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Introduction

The classical detection theorem for finite groups (due to D. Quillen [Q] and
B. Venkov [Q-V]) tells that if π is a finite group and Λ is a Z/p[π]-algebra then
a cohomology class z ∈ H∗(π,Λ) is nilpotent iff for every elementary abelian p-
subgroup i : π0 ↪→ π the restriction i∗(z) ∈ H∗(π0,Λ) of z to π0 is nilpotent. This
theorem is very useful for the identification of the support variety of the group π
and for the identification of support varieties of π-modules.

In [S-F-B] we proved a similar detection theorem for cohomology of infinitesimal
group schemes G. The role of elementary abelian p-subgroups is played in this case
by the so called one parameter subgroups of G, i.e. closed subgroup schemes i :
Ga(r) ↪→ G. The analogy between elementary abelian p-groups and one parameter
subgroups is emphasized by the fact that the corresponding cocommutative Hopf
algebras (which happen to be commutative as well in this case) are isomorphic

as algebras: k[Ga(r)]
# ∼

= k[(Z/p)×r] (but have quite different coproducts) and
hence have isomorphic cohomology algebras. Note that above we use very similar
notations k[Ga(r)] and k[(Z/p)×r] for two very different objects: on the left we have
the coordinate algebra of the group scheme Ga(r), which is a commutative Hopf
algebra for any group scheme, while on the right we have a group ring of a finite
group. In this paper we are dealing with algebro-geometric objects so we will try to
avoid the notation k[π] for the group algebra. In particular if we want to consider
the finite group π as a discrete group scheme over k then k[π] will stand for the
coordinate algebra of this discrete group scheme (which is dual to the group algebra
of π), i.e. k[π] = k×π.

The main purpose of this paper is to prove the general detection theorem, which
covers both the discrete and the infinitesimal cases and looks as follows.

Theorem(Theorem 4.1 below). Let G/k be a finite group scheme, let further
Λ be a unital associative rational G-algebra and let z ∈ H∗(G,Λ) be a cohomology
class. Assume that for any field extension K/k and any closed subgroup scheme
i : π0 ×Ga(r) ↪→ G (π0 being an elementary abelian p-group) the restriction i∗(zK)
of zK to π0 ×Ga(r) is nilpotent then z is nilpotent itself.

To shorten the language we call group schemes like π0×Ga(r) (with π0 elementary
abelian p-group ) elementary abelian group schemes.
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To prove the above theorem we follow the general approach developed in [S-F-
B]. Clearly one may assume that the base field k is algebraically closed. In this
case G splits canonically as a semidirect product of a discrete group π = G(k) and
an infinitesimal group G0 – the connected component of G. Moreover the usual
transfer argument allows to reduce the general case to the special one when π is a
finite p-group - see [Be]. One has to work out first the case when G0 is unipotent.
Fortunately this step was taken already by Chris Bendel [Be]. One probably should
note that the argument presented by Bendel contains a minor error, however this
error is insignificant and can be easily straightened out (Julia Pevtsova suggested to
me how this should be done). The unipotent case implies easily that the Detection
Theorem works for finite group schemes of the form π n B(r), where B is a Borel
subgroup in a connected smooth group scheme G and π is a finite p-subgroup in
B(k) (hence a subgroup in U(k), where U is the unipotent radical of B).

Next one has to consider the case of Frobenius kernels. Thus we take G = πnG(r),
where G is a smooth connected group scheme with Borel subgroup B and π is a
p-subgroup in B(k). The cases considered above allow to conclude that for any
g ∈ G(k) the restriction of z to the subgroup πg n gB(r)g

−1 (where πg is the

normalizer in π of gBg−1) is nilpotent. To be able to conclude that z itself is
nilpotent we need to have some kind of a spectral sequence relating cohomology of
π n G(r) to cohomology of a family of subgroups πg n gB(r)g

−1.

The first section of the present paper is devoted to the construction of a very
general spectral sequence (which at first glance has nothing to do with the problem
at hand). We start the second section with the proof of the Theorem which shows
that in a certain special case the above constructed spectral sequence coincides
with the spectral sequence introduced in [S-F-B] (which worked magnificently for
the proof of the detection theorem in the infinitesimal case). We show next how to
apply the above spectral sequence to the present situation. It’s not surprising that
the scheme whose cohomology appear in the above mentioned spectral sequence
identifies with the scheme of double cosets π \ G/B. A thorough analysis of the
information provided by the spectral sequence is made in § 3, which ends up with
the proof of the detection theorem for Frobenius kernels. In section 4 we finally
prove the general detection theorem. Once again this is done along the same lines
as in [S-F-B]. One embeds G = π n G0 into appropriate GLn. Since π is a finite
p-group it’s easy to see that there exists a Borel subgroup B ⊂ GLn such that
π ⊂ B(k). Denoting by r the height of the infinitesimal group scheme G0 we
conclude that we get an embedding G ⊂ π n GLn(r) and for the ambient group

the detection theorem is already known. Set Λ′ = Ind
πnGLn(r)

G Λ. Then H∗(G,Λ)
coincides as an algebra with H∗(πnGLn(r),Λ

′) so the only thing remained to verify
is that the cohomology class z′ ∈ H∗(π n GLn(r),Λ

′) corresponding to z still has
the same property, i.e. its restriction to any elementary abelian subgroup scheme
of π n GLn(r) is nilpotent. This is a relatively easy exercise (see § 4 for details)
however the proof uses essentially the following result.

Theorem 4.3. Let µ′ : H ′ −→ G′ be a homomorphism of finite group schemes over
k. Let further G ⊂ G′ be a subgroup scheme and let H denote its inverse image in
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H. The canonical morphism of quotient schemes µ′ : H ′/H −→ G′/G is a closed
embedding.

This result was mentioned as obvious and well-known in [S-F-B], however a more
careful analysis shows that this is not the case: it’s definitely not obvious and I was
not able to find any reference to this fact in the literature. I still presume that it
must be known but for the lack of reference we give in § 5 a detailed proof valid not
only for finite group schemes but for any group schemes (for arbitrary group schemes
one should replace closed embedding in the formulation of the above theorem by
locally closed embedding). This proof, worked out jointly with Eric Friedlander,
follows closely the argument presented in [Wa] for the proof of the theorem that
states that any homomorphism of affine group schemes with trivial kernel is a closed
embedding.

To finish this introduction I would like to express my sincere gratitude to Eric
Friedlander who helped me a lot with the work on this paper, first and foremost by
insisting that the paper should be written and also by being there when I needed
an assistance or advice with my work over the present text.

All schemes throughout the paper are presumed to be of finite type over the base
field k. We denote by Sch/k the category of such schemes, sometimes we consider
Sch/k as a site in the fppf-topology.

§ 1. Construction of the spectral sequence

All through this section T/k is an affine albebraic group, acting on the right on
an affine scheme Y = Spec A, M is an A-module on which T acts (on the left)
compatibly with its A-module structure. We assume further that we are given an
affine T -invariant morphism p : Y → X.

