus and a maximal
standard k-parabolic subgroup of G’, respectively, and furthermore, the homomorphism
(Bls)*: X5(S8") — Xj(S) induced from S maps bijectively the relative root system @) of
(G, S") onto ®j. From the assumption (4.2), it follows that 3 gives rise to the isomorphisms
G(k)/Z(k) = G'(k), G(A)/Z(A) = G'(A) and Xg = X¢ (cf. [Oe, III 2.2]). By the
commutative diagram

Z(A)! — G(A)! ., G'(A)!
Z(A) . G(A) s, G'(A)

19Zl 1%{ ﬁcll
Homz (X5 (Z),RY) —— Homz(X5(G),RY) 220 Homp(X3(GY),RX)
we obtain the isomorphisms G(A)'/Z(A)! 2 G'(A)Y, Q(A)'/Z(A)! 2 Q'(A)! and Y 2 Y.
Since Z N Zg is the greatest k-split subtorus of Z, the character group X (Z/Z N Z¢) is
trivial. Therefore, 8 induces an isomorphism X} (Mg /Zq') — X3 (Mg /Zg) and maps a¢y
to ag. The next proposition is now obvious.

Theorem 2. If the exact sequence

1 Z e N N |

of connected reductive groups defined over k satisfies the conditions (4.1) and (4.2), then
(G, Q. k) equals (G, 5(Q), k).
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Ezxample 2. 1f 3: GL,, — PGL,, denotes a natural quotient morphism, then v(GL,,,Q, k) =
V(PGLy, B(Q), k).

Ezample 3. Let D be a division algebra of finite dimension m~ over k£ and D° the opposition
algebra of D. There are inner k-forms G and G’ of GL,,, such that G(k) = GL,, (D) and
G'(k) = GL,(D°). We put

2

O =

0 0
0 0 .
wo=|: i . i |ecL.oo.
01 -~ 00
10 -+ 00
Then the morphism 3: G — G’ defined by ((g9) = wo(*g™ ) wy ! yields a k-isomorphism.
If we take a maximal k-parabolic subgroup @; of G as

Q;(k) = {(g Z) ta€GL;(D), be GLn_j(D)}
for 1 < j <n—1, then 3(Q;(k)) equals
Qn—;(k) = {(%I ;‘,) cd' € GL,_;j(D°), V € GLj(DO)} .
Therefore,

7(G7 Qj7 k) = 7(Gl, Q»/n—jv k)

This relation was first proved in [W3|. Particularly, if m = 1, this is none other than the
duality relation

W(GLTH Qj7 k) = V(GLTH Qn—j7 k) .

Remark. When ch(k) = 0, for a given connected reductive k-group G, there exists a group
extension

1 A G G 1

defined over k such that Z satisfies (4.1) and (4.2), and in addition , the derived group of G
is simply connected. Such an extension of G is called z-extension(cf. [K, §1]).

Second, we consider a restriction of scalars. Take a subfield ¢ of k such that k/¢ is a
finite separable extension and put G’ = Ry/¢(G), P’ = Ry (P) and Q" = Ry/¢(Q). The
adele ring of ¢ is denoted by A,. Since the functor Ry, yields a bijection from the set
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of k-parabolic subgroups of G to the set of ¢-parabolic subgroups of G’ ([B-Ti, Corollaire
6.19]), P’ and @’ give a minimal ¢-parabolic subgroup and a maximal standard ¢-parabolic
subgroup of G', respectively. Although the torus R, ,(S) does not necessarily split over £, the
greatest (-split subtorus S’ of Ry, /,(S) gives a maximal /-split torus of G’. For an arbitrary
connected k-subgroup R of G and R’ = Ry /,(R), we introduce a canonical homomorphism
B*: Xi(R) — X (R'). If Ais an (-algebra, there is a canonical identification R’'(A) with
R(A ®¢ k). Then, for x € X} (R), B*(x) is defined to be

B ()(a) = Nagrsa(x(a)), (e € R'(A) = R(A®k))

for any (-algebra A, where N g a: (A®¢k)* — A* denotes the norm. This 5* is bijective
([Oe, II Theorem 2.4]), and if R = S, then $* maps ®; to the relative root system @) of
(G',S") ([B-Ti, 6.21]). From the commutative diagram

R(A) — R'(Ay)

