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Abstract. Let D be a cyclic division algebra over its centre F of index
n. Consider the group CK1(D) = D∗/F ∗D′ where D∗ is the group of
invertible elements of D and D′ is its commutator subgroup. In this
note we shall show that the group CK1(D) is trivial if and only if D is
an ordinary quaternion division algebra over a real Pythagorean field F .
We construct a division algebra D and a division subalgebra A ⊂ D such
that CK1(A) ∼= CK1(D). Using valuation theory, the group CK1(D) is
computed for some valued division algebras.

1. Introduction

Let A be an Azumaya algebra over a commutative ring R. Consider the

functor CK1(A) = Coker(K1(R)
i→ K1(A)) where i is the inclusion map.

If R is semilocal, since the stable rank of R and A are one, CK1(A) =
A∗/R∗A′ where A∗ and R∗ are the group of invertible elements of A and R
respectively and A′ is the derived subgroup of A∗. A study of this group
in the case of central simple algebras is initiated in [6] and further in [5].
It has been established that despite of a “different nature” of this group
from the reduced Whitehead group SK1, these two groups have the same
functorial properties. In [6] this functor is determined for totally ramified
division algebras and in particular for any finite abelian group G, a division
algebra D such that CK1(D) = G × G is constructed. Further in [5], this
functor is studied in more cases and examples of cyclic CK1 (even over non
local fields) constructed. It was conjectured in [6] that if the functor CK1 is
trivial then the index of the division algebra is 2. In this note we characterise
quaternion division algebras D such that CK1(D) is trivial. In fact triviality
of CK1 characterises the ground field. We shall show that if CK1(D), for
a quaternion division algebra D, is trivial then D is an ordinary quaternion
and the centre of D is a real Pythagorean field. In fact, this is the only
class of cyclic division algebras such that CK1 is trivial (Theorem 2.3). We
shall show that some of the notions from the theory of quadratic forms, like
rigidity of an element, can be formulated as a property of the group CK1.
It seems that this group is highly sensitive to the arithmetic property of the
ground field. For example we will observe that CK1(

x,x
R((x)))

∼= Z2 whereas

CK1(
x,x

F3((x)))
∼= Z2 ⊕ Z2.
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2. Triviality of CK1

Let F be a field with characteristic not 2. Let (a,b
F ) be a quaternion

division algebra over F . The elements of D = (a,b
F ) have the form c0 + c1i +

c2j+c3ij and NrdD(c0+c1i+c2j+c3ij) = c2
0−ac2

1−bc2
2+abc2

3 where NrdD is
the reduced norm map for D. Note that CK1(D) = D∗/F ∗D′ where D∗ and
F ∗ are the group of invertible elements of D and F respectively and D′ is the
commutator subgroup of D∗. If CK1(D) = 1 then NrdD(D) = F ∗2. Thus

NrdD(i) = −a ∈ F 2 and NrdD(j) = −b ∈ F 2. Therefore (a,b
F ) ∼= (−1,−1

F ).

Our first theorem shows that triviality of (a,b
F ) forces that F be a real

Pythagorean field. In fact this property characterises this field. Recall that
F is a real Pythagorean if −1 6∈ F ∗2 and sum of any two square elements is
a square in F . It follows immediately that F is an ordered field. F is called
Euclidean if F ∗2 is an ordering of F

Theorem 2.1. Let F be a field of characteristic not 2. Then the following
are equivalent.

1) (−1,−1
F ) is a division ring and CK1(

−1,−1
F ) is trivial.

2) F is the real Pythagorean field.

3) (−1,−1
F ) is a division ring and every maximal subfield of (−1,−1

F ) is

F -isomorphic to F (
√
−1).

Proof. We shall show that 1 and 2 are equivalent. The equivalency of 2 and
3 are known (see [2]).

1) ⇒ 2) Since D = (−1,−1
F ) is a division ring, −1 6∈ F ∗2. By induction, if

−1 = f1
2 + · · · + fn

2, then considering f1
2 + f2

2 = NrdD(f1 + f2i) = f2, a
contradiction follows. This shows that −1 is not sum of squares plus sum of
any two squares is a square

2) ⇒ 1) Suppose F is a real Pythagorean. It is easy to see that D =

(−1,−1
F ) is a division ring. Now for any x ∈ D∗, NrdD(x) is a sum of four

squares, thus NrdD(D∗) = F ∗2. Since SK1(D) is trivial, this forces that
CK1 be trivial. ¤

Over Euclidean fields, the only quaternion division algebra is the ordinary
quaternion division algebra, and from the above Theorem it follows that its
CK1 is trivial.