The main purpose of this section is to show that under the above circumstances
there exist canonical quasicoherent sheaves Hq on X and a spectral sequence

(1.0) Epq
2 = Hp(X,Hq) =⇒ Hp+q(T,M)

Recall that to give an action of T on a (not necessarily commutative) k-algebra
A means to make A into a rational T -module in such a way that the multiplication
map A ⊗k A −→ A is a homomorphism of rational T -modules, where as always T
acts on the tensor product diagonally. In this case we say that A is a rational
T -algebra. The above condition concerning the action of T on A is easily seen to
be equivalent to the requirement that the diagonal map ∆A : A −→ A ⊗k k[T ] is
a k-algebra homomorphism. Note also that in case A is a commutative k-algebra
to give an action of T on A is the same as to give a right action of T on the
affine scheme Y = Spec A (over k). In what follows we assume (if not specified
otherwise) that the algebra A is commutative. Assume now that M is a rational
T -module and simultaneously an A-module. We say that these two structures are
compatible provided that the multiplication map A⊗kM −→M is a homomorphism
of T -modules, where on the left we take (as always) the diagonal module structure.
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One checks immediately that this condition could be rephrased by saying that the
diagonal map

∆M : M →M ⊗k k[T ]

is a homomorphism of A-modules, where the A-module structure on the right is
defined by the k-algebra homomorphism ∆A : A→ A⊗k k[T ].

More generally assume that we are given a (right) action of the group scheme T
on an arbitrary scheme Y µ : Y ×kT −→ Y . Let furtherM be a quasicoherent OY -
module. We say that T acts onM compatibly with its action on Y provided that we
are given a homomorphism of quasicoherent OY -modules ∆M : M−→ µ∗(M£OT )
(or what amounts to the same thing a homomorphism of quasicoherent OY×T -
modules ∆M : µ∗(M) −→ M £ OT ), which satisfies the usual formal properties -
see [J], ch. 1, §2. In case Y = Spec A is affine and M corresponds to an A-module
M to give an action of T on M compatible with its action on Y is the same as to
give a homomorphism of A-modules ∆M : M → M ⊗k k[T ] (satisfying the usual
formal properties) i.e. is the same as to give M a structure of a rational T -module
compatible with its structure of an A-module.

Lemma 1.1. Let Y ′
f
−→ Y be a T -equivariant morphism of schemes provided with

the action of T . Assume further that M is a quasicoherent OY -module provided
with the action of T compatible with the action of T on Y . Then the quasicoherent
OY ′-module M′ = f∗(M) has a canonical T -module structure compatible with the
action of T on Y ′.

Proof. This follows immediately from the commutative diagram

Y ′ ×k T
f×1T
−−−−→ Y ×k T

µ′




y

µ





y

Y ′
f

−−−−→ Y

Assume once again that T acts on a scheme Y (not necessarily affine). We say
that an open subscheme U ⊂ T is T -invariant in case µ(U ×k T ) ⊂ U (or what’s
the same if U ×k T ⊂ µ−1(U)). In this case there exists a unique action of T on
U for which the open embedding U ↪→ Y is T -equivariant. Lemma 1.1 applies to
show that for any quasicoherent OY -module M with action of T (compatible with
the action of T on Y ) the restriction sheaf M|U inherits a canonical action of T
(compatible with the action of T on U).

Lemma 1.2. Assume that T acts (compatibly) on a scheme Y and on a quasico-
herent OY -module M. Then for any open (not necessarily affine) T -invariant sub-
scheme U ⊂ Y we have compatible actions of T on the k-algebra k[U ] = Γ(U,OY )
and on a k[U ]-module Γ(U,M).

Proof. The previous remarks show that it suffices to consider the case U = Y . In
this case we can proceed as follows. The structure homomorphism ∆M : M −→
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µ∗(M£OT ) defines a map on global sections ∆M(Y ) : Γ(Y,M) −→ Γ(Y × T,M£

OT ). The latter k-module may be identified (see Sublemma 1.2.1 below) with
Γ(Y,M) ⊗k k[T ]. Thus we get the desired diagonal map on the k-module M =
Γ(Y,M)

∆M = ∆M(Y ) : M −→M ⊗k k[T ]

The formal properties of ∆M immediately imply that ∆M has the same formal
properties, i.e. makes M into a rational T -module. Various compatibilities are also
easily checked, we leave details to the reader.

Sublemma 1.2.1. Let Y and T be arbitrary schemes of finite type over a field k.
Let further M and F be quasicoherent sheaves on Y and T respectively. Then the
canonical map

Γ(Y,M)⊗k Γ(T,F) −→ Γ(Y ×k T,M£ F)

is an isomorphism

Proof. In case both Y and T are affine the statement is well-known (and trivial).
Assume now that only T is affine. Find an open affine covering Y =

⋃n
i=1 Yi of

Y and next find open affine coverings Yi ∩ Yj =
⋃

k Y k
ij . Taking products with an

affine scheme T we get induced open affine coverings Y ×k T =
⋃n

i=1 Yi ×k T for
Y ×k T and also affine open coverings for (Yi×T )∩ (Yj ×T ) = (Yi∩Yj)×k T . Now
our statement follows from the commutative diagram with exact rows

0 −−−−→ Γ(Y,M)⊗k F −−−−→ ⊕iΓ(Yi,M)⊗k F −−−−→ ⊕k
ijΓ(Y k

ij ,M)⊗k F




y





y

∼
=





y

∼
=

0 −−−−→ Γ(Y × T, E) −−−−→ ⊕iΓ(Yi × T, E) −−−−→ ⊕k
ijΓ(Y k

ij × T, E)

where we abbreviated Γ(T,F) to F and M£ F to E . In our applications we need
only the case when the scheme T is affine so we stop here, however repeating the
same trick again we immediately get the proof in complete generality.

We return back to the situation we described at the beginning of the section.
So let p : Y → X be an affine T -invariant morphism. The following statement is
obvious from definitions.

Lemma 1.3. For any open V ⊂ X its inverse image U = p−1(V ) is T -invariant
in Y . Moreover the image of the obvious homomorphism p∗ : k[V ] −→ k[U ] consists
of T -invariant functions.

Let M =
∼

M be the quasicoherent OY -module defined by M . The action of T
on M (compatible with the action of T on k[Y ] = A) defines in an obvious way an
action of T on the quasicoherent sheaf M compatible with the action of T on Y .
According to Lemmas 1.2 and 1.3 this implies that for any open subset V ⊂ X we
get a natural action of T on k[U ] and a compatible action of T on Γ(U,M) (where
U = p−1(V ) ⊂ Y ). Since p∗(k[V ]) ⊂ k[U ]T we conclude further that the action
of T on Γ(U,M) is k[V ]-linear. This implies readily that all cohomology groups
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H∗(T,Γ(U,M)) have canonical structures of k[V ]-modules. Finally if V ′ ⊂ V is
another open subset, then (setting U ′ = p−1(V ′)) we see immediately that the

restriction map Γ(U,M)
res
−−→ Γ(U ′,M) is a homomorphism of T -modules and

hence defines induced maps in cohomology H∗(T,Γ(U,M))
res∗−−−→ H∗(T,Γ(U ′,M)).

Moreover a straightforward verification shows that the map res∗ is a homomorphism
of k[V ] modules, provided we make H∗(T,Γ(U ′,M)) into a k[V ]-module via the

homomorphism k[V ]
res
−−→ k[V ′].

The above discussion shows that setting

Fq(V ) = Hq(T,Γ(p−1(V ),M))

we define a presheaf Fq of OX -modules on X. We define the sheaf Hq of OX -
modules on X as the sheaf associated to F q in Zariski topology: Hq = Fq

Zar. To
understand the properties of the sheaf Hq we need two more general Lemmas.