19RJ, ﬂR/J,
Homz(X;(R),R*) ~22° Homy (X} (R'),RY)

it follows R(A)! = R/(A,)!. Accordingly, Q(A)'\G(A)* = Q'(A,)\G'(Ay)L. Since Zg
is the greatest /-split torus in Rj/,¢(Zg), the natural quotient morphism Mg/ /Zg —
Mg /Ry ¢(Zg) induces an isomorphism Xj(Mq/ /Ry ¢(Za)) = X;(Mg//Zg'). The compo-
sition of this and * yields an isomorphism between X7 (Mg /Z¢g) and X} (Mqg//Z¢:). This
maps g to @gs. Then, by definition of 3%,

[aq (m)]a, = [Naya, (@q(m))]a, = ag(m)|a

for m € Mg (Ay) N G'(Ap)' = Mg(A) N G(A)!, In other words, Heg is equal to Hg on
Yo =Yg. As a consequence, we proved the following

Theorem 3. If k/l is a finite separable extension, then y(Ry¢(G), Rie(Q), L) is equal to
(G, Q. k).

Finally, we show a generalization of Rankin’s inequality. Let R and @) be two different
maximal standard k-parabolic subgroups of G. We set QF = Mr N Q, Mg = Mpr N Mg,

Ug = Mr N Ug and XS = QF(k)\Mg(k). Then QF is a maximal standard parabolic
subgroup of Mz with a Levi decomposition UgMg. We write ag for the Z-basis agr of
X (ME/ZRr), 2§ for the map zgr: Mr(A) — Zr(A)MF(A)'\ME(A) and HE for the
function Hgr: Mp(A) — R defined by m — |@S(z3(m))|&l. The fundamental Hermite
constants of (Mg, QF) are given by

Mg, Q% k)= max min HE and F(Mp,Q% k)= max min HE(y).
TMR Q) = max, | in Ho() and 5(Mp, Q%K) = max | min HG()
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The exact sequence
1 —— Zp/Zg —— Mg/ZG _— MS/ZR — 1
induces the exact sequence
1 —— Xj(M§/ZR) —— X;(M§/Zc) —— Xi(Zr/Za).
From ag|z, = drag # 0, it follows that the Q-vector space XZ(Mg/Zg) ®z Q is spanned

by &g and &R|Mg, and hence there are wi,ws € QQ such that

(4.3) aQ‘Mg, = wlag + wgaR|Mg .

Theorem 4. Being notations as above, one has the inequality
7(G7 Qa k) < ?(MRv QR7 k)bﬂf}/(Gv Ra k)wz

Proof. Since Xg is naturally regarded as a subset of X, the inequality

Io(g) = min Hg(xg) < min H
olg) = min Q(xg)_;él)l% (zg)

holds for g € G(A)!. By the Iwasawa decomposition, we write g = umh, where u € Ug(A),
m € Mr(A)NG(A)! and h € K. Then, for x € Mg(k), zur~! € Ug(A) C Q(A)!, and

Hq(zg) = Ho((zuz™")zmh) = Hg(xm) = [ag(zq(xm))|, " -
If we write zm = ulmlhl, up € UQ (A), my € Mg(A) and h; € KMr by the Iwasawa

decomposition Mg(A) = ( )M (A)KMR | then
He(xm) = [aq(mi)ly" = [ag(ma)ly* [ar(ma) |~
= |ag (zq (am)) | [ar(@m) [, = Hg (zm)* |ar(m)|;*?
= H{;(xm)** Hr(g)*?

Therefore,

Fqo(g) < (mm Hg (wm)> Hp(9)** <3(Mp, Q" k)** Hr(g)*?

reEXE

As T'q is left G(k)-invariant, the inequality

To(g) < Y(Mg, Q" k) Hp(xg)*>
holds for all x € G(k). Taking the minimum, we get

To(9) <A(Mg, Q% k) T r(g)~

The assertion follows from this. 0O

Notice that 7(Mpg, QF, k) = v(Mg, Q% k) in the case of number fields.



16 FUNDAMENTAL HERMITE CONSTANTS

Corollary. If ch(k) =0, then v(G,Q, k) < v(Mg, QF, k)1 ~(G, R, k)*2.

Ezample 4. We use the same notations as in Example 1. Fori,j € Zwith1 <i<j<n—1,
both R = @; and ) = @; are maximal standard k-parabolic subgroups of GL,,. Then,
MR = GLJ X GLn_j, MQ = GLZ X GLn_i and M(g = GLZ X GL]'_Z' X GLn_j. We denote
an element of Mg by

diag(a, b, C) = b , (CL eGL;, be GLj,i, CcE GLn,j).