We shall show that an ordinary quaternion division algebra over a real
Pythagorean field is in fact the only type of cyclic division algebras such that
its CK1 is trivial. Before we state the theorem, note that there are examples
of infinite dimensional division algebras D such that D∗ coincide with D′

[7]. In the finite dimensional case, it is not hard to see that D∗ 6= D′, infact
K1(D) = D∗/D′ is not torsion. In the case of algebraic division algebras,
everything remains as a mystery.

We need the following theorem which says that the functor CK1 has a
decomposition property similar to one for the reduced Whitehead group.

Theorem 2.2. [5] Let A and B be division algebras with centre F such that
(i(A), i(B)) = 1. Then CK1(A ⊗F B) ∼= CK1(A) × CK1(B).
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Theorem 2.3. Let D be a cyclic division algebra finite dimension over its
centre F . Then CK1(D) = 1 if and only if D is an ordinary quaternion
division algebra over a real Pythagorean field F .

Proof. The only if part is already proved in Theorem 2.1. For the if part,
we shall show that the index of D is 2. Then the claim follows again from
Theorem 2.1. First suppose that i(D) = n is odd. Let α ∈ D such that
F (α) is a maximal cyclic subfield of D with a mininal polynomial of the
form xn − f where f ∈ F . Since D∗ = F ∗D′, we can choose α ∈ D′. Now
αn = NF (α)/F (α) = NrdD(α) = 1. From this it follows that the degree of
the minimal polynomial of α is less than n which can not happen. Since
CK1(D) has a decomposition property (Theorem 2.2), the only case which
remains, is n = 2k, for some integer k. We shall show that k = 1. Again

consider α as above. This time −α2k

= NF (α)/F (α) = NrdD(α) = 1. On

the other hand since 1 + NF (α)/F (α) = NF (α)/F (α + 1) ∈ F ∗2k

, it follows

that
√

2 ∈ F . Thus if k > 1 then α2k

+ 1 = (α2k−1

+ 1)2 − 2α2k−1

can
be decomposed further which leads to a contradiction that the minimal
polynomial of α has degree less than n. Therefore n = 2 and the claim
follows from Theorem 2.1 ¤

Note that in the above theorem we could replace CK1 with a smaller
group D∗/F ∗D(1), where D(1) is set of elements with reduced norm 1.

The above theorem states that if in the case of division algebra D of odd
prime index, CK1(D) happens to be trivial, then this forces the well-known
conjecture that any division algebra of prime index is cyclic would be false!

It is a celeberated result of Wedderburn that a division algebra of index
3 is cyclic. This together with Theorem 2.2 and Theorem 2.3 implies that

Theorem 2.4. If D be a division algebra of index 3n where 3 - n, then
CK1(D) 6= 1.

Remark 2.5. Let D be a finite dimensional division algebra with centre F ,
of index n. Consider the sequence

(1) K1(D)
Nrd−→ K1(F )

i−→ K1(D)

Where NrdD is the reduced norm map and i is the inclusion map. One can
see that the composition i NrdD/F = ηn where ηn(a) = an. (See for example
the proof of Lemma 4, p. 157 [1]). From this the formula an = NrdD/F (a)ca

where a ∈ D∗ and ca ∈ D′ follows. In particular this implies that the
exponent of the abelian group CK1(D) divides n, the index of D.

It is not known if exp(CK1(D)) < i(D) what would be imposed on the
algebraic structure of D. We mention that if D is a totally ramified division
algebra then exp(CK1(D)) = i(D) if and only if D is cyclic [5]. In fact from
the above theorem it follows that if D is a cyclic division algebra of index
p, an odd prime, then the exponent of CK1(D) is exactly p. The converse
is not true, as the following example shows. This is an example of a cyclic
decomposable F -division algebra D of index 2p, p an odd prime, such that it
has a proper F -division subalgebra A ⊂ D, where CK1(A) ∼= CK1(D). This
in particular shows that the exponent of CK1(D) is less than the index of D,
but D is cyclic, thats is, the phenomena of cyclicity of D and exp(CK1(D))
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does not follow the same pattern as in the case of totally ramified. For
this we need the Fein-Schacher-Wadsworth example of a division algebra of
index 2p over a Pythagorean field F [3]. We briefly recall the construction.
Let p be an odd prime and K/F be a pair of real Pythagorean fields such
that K is cyclic over F with the generating automorphism σ. Now consider

D =
(−1,−1

F ((x))

)

⊗F ((x))

(

K((x))/F ((x)), σ, x
)

.