Lemma 1.4. a) LetM be a quasicoherent sheaf on a scheme X, then for any open
affine subsets V ′ ⊂ V ⊂ X the canonical map

k[V ′]⊗k[V ] Γ(V,M) −→ Γ(V ′,M)

is an isomorphism.
b) Assume that M is a presheaf of OX-modules on X with the property that for
any open affine subsets V ′ ⊂ V ⊂ X the canonical map

k[V ′]⊗k[V ] Γ(V,M) −→ Γ(V ′,M)

is an isomorphism. Then the associated Zariski sheafMZar is quasicoherent, more-
over the natural map M(V ) −→ MZar(V ) is an isomorphism for any affine open
V ⊂ X.

Proof. The point a) is well-known and trivial. To prove the point b) we note that
the sheaf MZar may be obtained from M by applying twice the functor Ȟ0 (zero-
dimensional Čech cohomology). Thus to show that the natural map M(V ) −→
MZar(V ) is an isomorphism for any open affine V ⊂ X it suffices to show that for
any such V the canonical map

M(V ) −→ Ȟ0(V,M) = lim−→
Vopen covering of V

Ȟ0(V,M)

is an isomorphism. Moreover computing the above direct limit we may replace
the filtered poset of coverings of V (up to equivalence) by any cofinal poset. In
particular, since any open covering of V contains a finite affine subcovering it suffices
to show that for any finite affine covering V : V =

⋃n
i=1 Vi the corresponding map

M(V ) −→ Ȟ0(V,M) is an isomorphism. In other words it suffices to establish the
exactness of the sequence

0 −→M(V ) −→
∏

i

M(Vi) −→
∏

i,j

M(Vij)
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Since V all Vi and all Vij = Vi ∩ Vj are affine our basic assumption on M yields
the formulae

M(Vi) = k[Vi]⊗k[V ]M(V ) M(Vij) = k[Vij ]⊗k[V ]M(V )

Thus the sequence under consideration takes the form

0 −→M(V ) −→ A⊗k[V ]M(V ) −→ A⊗k[V ] A⊗k[V ]M(V )

where A =
∏

i k[Vi] is a faithfully flat k[V ]-algebra. The exactness of the resulting
sequence is well-known - see for example [M], ch. 1, 2.19.

Finally to prove that MZar is quasicoherent we use the following well-known
criterion.

Lemma 1.4.1. A sheaf of OX-modulesM on an affine scheme X is quasicoherent
iff for every f ∈ k[X] the canonical homomorphism M(X)f −→ M(Xf ) is an
isomorphism.

We are going to apply Lemma 1.4 to the presheaf F q. To be able to do so we
need one more elementary fact.

Lemma 1.5. Let A be a commutative k-algebra, let further M be an A-module
on which the group T acts by A linear transformations. For any commutative A-
algebra A′ we get the induced A′-linear action of T on A′ ⊗A M . Moreover in case
the algebra A′ is A-flat we have the following canonical identifications:

A′ ⊗A H∗(T,M)
∼
−→ H∗(T,A′ ⊗A M)

Proof. The first statement is trivial and the second follows for example from the
consideration of the corresponding Hochschild complexes (cf. also [J], ch. 1, 4.13).

Now we are prepaired to investigate the sheavesHq. Note that the sheaf p∗(M) is
a quasicoherent OX -module - see [Ha], ch.2, 5.8. Thus for any open affine subsets
V ′ ⊂ V ⊂ X we have according to (the trivial part of) Lemma 1.4 canonical
identifications

k[V ′]⊗k[V ]M(p−1(V )) = M(p−1(V ′))

Since k[V ′] is a flat k[V ]-algebra we conclude from Lemma 1.5 that the natural map

k[V ′]⊗H∗(T,M(p−1(V )) −→ H∗(T,M(p−1(V ′)))

is an isomorphism. Applying once again Lemma 1.4 we get the following Corollary.

Corollary 1.6. The sheaf Hq is quasicoherent. For any open affine V ⊂ X the
canonical map

Hq(T,M(p−1(V )) = Fq(V ) −→ Hq(V )

is an isomorphism.

We now turn to the construction of the spectral sequence (1.0). This construction
is based on the use of the following well-known elementary observation.
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Lemma 1.7. Let M be a quasicoherent sheaf on an affine scheme Y . Then for
any affine open covering U : Y =

⋃n
i=1 Ui the corresponding C̆ech cohomology

Ȟ∗(U ,M) are given by the formula

Ȟ∗(U ,M) =

{

M(Y ), for ∗ = 0

0, for ∗ > 0.

Proof. Recall that C̆ech cohomology can be computed equally using either the
alternating C̆ech complex or the total C̆ech complex - see [Se], ch.1, §3,n◦ 20. At

this particular moment it’s preferable to work with total C̆ech complex, which in
view of Lemma 1.4 can be identified with

M ⊗A B −→M ⊗A B ⊗A B −→ . . .

where M = M(Y ), A = k[Y ], B =
∏

i k[Ui]. Thus our statement follows from the
fact that B is a faithfully flat A-algebra in view of [M], ch. 1, 2.19.

Theorem 1.8. In the situation described at the beginning of this section there
exists a natural spectral sequence

Epq
2 = Hp(X,Hq) =⇒ Hp+q(T,M).

Proof. Choose an affine open covering V : X =
⋃n

i=1 Vi and set Ui = p−1(Vi) ⊂
Y . Since the morphism p is affine we conclude that U : Y =

⋃p
i=1 Ui is an affine

open covering of Y . Consider the C̆ech complex C∗(U ,M). Since this complex
consists of T -modules and T -homomorphisms we get two hypercohomology spectral
sequences. The second spectral sequence degenerates in view of Lemma 1.7 and
yields the limit of the first spectral sequence:

Ipq1 = Hq(T,Cp(U ,M)) =⇒ Hp+q(T,M)

To compute the second term of this spectral sequence we note that
Hq(T,Cp(U ,M)) = Cp(V,Hq) and the differential d1 is nothing but the usual

differential of the C̆ech complex C∗(V,Hq). Thus Ipq2 = Hp(V,Hq) = Hp(X,Hq),
where the last identification holds since V is an affine open covering of the scheme
X and the sheaf Hq is quasicoherent.

To be on the safe side we mention also the following fact.

Lemma 1.8.1. The above spectral sequence is independent of the choice of the
affine open covering V.

Proof. Let V ′ : X =
⋃m

j=1 V
′
j be another affine open covering of X. Assume

first that V ′ is a refinement of V. Fix a function τ : {1, ...,m} −→ {1, ..., n} such
that V ′j ⊂ Vτ(j) for all j. The choice of τ defines a T -equivariant homomorphism

C∗(U ,M)
rτ−→ C∗(U ′,M) and hence defines a homomorphism of the corresponding



DETECTION THEOREM FOR FINITE GROUP SCHEMES 9

hypercohomology spectral sequences. The resulting map on the E2-terms coincides
with the obvious map on the C̆ech cohomology groups Hp(V,Hq) −→ Hp(V ′,Hq)
and hence is an isomorphism. This implies that the map of the spectral sequences
is an isomorphism from E2-term on. The resulting isomorphism is independent
of the choice of τ . For a different choice of τ the corresponding homomorphisms
of complexes rτ , rτ ′ are canonically homotopic (see for example [Se], ch. 1, §3,
n◦ 21) and moreover the explicit formula for the homotopy shows that it happens
to be T -equivariant. Since the homomorphisms of the hypercohomology spectral
sequences induced by homotopic homomorphisms of complexes coincide - [C-E], ch.
17, §2 (from E2-term on) the statement follows. Finally for an arbitrary choice of
V ′ we can find a common refinement V” of V and V ′ and thus conclude that all
three spectral sequences identify canonically.