It is easy to see

ag(diag(a, b,c))

aR|Mg (diag(a, b, ¢)) = (det a)("=9)/ 8edln=i) (det p)(n—1)/ &ed(3:n=3) (det ¢) ~7/ Bedm =)

(det a)U—/8ed(@i=1) (et p) ~/ sed(.5=0)

Aq s (diag(a, b, ¢) = (det a) =)/ ged(Bn=i) (et )~/ &ed(n=1) (et ¢) ¢/ sed(En—0)
Thus,
_ Eng(jan _.])

Wy = Eng(laj B Z)
! " jged(i,n—i)

T jgedln—d)

Theorem 4 deduces

ged (4,5 —1) i ged(d,n—j)

’Y(GLTH Qi? k) < ﬁ(MQJ ’ QzQJ s k)% W’Y(GLn, Qj, ]{?) J ged(s,n—1)

If ch(k) = 0, then, by Example 1, this reduces to Rankin’s inequality

Yn,i(k) < 'Vj,i(k)'Yn,j(k?)i/j~

5. A lower bound of vq.

We prove an analogous inequality to (3.3) when ch(k) > 0. Thus we assume ch(k) > 0
throughout this section.

Lemma 1. If f is a right K-invariant measurable function on Yq,

Cads

/Y F ) dwye () 3 5011 ().

= Codr
QUG Mg (a)1eeMq (A)\ (Mo (A)NG(A)?)
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Proof. Let ¢ € Co(G(A)!) be a right K-invariant function. By the definition of invariant
measures, we have

/ o(g)dwaay (9) = (d2) " / 6(9)dwC (g)
G(A)! G(A)!
_ Ce /
CQd; Jug(a)x(Mg(a)nG(a)1)
Cnd
- 29 3 5o(&) 7 f(8),

C
CTC Mg (a)1eeMo(A)\(Mq(A)NG(A))

$(um)dq(m) ™ dwy @ (u)dwy © (m)

7€) = S(um€)dwl® (w)dwns, s (m) = / H(96)dwoan (9)-

/UQ(A)XMQ(A)l Q(A)!

On the other hand,

d 1 d oV
/G(A)l ¢( ) WG(A) /YQ /Q(A)l gy) WQ(A) ( ) wa( )

= f( Jdwyg, (y)- U

Theorem 5. If ch(k) > 0, one has

1/@@
CodgT(G) e jo+1
=G T — Q < Jo < ,

where the integer jo is given by

Cod;7(G)

) max{j € Z: J6Q<
jo = max{j Cady(Q)

(1-q,°9)}

and qo = qo(Q) is the generator of the value group |Gg(Mg(A) N G(A)Y)|a which is greater
than one.

Proof. For j € 7, we define the function v, : ¢ — R by

1 (<))

s ={, oI
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Then, by Lemma 1,
L= [ bi(Ho() ey, )
Yo

Cad?
_ 6% > 3o (&)1 (Hg(€))-

CQAG 1y (ayreeto (TN (Ma ()N

Since Hg is bijective from Mg (A)'\(Mg(A) N G(A)!) to g% and So(m)~t = HQ(m)éQ for

m € Mg(A), we have
_ Cotly §~ e _ oty
Cody = ™ Cadg 1 — g5 @

I;

If j satisfies I; < 7(G)/7(Q), then
1
I, = — E (H d .
J /G(k)\G(A)l %( Q(l'g)) wG(g) < T(Q)

7(Q) oA

Therefore, at least one go € G(A)?,

> ¥i(Ho(wgo)) < 1

acEXQ

holds, and hence ¢;(Hg(xgo)) = 0 for all z € Xg. This implies
in H, > gt
Jnin Ho(wgo) 2 G0

and
L Cady g _7(@), 1y

Yo > qosup{q): . — F=q""°

© 0 Codg1— g% 7(Q)

1/e0
CodsT(G) &
- (W“ 1 Q)) -

Remark. In §6, Example 5, we will see an example of v¢ satisfying

1/§Q 1/@@
CqdyT(G) _z CqdyT(G) -z
(W(l—q Q)) <79 < (W(l—% Q)) .
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If G splits over k, this lower bound is described more precisely. For v € U, we choose
each v component K, of K as follows:

(5.1) K, is a hyperspecial maximal compact subgroup G,(9,) of G(k,), and

(5.2) K, N Mg(ky) is a hyperspecial maximal compact subgroup Mg ,(9,) of Mg(ky),
where G, and Mg , stand for the smooth affine group schemes defined over O, with generic
fiber G and Mg, respectively (cf. [Ti2]).