K((x))/F ((x)) is a cyclic extension where K((x)) and F ((x)) are Laurant
power series fields of K and F respectively. D is a division algebra of index
2p. Since F is real Pythagorean, so does F ((x)). Now by Theorem 2.2
the primary decomposition of the division algebra D induces a correspond-
ing decomposition for CK1(D). Thus CK1(D) ∼= CK1(

−1,−1
F ((x))) × CK1(A)

where A =
(

K((x))/F ((x)), σ, x
)

. By Theorem 2.1, CK1(
−1,−1
F ((x))) = 1, thus

CK1(D) ∼= CK1(A).

Question. If exp(CK1(D)) is less than the index i(D), what can be said
about the algebraic structure of D.

Recall that a ∈ F is called rigid if a 6∈ ±F ∗2 and F ∗2+aF ∗2 = F ∗2∪aF ∗2.
The rigidity concept plays a role in the study of the extension of Pythagorean
fields. In particular if K = F (

√
a) is a quadratic extension of F , then K is

real Pythagorean if and only if F is real Pythagorean and a is rigid [8].

Theorem 2.6. Let F be a real Pythagorean field. Let a 6∈ ±F ∗2. Then a is
rigid if and only if CK1(

−1,−a
F ) = Z2.

Proof. Suppose a is rigid. Since −a 6∈ F ∗2, then D = (−1,−a
F ) is a division

ring. Since F is Pythagorean, NrdD(D∗) = c2
0+ac2

1, where c0, c1 ∈ F ∗. From
rigidity of a it follows that NrdD(D∗) = F ∗2 ∪aF ∗2. Because a 6∈ F ∗2, then
F ∗2 and F ∗2a are two distinct elements in the group NrdD(D∗)/F ∗2. Since
SK1(D) is trivial, CK1(D) ∼= NrdD(D∗)/F ∗2 ∼= Z2. The if part follows the
same way. ¤

Remark 2.7. Let F be a real Pythagorean field and a ∈ F ∗ such that −a 6∈
F ∗2. Then CK1(

−1,−a
F ) ∼= L∗/F ∗L∗2 where L = F (

√
−a). For consider the

square class exact sequence

1 −→ {F ∗2, F ∗2a} −→ F ∗/F ∗2 −→ L∗/L∗2 N−→ NL/F (L∗)/F ∗2 −→ 1.

In this setting, it is easy to see that NL/F (L∗) = NrdD/F (D∗) thus the
claim.

3. CK1 for valued quaternion division algebras

In this section we study the valued quaternion division algebras. Valua-
tion theory for division algebras is the main tool for computation of CK1.
Recall that if D is equipped with a valuation, then D̄ and F̄ denote the
residue division algebra and the residue field of D and F respectively. ΓD

and ΓF are the value groups of the valuation.
A tame valued quaternion division algebra could be unramified, semi-

ramified or totally ramified. This follows from the fact that D is defectless.
Recall that D is tame if char(F̄ ) does not divide the index of D. Thus D
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is defectless, namely [D̄ : F̄ ][ΓD : ΓF ] = [D : F ]. D is called unramified if
[D̄ : F̄ ] = [D : F ] and totally ramified if [ΓD : ΓF ] = [D : F ]. D is called
semiramified if D̄ is a field and [D̄ : F̄ ] = [ΓD : ΓF ] = i(D). For an excellent
survey of the valuation theory of division algebras see [10].

We will see that there are quaternion division algebras of any type men-
tioned above.

• D = (−1,−1
R((x)) ) is unramified, and CK1(D) = 1 (see Theorem 2.1).

• D = ( −1,x
R((x))) is semiramified, and CK1(D) = Z2 (see Theorem 3.2).

• D = ( x,y
R((x,y))) is totally ramified, and CK1(D) = Z2 ⊕ Z2 (see Remark

3.3).
Although all the examples that we are dealing with here have finite CK1,

let us mention that CK1 of a quaternion division algebra could be infinite.
It is known that if p is a rational prime such that p ≡ 3(mod4) then (−1,p

Q
) is

a division algebra. It is not hard to see that CK1(
−1,p

Q
) =

⊕

Z2 is infinite.

In order to compute the functor CK1 in the case of a valued division
algebra, we need the following Theorem.