To finish this section we discuss briefly the multiplicative properties of the above
spectral sequence

To get products on the spectral sequence we assume that M = Λ is a (not
necessarily commutative) rational T -algebra which simultaneously is a k[Y ]-algebra
and that these two structures are compatible, i.e. the structure homomorphism
k[Y ] −→ Λ is a homomorphism of rational T -algebras. Applying to M = Λ the
above construction we get quasicoherent sheaves Hq = Hq(Λ) on X and a spectral
sequence

(1.9.0) Epq
2 = Hp(X,Hq) =⇒ Hp+q(T,Λ)

Theorem 1.9. a) For each q, q′ ≥ 0 we have canonical pairings of quasicoherent

sheaves Hq ⊗OX
Hq′ −→ Hq+q′ .

b) The spectral sequence (1.9.0) has canonical multiplicative structure. The prod-
uct maps on the limit coincide with the obvious pairings in cohomology Hn(T,Λ)⊗k

Hm(T,Λ) −→ Hn+m(T,Λ) induced by the multiplication Λ⊗k Λ −→ Λ. The product
maps on the E2-term coincide with the pairings in sheaf cohomology

Hp(X,Hq)⊗k Hp′(X,Hq′) −→ Hp+p′(X,Hq+q′)

induced by the pairing of sheaves Hq ⊗OX
Hq′ −→ Hq+q′ .

Proof. We start by noting that for any rational T -algebra Λ we have canonical
pairings in group cohomology H∗(T,Λ). These pairings can be described in several
equivalent ways. The most convenient for our purposes way is to note that the
Hochschild complex C∗(T,Λ) is a differential graded algebra with respect to a
product defined by the usual formula:

(f ∪ f ′)(t1, ..., tn+m) = f(t1, ..., tn) · t1·...·tnf ′(tn+1, ..., tn+m)

(here we identify Cn(G,Λ) with Mor(Gn,Λa) as in [J], ch. 1, 4.14).

To prove point a) we note that Hq⊗OX
Hq′ is a quasicoherent OX -module, whose

sections over any open affine V ⊂ X coincide with Hq(T,L(U))⊗k[V ]H
q′(T,L(U)),
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where L is a quasicoherent OY -algebra defined by the k[Y ]-algebra Λ and U =
p−1(V ) is an open affine in Y . The rational T -module L(U) = k[U ] ⊗k[Y ] Λ is
clearly a rational T -algebra. Hence, according to the previous remark, we have
canonical pairings

Hq(T,L(U))⊗k Hq′(T,L(U)) −→ Hq+q′(T,L(U)) = Γ(V,Hq+q′)

Finally, since the action of T on L(U) is k[V ]-linear one checks easily that the
Hochschild complex C∗(T,L(U)) is actually a differential graded k[V ]-algebra and
hence we actually have products

Γ(V,Hq ⊗OX
Hq′) = Hq(T,L(U))⊗k[V ] H

q′(T,L(U)) −→Hq+q′(T,L(U)) =

= Γ(V,Hq+q′)

Since these pairings for different V ’s are compatible one with another we get the
desired pairings of quasicoherent sheaves Hq ⊗OX

Hq′ −→ Hq+q′ .
To get products on the spectral sequence (1.9.0) we start with an arbitrary open

affine covering V : X =
⋃n

i=1 Vi and denote by U : Y =
⋃n

i=1 p
−1(Vi) =

⋃n
i=1 Ui

the induced open affine covering of Y . The spectral sequence (1.9.0) appears as the

hypercohomology spectral sequence defined by the C̆ech complex C∗(U ,L) (con-
sidered as a complex of rational T -modules). Since L is a sheaf of OY -algebras we
conclude immediately that C∗(U ,L) is a differential graded k-algebra with respect

to the usual product of C̆ech cochains:

(f ∪ f ′)(i0, ..., ip+p′) = f(i0, ..., ip)|Ui0∩...∩Ui
p+p′

· f ′(ip, ..., ip+p′)|Ui0∩...∩Ui
p+p′

Moreover the product maps Cp(U ,L) ⊗k Cp′(U ,L) −→ Cp+p′(U ,L) are easily seen
to be homomorphisms of rational T -modules.

The hypercohomology of T with coefficients in the complex of rational T -modules
C∗(U ,L) coincides with the cohomology of the bicomplex C∗(T,C∗(U ,L)). The lat-
ter bicomplex has a canonical structure of a differential bigraded algebra. Hence
both spectral sequences of this bicomplex have canonical multiplicative structures.
Looking on the second spectral sequence we conclude easily that the hypercoho-
mology of T with coefficients in C∗(U ,L) identifies as an algebra with H∗(T,Λ).
Finally looking on the first spectral sequence we conclude easily that the pairing
on E2 coincides with pairing in C̆ech cohomology of V defined by the pairing of
sheaves Hq ⊗OX

Hq′ −→ Hq+q′ and hence coincides with pairing in cohomology of

X defined by the pairing of sheaves Hq ⊗OX
Hq′ −→ Hq+q′ .

§ 2. Examples and applications

Throughout this section G will denote a connected smooth affine algebraic group
over a field k of positive characteristic p, and B will denote its Borel subgroup (thus
we assume that Borel subgroups in G exist). Let F r : G −→ G(r) be the r-th power
of the Frobenius map, where G(r) is the r-th Frobenius twist of G (see, for example,
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[F-S], §1). The kernel G(r) of F r is an infinitesimal group scheme of height r and

F r induces an isomorphism F r : G/G(r)
∼
−→ G(r). Our first goal in this section

is to show how the mashinery developed in §1 can be used to recover the spectral
sequence exibited in [S-F-B], Theorem 3.6, which played a crucial role in the proof
of the detection theorem for infinitesimal group schemes.

So let M be a rational G(r)-module. Since the quotient G/G(r) = G(r) is affine

we conclude that H∗(G(r),M) = H∗(G, IndGG(r)
M) (see [J], 1.5.12). Moreover,

according to the theorem of Clein, Parshall, Scott and van der Kallen (see [S-F-
B], 3.1) the latter cohomology group identifies with H∗(B, IndGG(r)

M). Denote the

induced module IndGG(r)
M by I. Thus I = (k[G]⊗kM)G(r) and this formula implies

readily that I is a module over a commutative ring k[G]G(r) = k[G(r)]. The k[G(r)]-
module structure and the B-module structure on I are compatible in the following
sence (which is somewhat different from the compatibility we required in § 1).
The multiplication map k[G(r)]⊗ I −→ I is a homomorphism of rational B-modules
provided one considers the left regular action of B on k[G(r)]. To achieve the desired
compatibility one can either change (as it was done in [S-F-B]) the k[G(r)]-module
structure on I using the automorphism of k[G(r)] induced by the automorphism
x 7→ x−1 of the scheme G(r) or (what’s equivalent) modify slightly the definition of
the induced module. In what follows we use the following (modified) definition of
the induced module:

IndGHM = (M ⊗k k[G])H

where H operates as given on M and operates via left regular representation on
k[G], the action of G on Ind M is induced by the right regular representation of G
on k[G].

We may apply now the construction of § 1 to the algebraic group T = B acting on
Y = G(r), k[G(r)]-module I on which B acts compatibly with its module structure
and the affine B-invariant morphism p : Y = G(r) −→ X = G(r)/B(r) = (G/B)(r).
Theorem 1.8 implies that we get quasicoherent sheavesHq on G(r)/B(r) = (G/B)(r)

and a spectral sequence

(2.0) Epq
2 = Hp((G/B)(r),Hq) =⇒ Hp+q(B, I) = Hp+q(G(r),M)

Proposition 2.1. The sheaf Hq coincides with the sheaf Hq(B(r),M) introduced
in [S-F-B] 3.5.1.