Then it is known by [Oe, I Proposition 2.5] that

wi (K) = na(A/k) " Co (@)1 T Lo(1,06)a ™16 (50)|
veY ¢

wy A(EMR) = (A k)T Mgy (M) ™ T Lo(1, 00 )y U™ M2 Mg, (50|
Uemf
wy? (K NUQ(A)) = pa(A/k) = 4m Ve

In the integral formula (1.2), if we put the characteristic function of K as f, then

CG wg(K)

Co WP (K NUg(A)w)®(KMe)

Since G splits over k, o is the trivial representation of Gal(k/k) of dimension rankX*(G) =
dim Zg. As @ is a maximal parabolic subgroup, we have

or(Q) (Resg—1(x(s))dimZe 1 B ¢?*® =1 (g —1)logq

oe(Mg) ~ (Rese—1Cr(s))T™ %2~ Resy—1Ck(s) I ’

where (j(s) denotes the congruence zeta function of k and hj, the divisor class number of k.
Summing up, we obtain

Theorem 6. If ch(k) >0 and G splits over k, then

T )4y

_2 _ . . 1/e
(1 — g *)glR—DdmG/Q ger(@) H (1 — g7 1)gdimG/Ma (Mq,v(fo)] ¢ <o.
Rese—1Gi(s) doT(Q) Ly G (1)l ¢
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6. Computations of v(GL,,Q, k) when ch(k) > 0.

In this section, we assume ch(k) > 0. We concentrate our attention on G = GL,, because
this case gives an analogue of classical Hermite’s constant. We use the same notations as
in Example 1 of §3. Namely, V' denotes an n dimensional vector space defined over k,
e, -, ey, a k-basis of V(k), Q; the stabilizer of the subspace spanned by ey, --- ,e; in GL,
and 7;: GL, — GL(Vﬁj) the j-th exterior representation of GL,, for 1 < j7 < n —1. We
take K as [[,cq GLn(9y). The global height H; = H,, on V, (k) is defined to be

H;(Y arer) = [ sup(lazl.).
1 veY I
As an analogue of the number fields case, we can define the constant
H. NN T
Yn,j (k) = max min 5971 92;) :

171/\-"/\£Uj750

It is immediate to see that
Hij(g'ei1 A---Aglej)
| det g—llk/n

= Hy. (g)8edtm=a)/n

J

for g € GL,(A), and hence
Y (B) = F(GLy, Qj, )t/

In general, Zgy,, (A)GL,(A)! is not equal to GL,(A) in contrast to the number fields case.
It is obvious that Zgr, (A)GL,(A)! is an index finite normal subgroup of GL,(A). Let
Z = {¢} be a complete set of representatives for the cosets of Zgr, (A)GL,(A)'\GL,(A).
If we put

Hj(gl'l VAR /\ng)

Tn,j (K)e = max min .
TN 9EZGL, (A)GLn(A)' € ¢y ... eV (k) |detg|f&/n
:L'l/\---/\(L'j750
! i Hi(gz1a N+ A gzx;)
= ——— max min gy N~ Ngx;
|det§|JA/n 9EGLn(A)' € ¢y . 2,V (k) J J
$1/\'-'/\.'Ej750

for € € &, then
Vg (k) = max 5 (K)e,
and in particular, for the unit element & =1,
T (B)1 = Y(GLn, Qj, K)Eedtm=/m,
Since 1 < 7, ;(k)1 by the definition of H;, we obtain
(6.1) 1 <A(GLp, Qj, k) < v (k) 8ed@n=d)
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Lemma 2. 7, ;(k) < ¢79%).

Proof. By [T1, §5, Corollary 1], for a given g € GL,(A), there are linearly independent
vectors x1,- - ,x, of V (k) with

Hi(ga1) -~ Hi(gzn) < ¢"™|det gla .
We may assume Hi(gx1) < Hy(gx2) < --- < Hi(g9zy). Then,
Hj(gxy A -+~ Agaj) < Hi(ge) - - - Hi(gz;)
< (Hi(ga1) -+ Hi(gzn))'"
< ¢ det gl]/".