Theorem 3.1. [5] Let D be a Henselian division algebra tame over its centre
with index n. Then

1) If D is unramified, then CK1(D) ∼= CK1(D̄).
2) If D is totally ramified, then CK1(D) = ΓD/ΓF .
3) If D is semiramified, and D̄ is cyclic over F̄ , then there is an exact

sequence

1 −→ ND̄/F̄ (D̄∗)/F̄ ∗n −→ CK1(D) −→ ΓD/ΓF −→ 1.

It is known that if Z(D̄) is separable over F̄ , then the fundamental ho-
momorphism Φ : ΓD/ΓF → Gal(Z(D̄)/F̄ ) is epimorphism [10]. Since in the
above theorem, part 3) D is semiramified over F , Φ is an isomorphism. On
the other hand D̄ is cyclic over F̄ , Thus ΓD/ΓF

∼= Zn. So we can rewrite
the above exact sequence as

3′) If D is semiramified, and D̄ is cyclic over F̄ , then there is an exact
sequence

1 −→ ND̄/F̄ (D̄∗)/F̄ ∗n −→ CK1(D) −→ Zn −→ 1.

Theorem 3.1 is our main tool to compute the functor CK1 for a valued
quaternion division algebra.

Let F be a real Pythagorean field. Let N be the set of non rigid elements
of F . Recall that if N = ±F ∗2 then F is called super-Pythagorean [8]. The
following theorem is a demonstration of how valuation theory enables us to
compute CK1.

Theorem 3.2. Let F be a real Pythagorean field and N the set of non rigid
elements of F . Then for any t ∈ F ((x))\±F ((x))2 ∪N , CK1(

−1,−t
F ((x))) = Z2.

Proof. The valuation of F ((x)) extends to D = (−1,−1
F ((x))) as follows; v(x) =

1
2v(NrdD(x)) where v denotes the valuation map for both F and D. Suppose
first that t ∈ F . It is easy to see that

(−1,−t

F ((x))

) ∼=
(−1,−t

F

)

⊗F F ((x))
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is unramified. Thus by 3.1 1), CK1(
−1,−t
F ((x)))

∼= CK1(
−1,−t

F ). Since t is rigid

in F by Theorem 2.6, CK1(
−1,−t

F ) ∼= Z2 and we are done.
Now if t ∈ F ((x))\F , then it is not hard to see that D is semiramified,

D̄ = F (
√
−1) and ND̄(F (

√
−1)) = F ∗2. Now from Theorem 3.1 3′) it follows

that CK1(D) = Z2. ¤

Theorem above is another way to observe that if F is super-Pythagorean
then so is F ((x)).

Remark 3.3. Consider the division algebra D = ( x,y
R((x,y))). Since NrdD(i) =

−x and NrdD(j) = −y, it can be seen that the extension of the valuation
from R((x, y)) to D is totally ramified. From Theorem 3.1 2) follows that
CK1(D) = Z2 ⊕ Z2.

3.1. CK1 for local quaternion division algebras. Let F be a local field
and D a quaternion division algebra over D. We shall use Theorem 3.1 to
show that CK1(D) ∼= Z2 ⊕ Z2. Recall that characteristic of F is not 2. We
further assume that char(F̄ ) is not 2.

Theorem 3.4. Let D be a quaternion division algebra over a local field F .
Then CK1(D) ∼= Z2 ⊕ Z2.

Proof. The valuation of F extends to D. Furthermore one can see that with
this valuation D is semiramified over F and D̄ is cyclic over F̄ . Since D̄ is
finite, ND̄(D̄∗) = F̄ ∗ and the exact sequence of Theorem 3.1 3′ has the look

1 −→ F̄ ∗/F̄ 2∗ −→ CK1(D) −→ Z2 −→ 1.

Since char(F̄ ) is not 2, the quotient F̄ ∗/F̄ 2∗ is not trivial. Because F̄ ∗ is
a cyclic group therefore F̄ ∗/F̄ 2∗ ∼= Z2. Since exp(CK1(D)) divides 2, from
the above exact sequence it follows that CK1(D) ∼= Z2 ⊕ Z2. ¤

The above theorem shows that CK1(
−1,x

F3((x))) = Z2 ⊕ Z2 as mentioned

before.
We shall mention that this result was not unknown. In fact, since SK1(D)

is trivial and the reduced norm is surjective for division algebras over local
fields, CK1(D) ∼= F ∗/F ∗2. From the theory of quadratic forms for local
fields we can thus obtain the same result. Also if charF̄ = 2, it is known
that F ∗/F ∗2 ∼=

⊕

2n+1 Z2 (See P.217 [9])
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