Proof. Recall that the sheaf Hq(B(r),M) was defined using the descence theory

starting with a quasicoherent OG(r) -module defined by the k[G(r)]-module
Hq(B(r), I), provided with the descence data which comes from the canonical action

of B(r) on Hq(B(r), I) - see [S-F-B] §3. Let V ⊂ (G/B)(r) be an open affine subset

and let U = p−1(V ) be its inverse image in G(r). The sections of Hq(B(r),M) over
V may be identified with the kernel of the map

k[U ]⊗k[G(r)] H
q(B(r), I)

∆−Id⊗k1k[B(r)]
−−−−−−−−−−→ (k[U ]⊗k[G(r)] H

q(B(r), I))⊗k k[B(r)]
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i.e. with Hq(B(r), k[U ] ⊗k[G(r)] I)B
(r)

. We show below in Corollary 2.3 that

Hq(B(r), k[U ]⊗k[G(r)]I) is an acyclic B(r)-module. Hence the Hochschild-Serre spec-

tral sequence degenerates providing natural identifications Hq(B(r), k[U ] ⊗k[G(r)]

I)B
(r)

= Hq(B, k[U ]⊗k[G(r)] I). In other words we have canonical identifications of

sections over any open affine subset V ⊂ (G/B)(r): Hq(B(r),M)(V ) = Hq(V ) and
hence the sheaf Hq(B(r),M) coincides with Hq.

Lemma 2.2. In notations of the proof of Proposition 2.1 for any rational B(r)-
module P the tensor product module k[U ]⊗k P is acyclic.

Proof. Note that the action of B(r) on k[U ] ⊗k P is k[V ]-linear and hence all
cohomology groups H∗(B(r), k[U ] ⊗k P ) are k[V ]-modules. Furthermore, since
k[U ] is a faithfully flat k[V ]-algebra the vanishing of H∗(B(r), k[U ] ⊗k P ) (for
∗ > 0) would follow from the vanishing of k[U ] ⊗k[V ] H

∗(B(r), k[U ] ⊗k P ) =

H∗(B(r), k[U ]triv ⊗k[V ] k[U ]⊗k P ). The cartesian diagram

U ×B(r)
µ

−−−−→ U

pr1





y

p





y

U
p

−−−−→ V

shows that the B(r)-module k[U ]triv ⊗k[V ] k[U ] may be identified with k[B(r)] ⊗k

k[U ]triv. Thus k[U ]triv⊗k[V ] k[U ]⊗k P is isomorphic to k[B(r)]⊗k k[U ]triv⊗k P and
the latter module is injective (see [J], ch. 1, 3.10) and hence acyclic.

Corollary 2.3. Let N be any k[U ]-module on which the group B act compatibly
with its action on k[U ] (given by the Frobenius homomorphism F r : B −→ B(r) and
the right regular action of B(r) on k[U ]). Then the B(r)-modules Hq(B(r), N) are
acyclic.

Proof. Consider first the special case N = k[U ]⊗k S, where S is a certain rational
B-module and B acts on N diagonally. Since the action of B(r) on k[U ] is trivial
we conclude immediately that Hq(B(r), N) = k[U ] ⊗k P , where P = Hq(B(r), S)

is a rational B(r)-module. Thus in this case our statement follows directly from
Lemma 2.2.

In the general case we note that according to our assumptions the multiplication
map k[U ] ⊗k N −→ N is a homomorphism of rational B-modules, which moreover
has a canonical B-equivariant section s : N −→ k[U ] ⊗k N , given by the formula
s(n) = 1⊗ n. Thus B-module N is a direct summand in the B-module k[U ]⊗k N
and the statement follows.

Proposition 2.1 shows that the second term and the limit of the spectral sequence
(2.0) may be identified with the second term and limit of the spectral sequence
exibited in [S-F-B], Therorem 3.6. Our next goal is to show that these two spectral
sequences actually coincide.



DETECTION THEOREM FOR FINITE GROUP SCHEMES 13

Theorem 2.4. The spectral sequence (2.0) coincides with the spectral sequence
constructed in [S-F-B] § 3.

Proof. Recall that the spectral sequence exibited in [S-F-B], theorem 3.6 coincides
with the Hochschild-Serre spectral sequence corresponding to the group extension

1 −→ B(r) −→ B
F r

−−→ B(r) −→ 1

and the rational G-module I = IndGG(r)
M . The results of [S-F-B] §3 were needed

to identify its second term with appropriate sheaf cohomology - see [S-F-B], Propo-
sition 3.4. Moreover the Hochschild-Serre spectral sequence may be constructed
in the following way. For any rational B-module P denote by J ∗(B,P ) the stan-
dard B-injective resolution of P . The complex J∗(B, I)B(r) consists of injective
B(r)-modules and its homology coincides with H∗(B(r), I). Let J∗,∗ be the Cartan-

Eilenberg resolution of J∗(B, I)B(r) . Then the Hochschild-Serre spectral sequence

is nothing but the first spectral sequence of the bicomplex (J∗,∗)B
(r)

.
Let V = {Vi}

n
i=1 be an affine open covering of the scheme (G/B)(r) and let

U = {Ui = p−1(Vi)}
n
i=1 be the induced open affine covering of G(r). Consider the

C̆ech complex C∗(U , I) defined by the quasicoherent OG(r)-module I = I∼ and
the covering U . Lemma 1.7 shows that complex C∗ = C∗(U , I) is a resolution of
I = I(G(r)). Since the functor J∗(B,−) is obviously exact we conclude further
that J∗(B,C∗) is a resolution of J∗(B, I). Denote by A the abelian category of
complexes of rational B(r)-modules and consider the bicomplex J∗(B,C∗)B(r) as a
complex in A under J∗(B, I)B(r) . This complex has the following properties.

Lemma 2.4.1. a)J∗(B,C∗)B(r) is a resolution of J∗(B, I)B(r) .
b) For any p taking p-th homology in the rows of the bicomplex J ∗(B,C∗)B(r) we
get a resolution of Hp(J∗(B, I)B(r)) = Hp(B(r), I).

Proof. The p-th term of the standard injective resolution Ip(B,P ) identifies with
P ⊗k k[B]⊗p ⊗k k[B] with the action of B trivial on all factors except the last
one on which it identifies with the right regular action. Thus Ip(B,P )(B(r)) =
P ⊗k k[B]⊗p ⊗k k[B(r)] and the resulting functor is obviously exact in P .

To prove the second statement note that Hp(J∗(B,Cm)B(r)) = Hp(B(r), C
m).

Moreover
Cm =

⊕

i0,...,im

k[Ui0 ∩ ... ∩ Uim ]⊗k[G(r)] I

Since the action of B(r) on I is k[G(r)]-linear we conclude from Lemma 1.5 that

Hp(B(r), C
m) =

⊕

i0,...,im

k[Ui0 ∩ ... ∩ Uim ]⊗k[G(r)] H
p(B(r), I)

Thus the complex Hp(B(r), C
∗) coincides with the C̆ech complex defined by the

covering U and a k[G(r)]-module Hp(B(r), I) and hence is a resolution of Hp(B(r), I)
according to Lemma 1.7.