This implies the assertion. We note that our definition of the global height H; is slightly
different from [T1]. O

Theorem 7. We have the following estimate.

T o

gD (g~ 1)(1 = ¢~™) imn i1

hy, J
1T ¢
=2

< AGLp, Q;, k) < F(GLy, Q;, k) < ¢90)/ &edGn=1) — g,((;)79k)

Proof. Recall that qo(Q;) is the generator of the value group |dq, (Mg, (A) N GLy(A))|a
which is greater than one. Since

Mg, = {diag(a,b) = (g 2) ca€GLj, be GL,_;},

any diag(a,b) € Mg, (A) N GL,(A)! satisfies
|detaly = |det |, ".
The Z-basis ag,; of X*(Mq,/ZaL,) is given by

o, (diag(a,b)) = (det a) =)/ eed(G:n=3) (det p)~3/ 8edlim=i)
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Hence, |ag,(diag(a,b))|s = |deta|"/8d0:n=3) holds for diag(a,b) € Mg, (A) N GL,(A)L.
This and {|detals: a € GL;(A)} = ¢Z conclude qo(Q,) = ¢/ 84U~ The upper estimate

is obvious from Lemma 2 and (6.1). Since the order of the finite group GL,(f,) is equal to
(a5 —1)(gy — qu) - (a} — gp™"), one has

T o
n—j+1

1T ¢
=2

H (1 _ qgl) dim G Ly /Mq; |GLj(fv) X GLn—j(fv” _ i=

dv
1l LG

It is known that 7(GL,) = 7(GL; x GL,,—;) = 1 (cf. [Wel, Theorem 3.2.1] and [Oe, III
Theorem 5.2]). From the surjectivity of d¢r,,, it follows dg;;, =logq, d,, = dgp war, , =

(log ¢)? and
1 G, T(GLy)  qoW~1(q—1)
Res,—1Ck(s) dp, 7(Q;) D, '

Then, the lower bound is a result of Theorem 6 and eg, = ged(j,n —j). O

Corollary 1. If g(k) =0, ti.e., k is a rational function field over F,, then v(GLy,Q;, k) =
Y(GL,,Qj,k) =1 for all n and j.

It is known that the zeta function (i(s) is of the form

Ck(s) =

Li(q™®)
(I—g=*)(1—q'=)’

where Li(t) is a polynomial of degree 2g(k) with integer coefficients. If we write Ly(t) as
Li(t) = ap + art + -+ + agy()t>?*)

then a;’s have the following properties:
1) ap = 1, aggr) = ¢?*) and A2g(k)—i = g9 F) =i, for 1 < i < g(k).
2) a; = N(k) — (¢ + 1), where N(k) = 8{v € U: [f, : F,] = 1}.
3) Li(1) = hg.

In this notation, Theorem 4 deduces the following inequality.
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Corollary 2. Ifj =1, then

¢ (q—1)Li(q")
hi(q™ — q)

< ’Y(Gan Q17 k) S ;\y/(Gan Ql; k) S qg(k)n = qo(Ql)g(k) .

Ezample 5. If g(k) = 0, then Li(t) = 1 and hy = 1. So that we have

q—1 q—1 q—1
<Y(GLn, Q1. k) =1<q" = qo(Q1) '
" —q ! " —q " —q

Put
q”(q —1)Li(g™™)
he(g® —q)

By Corollary 2, if 1 < €,(k) holds for k, then both v(GL,,Q1,k) and ¥(GL,,Q1, k) must
be equal to g9k,

fn(k) =

Ezample 6. If g(k) = 1, then

(¢ —1)(¢*" + a1¢" +q)
(g + a1 +1)(¢*>" — qq™)

en(k) =

We have the inequality:
" +a1q" + q
" —qq™
This is obvious by the Hasse — Weil bound |a;| < 2,/g. Hence, if a; < =2, ie., hy < q—1,
then v(GLy,Q1,k) =v(GL,,Q1,k) = q" for all n > 2.

1<

Remark. In the case of number fields, the explicit values of v(GL,,Q1,k) are very little
known. One knows only v(GL,,,Q1,Q) for 2 <n < 8 and v(GLsg, Q1, k) for a few quadratic
number fields k& (cf. [BCIO], [O-W]).
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