14 ANDREI SUSLIN

Call a monomorphism of complexes X∗ i
−→ Y ∗ admissible provided it induces

injective maps on all cohomology groups. Call a short exact sequence of complexes

0 −→ X∗ i
−→ Y ∗

p
−→ Z∗ −→ 0

admissible in case i is an admissible monomorphism. Finally call a long exact
sequence of complexes admissible in case all the corresponding short exact sequences
are admissible. The following result is (apparently) well-known (and easy to verify),
we leave it as an exercise to the reader.

Lemma 2.4.2. a) An exact sequence of complexes

0 −→ X −→ X0 −→ X1 −→ . . .

is admissible iff for all p the corresponding cohomology sequence 0 −→ Hp(X) −→
Hp(X0) −→ Hp(X1) −→ . . . is exact.
b) Cartan-Eilenberg resolution of a complex X is nothing but its relative (with
respect to the class of admissible monomorphisms ) injective resolution in the abelian
category A.

Lemmas 2.4.1 and 2.4.2 show in particular that J∗(B,C∗)B(r) is a relative reso-
lution of the complex J∗(B, I)B(r) , whereas J∗,∗ is its relative injective resolution.
The standard comparison theorem for resolutions implies that there exists (a unique

up to homotopy) homomorphism of reolutions J∗(B,C∗)B(r)
F
−→ J∗,∗. Taking B(r)-

invariants we get a homomorphism of bicomplexes

J∗(B,C∗)B
FB(r)

−−−−→ (J∗,∗)B
(r)

which gives the induced homomorphisms on the corresponding spectral sequences.
The spectral sequence corresponding to the bicomplex on the left is exactly the
hypercohomology spectral sequence introduced in § 1, whereas the spectral sequence
corresponding to the bicomplex on the right coincides with the Hochschild-Serre
spectral sequence. To prove that the induced map of the spectral sequences is an
isomorphism we need one more Lemma.

Lemma 2.4.3. a) For all p and all m the B(r)-module Hp(J∗(B, (Cm))B(r)) =
Hp(B(r), C

m) is acyclic.
b) Let X∗ ∈ A be a bounded below complex such that all Xp and all Hp(X∗) are
acyclic B(r)-modules. Then all cycle and boundary modules Zp(X∗), Bp(X∗) are
acyclic as well. Moreover for such a complex we have canonical identifications

Hp(X∗B
(r)

) = Hp(X∗)B
(r)

.

Proof. As we saw in the proof of Lemma 2.4.1

Hp(B(r), C
m) =

⊕

i0,...,im

k[Ui0 ∩ ... ∩ Uim ]⊗k[G(r)] H
p(B(r), I)

Our first statement follows from this identification and Lemma 2.2.
The second statement is proved by an immediate induction on p.
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Corollary 2.4.4. The homomorphism of spectral sequences induced by the homo-

morphism of bycomplexes FB(r)

is an isomorphism.

Proof. According to Lemmas 2.4.1 and 2.4.3 for all p the homomorphism FB(r)

of bicomplexes defines a homomorphism of resolutions of a rational B(r)-module
Hp(B(r), I):

Hp(I∗(C0)B(r)) −−−−→ Hp(I∗(C1)B(r)) −−−−→ . . .




y





y

Hp(J∗,0) −−−−→ Hp(J∗,1) −−−−→ . . .

Moreover the top resolution consists of acyclic B(r)-modules, whereas the bottom
one is the injective resolution. The standard comparison for resolutions implies
readily that the induced map on complexes of B(r)-invariants is a quasiisomorphism.

Finally we describe the situation in which the spectral sequence of § 1 will be
used for the proof of the detection theorem. In conditions and notations introduced
at the beginning of this section assume further that π is a finite subgroup in B(k).
Let finally M be a rational πnG(r)-module. If we want to compute the cohomology
groups H∗(π n G(r),M) we may note that the quotient scheme π n G/π n G(r) =

G/G(r) = G(r) is affine and hence, using once again the Theorem of Clein, Parshall,
Scott and van der Kallen we get the following identifications:

H∗(π n G(r),M) = H∗(π n G, I) = H∗(π n B, I)

where I = IndπnG
πnG(r)

M is the corresponding induced module. Note further that the

same as before I is a module over the commutative ring k[π n G]πnG(r) = k[G(r)]
and the action of π nG on I is compatible with this module structure. Finally one
checks easily that the action of πnG on k[G(r)] which comes from the identification
k[π n G]πnG(r) = k[G(r)] looks as follows: the group G acts on k[G(r)] via the
composition of the Frobenius map and the right regular representation whereas the
group π acts by conjugation). We take X to be the quotient scheme of G(r) with
respect to the action of π n B(r) (where as before B(r) acts on G(r) via the right
regular representation and π acts by conjugation. Note that the quotient exists and
moreover we have a natural identification X = G(r)/(πnB(r)) = π\(G/B)(r), where
the action of π on (G/B)(r) = G(r)/B(r) by conjugation may be also identified with
the left regular action.This shows that the scheme X may be also identified with the
variety of double cosets: X = π\G(r)/B(r). The projection morphism p : G(r) −→ X
may be written as a composition G(r) −→ G(r)/B(r) = (G/B)(r) −→ π\(G/B)(r) and
hence is affine. According to Theorem 1.8 we get canonical quasicoherent sheaves
Hq on the scheme

X = G(r)/π n B(r) = π \ (G/B)(r)

and a spectral sequence

(2.5.0) Epq
2 = Hp(X,Hq) =⇒ Hp+q(π n B, I) = Hp+q(π n G(r),M)
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We are interested in the multiplicative structure of H∗(π n G(r),M) so we assume

that M = Λ is a rational π n G(r)-algebra. In this case I = IndπnG
πnG(r)

Λ is a

rational π n B-algebra and hence (according to the results of § 1) the spectral
sequence (2.5.0) has a canonical multiplicative structure. Since the cohomology
Hp(X,Hq) are trivial for p > dimX we conclude in the usual way (cf. [S-F-B], § 4)
that the kernel of the edge homomorphism

H∗(π n G(r),Λ)
ρ
−→ H0(Y,H∗)

is a nilpotent ideal in H∗(π n G(r),Λ). Thus we have established the following
result.

Theorem 2.5. A cohomology class z ∈ H∗(π n G(r),Λ) is nilpotent if and only if

its image in H0(Y,H∗) is.

Corollary 2.5.1. Assume that the cohomology class z ∈ H∗(πnG(r),Λ) = H∗(πn
B, I) has the property that for every affine open subset V ⊂ X with pull-back
U = p−1(V ) ⊂ G(r) the image of z under the canonical homomorphism

H∗(π n B, I)
ρV
−−→ H∗(π n B, k[U ]⊗k[G(r)] I)

induced by the homomorphism of the rational π nB-algebras I −→ k[U ]⊗k[G(r)] I is
nilpotent. Then z is itself nilpotent.

Proof. It suffices to note the restriction of the global section ρ(z) ∈ H0(X,H∗) to
the affine open subset V is an element in Γ(V,H∗) = H∗(π n B, k[U ] ⊗k[G(r)] I),

which according to the construction of the spectral sequence coincides with ρV (z).

Remark 2.5.2. The reason why Corollary 2.5.1 is useful is that cohomology
H∗(π nB, k[U ]⊗k[G(r)] I) is in many ways easier to understand than H∗(π nB, I)

since k[U ]⊗k[G(r)] I has a large ring of operators with respect to which the action of

πnB is linear – namely k[V ] = k[U ]πnB whereas for I itself the corresponding ring
of operators is trivial (coincides with k) since the variety X = π\G/B is projective.

§ 3. The Detection Theorem for π n G(r).

In this section we are going to prove the Detection Theorem for the finite group
scheme π n G(r), where π, B and G are as in § 2.

Theorem 3.1. Let G be a connected smooth affine algebraic group over a field k of
characteristic p, let B ⊂ G be a Borel subgroup in G and let π a finite p-subgroup
in B(k). Let finally Λ be an associative unital rational π n G(r)-algebra and let
z ∈ Hn(π nG(r),Λ) be a cohomology class which has the property that for any field
extension K/k and any elementary abelian subgroup scheme i : π′ × Ga(r),K ↪→
π nG(r),K the restriction i∗(zK) of zK to π′×Ga(r),K is nilpotent. Then z is itself
nilpotent.

Proof. We start with the following Lemma.
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Lemma 3.1.0. In the above notations and assumptions the detection theorem holds
for the group scheme π n B(r)

Proof. Denote by U the unipotent radical of B (this is a local notation – in the
main part of the proof U will denote something entirely different). Since π is a p-
subgroup in B(k) and T (k) has no p-torsion (where T = B/U is the corresponding
torus) we immediately conclude that π ⊂ U(k) and hence π n U(r) is a normal
subgroup in π n B(r) with the corresponding qoutient group being equal to T(r).
Since the group scheme T(r) has no cohomology in positive degrees (see [J], ch.
1, 4.3.) we conclude that the corresponding Hochschild-Serre spectral sequence
degenerates providing isomorphisms

H∗(π n B(r),Λ) = H∗(π n U(r),Λ)T(r) ⊂ H∗(π n U(r),Λ)

Thus the restriction map H∗(π n B(r),Λ) → H∗(π n U(r),Λ) is injective and to
finish the proof it suffices to note that for π n U(r) the detection theorem holds
according to the theorem of Chris Bendel [Be].

Corollary 2.5.1 shows that to prove the nilpotence of z it suffices to show that
for any open affine V ⊂ π \G(r)/B(r) the image of z ∈ Hn(π n G(r),Λ) = Hn(π n
B, Ind Λ) under the canonical homomorphism

Hn(π n B, Ind Λ)
ρV
−−→ Hn(π n B, k[U ]⊗k[G(r)] Ind Λ)

(where U = p−1(V ) ⊂ G(r)) is nilpotent.
To make the forthcoming computations more transparent we need the following

elementary facts about Frobenius twist.

Lemma 3.2. Let Y be any scheme of finite type over the field k of characteristic p.

Consider the Frobenius morphism Y
F r

−−→ Y (r). For an open subscheme W ⊂ Y (r)

denote by W (−r) the open subscheme W (−r) = (F r)−1(W ) ⊂ Y . Then we get
a canonical isomorphism (W (−r))(r) = W and the the restriction (F r

Y )|W (−r) :

W (−r) −→W coincides with F r
W (−r) .

Proof. We may obviously assume that r = 1 and the scheme Y = Spec A is affine.
Note that for any Y we have (according to definitions) a cartesian square

Y (1) −−−−→ Spec k

ΦY





y

Specf





y

Y −−−−→ Spec k

where f : k −→ k is the Frobenius embedding f(λ) = λp. From this we readily
conclude that for any morphism s : W → Y of schemes over k the following square
is cartesian

W (1) s(1)
−−−−→ Y (1)

ΦW





y

ΦY





y

W
s

−−−−→ Y
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The previous remark implies in particular that for an open subscheme W ⊂ Y
the scheme W (1) coincides with the open subscheme (ΦY )−1(W ) of Y (1). Thus
we get two operations Φ−1Y and F−1Y relating open subschemees in Y and Y (1).
We have to show that these two operations are mutually inverse bijections. Since
both operations commute with taking finite unions and intersections it suffices to
consider their action on principal open subschemes. Start with an open subscheme
W = Ya ⊂ Y (a ∈ A). Then F−1Y (Φ−1Y (W )) = Yap = Ya = W . Start with an open

subscheme U = (Y (1))b ⊂ Y (1) (b ∈ A⊗f k). Write b =
∑

ai ⊗f λi for appropriate

ai ∈ A, λi ∈ k. In this case Φ−1Y (F−1Y (U)) is the principal open defined by the
element

∑

λia
p
i ⊗f 1 = bp and the statement follows.

Lemma 3.2.1. In conditions and notations of Lemma 3.2 an open subscheme
W ⊂ Y (r) is affine iff W (−r) is affine.

Proof. If W (−r) is affine then W = (W (−r))(r) is obviously also affine. On the other
hand if W is affine then W (−r) is affine as well since the morphism F r : Y → Y (r)

is finite.

Lemma 3.2.2. Let π be a finite group acting (on the left) on a quaiprojective
scheme Y . Then we get an induced action of π on Y (r) and furthermore π \Y (r) =
(π \ Y )(r).

Proof. The first statement is obvious. To prove the second one it suffices obviously
to treat the case when Y = Spec A is an affine scheme. In this case our statement
is equivalent to the relation (A⊗f k)π = Aπ ⊗f k which follows from the fact that
−⊗f k is an exact functor.

Denote by I• the standard πnG(r)-injective resolution of Λ. Thus In = Λ⊗k[πn
G(r)]

⊗(n+1) with the right regular action of π n G(r) on the last tensor factor. The
differential in I• is given by the formula (in which we identify In with Mor((π n
G(r))

×(n+1),Λa) -cf. [J] ch. 1, 3.3).

df(g0, ..., gn+1) = g0f(g1, ..., gn+1) +

n+1
∑

i=1

(−1)if(g0, ..., gi−1gi, ..., gn+1)

Here A is an arbitrary commutative k-algebra, gi ∈ (π n G(r))(A) and we utilize
left exponential notation for the action of π n G(r) on Λ. Note that I• is a special
case of the complex ( which we denote C•(Λ, π n G(r), Z)) = C•k(Λ, π n G(r), Z))
defined for every affine scheme Z provided with the (left) action of π n G(r). The
terms of this complex have the form

Cn(Λ, π n G(r), Z) = Λ⊗ k[π n G(r)]
⊗(n) ⊗ k[Z]

and the differential is given by essentially the same formula as above but where we
use the left action of π nG(r) on Z in the last summand. Note further that for any
scheme Z provided with an action of π n G(r) the complex C•(Λ, π n G(r), Z) is
a differential graded k-algebra with respect to the product operation given by the
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formula (in which we use the same identification Cn(Λ, π n G(r), Z) = Mor((π n
G(r))

×n × Z,Λa) as above)
(3.3.0)
(f∪f ′)(g1, ..., gn+m, z) = f(g1, ..., gn, gn+1 ·...·gn+m ·z) · g1·...·gnf ′(gn+1, ..., gn+m, z)

Here A is an arbitrary commutative k-algebra, gi ∈ (π n G(r))(A), z ∈ Z(A) and
we utilize left exponential notation for the action of π n G(r) on Λ. Since the

induction functor Ind = IndπnG
πnG(r)

is exact and takes injectives to injectives we

conclude that Ind I• is an injective resolution of the rational π nG-module Ind Λ.
Moreover since Ind k[π n G(r)] = k[π n G] we conclude that the terms of this

resolution have the form Ind In = Λ⊗ (k[πnG(r)])
⊗n⊗k[πnG]. The presence for

any two rational π n G(r)-modules M,M ′ of the natural homomorphism Ind M ⊗
Ind M ′ −→ Ind (M ⊗M ′) implies readily that Ind I• inherits a structure of the
differential graded algebra. Moreover a straightforward verification shows that this
DGA coincides with C•(Λ, π n G(r), π n G). We note also that Ind I• is not just
a differential graded algebra over k but actually a differential graded algebra over
k[π n G]πnG(r) = k[G]G(r) = k[G(r)].

Let V be an open affine in X = π \ G(r)/B(r) and let W and U denote its
inverse images to G(r)/B(r) = (G/B)(r) and G(r) respectively. Denote further by
V (−r) ⊂ π \G/B,W (−r) ⊂ G/B and U (−r) ⊂ G the open affines corresponding to
V,W and U according to Lemma 3.2.

According to what was said above we have to compute the image of z in Hn(πn
B, k[U ] ⊗k[G(r)] Ind Λ). To compute the latter cohomology group we note that

k[U ]⊗k[G(r)] Ind I• is a resolution of the rational πnB-module k[U ]⊗k[G(r)] Ind Λ.
Moreover Lemma 3.4 below shows that this resolution consists of acyclic π n B-
modules.

Lemma 3.4. Let M be an injective π nG(r)-module. Then k[U ]⊗k[G(r)] Ind M is
an acyclic π n B-module.

Proof. It clearly suffices to treat the special case M = k[π n G(r)]. In this case

Ind M = k[π n G] = k[G]×π. The action of the group G here is componentwise
and the action of π looks as follows:

(τ · f)σ = fτ
στ

where for a function f ∈ k[G] we denote by f τ the conjugated function f τ (g) =
f(τ−1gτ). The identification of k[G(r)] = k[G]G(r) with k[π n G]πnG(r) associates
to a G(r)-invariant function f ∈ k[G] a π n G(r)-invariant function on π n G with

σ-component equal to fσ−1

. Thus the action of the ring k[G(r)] on k[G]×π is
componentwise and the action on the σ-component coincides with multiplication

by fσ−1

. Since the action of k[G(r)] on k[G]×π is componentwise we conclude that

k[U ]⊗k[G(r)] k[π n G] =
⊕

σ∈π

k[U ]σ ⊗k[G(r)] k[G]
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where k[U ]σ coincides with k[U ], but has a new k[G(r)]-algebra structure given by

the homomorphism k[G(r)]
f 7→fσ

−1

−−−−−→ k[G(r)] −→ k[U ]. The action of the group B(r)
on k[π n G] is k[G(r)]-linear and hence

H∗(B(r), k[U ]⊗k[G(r)] k[π n G]) = k[U ]⊗k[G(r)] H
∗(B(r), k[π n G]) = 0 for ∗ > 0

Where the vanishing of H∗(B(r), k[π n G]) follows from [J], ch.1, 4.12 and 5.13.

Furthermore the B(r)-module H0(B(r), k[U ] ⊗k[G(r)] k[π n G]) is acyclic according

to Corollary 2.3 and hence k[U ]⊗k[G(r)] k[π n G] is an acyclic B-module. Finally

H0(B, k[U ]⊗k[G(r)] k[π n G]) =
⊕

σ∈π

H0(B, k[U ]σ ⊗k[G(r)] k[G]))

This is an induced and hence acyclic π-module. Note for future use that we have
also established the following formula:

H0(π n B, k[U ]⊗k[G(r)] k[π n G]) = H0(B, k[U ]⊗k[G(r)] k[G]) = H0(B, k[U (−r)])

= k[W (−r)](3.4.0)

Here at the last stage of computation we used the following result

Lemma 3.4.1. Let W ⊂ G/B be an open affine subset. Denote by U its inverse
image in G. Then U is also affine and the canonical map k[W ] → k[U ]B is an
isomorphism.

Proof. The fact that U is affine is proved in [J], ch. 1, 5.7. To prove the second state-
ment we note that since k[U ] is a faithfully flat k[W ]-algebra (see[J], ch. 1, 5.7) it
suffices to show that the induced homomorphism k[U ] −→ k[U ]⊗k[W ]H

0(B, k[U ]) =

H0(B, k[U ]triv ⊗k[W ] k[U ]) is an isomorphism. The Cartesian diagram

U ×B
µ

−−−−→ U

pr1





y





y

U −−−−→ W

shows that B-module k[U ]triv⊗k[W ] k[U ]) identifies canonically with k[U ]triv⊗k[B]

and hence H0(B, k[U ]triv ⊗k[W ] k[U ]) = H0(B, k[U ]triv ⊗ k[B]) = k[U ].

Lemma 3.4 implies that H∗(π nB, k[U ]⊗k[G(r)] Ind Λ) coincides with the coho-

mology of the differential graded k[V ]-algebra J• = (k[U ] ⊗k[G(r)] Ind I•)πnB .

According to [S-F-B] Proposition 4.2 to verify that the cohomology class t =
ρV (z) ∈ Hn(J•) is nilpotent it suffices to check that for every point v ∈ V
the image t(v) of t in Hn(k(v) ⊗k[V ] J

•) is nilpotent. Note further that Jn =

Λ ⊗ k[π n G(r)]
⊗n ⊗ (k[U ] ⊗k[G(r)] k[π n G])πnB . Applying (3.4.0) we get the fol-

lowing formula for Jn:

Jn = Λ⊗ k[π n G(r)]
⊗n ⊗ k[W (−r)]
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which readily implies that the DGA J• coincides with C•(Λ, π n G(r),W
(−r)),

where we use implicitely the obvious fact that W (−r) is stable with respect to the
left action of π n G(r) on G/B.

Fix a point v ∈ V and tensor J• with k(v) over k[V ]. In this way we get a
differential graded k(v)-algebra J•(v) = k(v)⊗k[V ] J

•. The terms of this DGA look
as follows:

Jn(v) = Λ⊗ k[π n G(r)]
⊗n ⊗ k(v)[W (−r)

v ] = Λk(v) ⊗k(v) k(v)[π n G(r)]⊗n⊗k(v)

⊗k(v) k(v)[W (−r)
v ]

where W
(−r)
v denotes the fiber of the finite morphism W (−r) F r

−−→W −→ π \W = V
over the point v ∈ V .

Fix an algebraic closure K of k(v) and denote by v the corresponding geometric
point Spec K −→ Spec k(v) −→ V . Finally extend scalars in the differential graded
algebra J•(v) from k(v) to K, thus getting a DGA J•(v) = K ⊗k(v) J

•(v) over K.
The terms of this DGA are of the form

Jn(v) = ΛK ⊗K K[π n G(r)]
⊗n ⊗K K[W

(−r)
v ]

where W
(−r)
v denotes the fiber of the finite morphism W (−r) F r

−−→W
q
−→ V = π \W

over the geometric point v. An easy computation shows that the DGA J •(v)

coincides with C•K(ΛK , π n G(r),W
(−r)
v ). In particular the products in J•(v) are

given by the formula
(3.3.1)
(f∪f ′)(g1, ..., gn+m, w) = f(g1, ..., gn, gn+1 ·...·gn+m ·w)·g1·...·gnf ′(gn+1, ..., gn+m, w)

where this time A is an arbitrary commutative K-algebra, gi ∈ (π n G(r))(A), w ∈

W
(−r)
v (A).

Note that all terms of J•(v) are modules over K[Wv] (even over K[W
(−r)
v ]),

however J•(v) is not a DGA over K[Wv] (K[Wv] is not in the center of J•(v)
and does not consist of cocycles). Denote by w1, ..., wn the (closed) points of Wv.
Since the action of π on the set of closed points of Wv is transitive, for every point
w ∈Wv the extension field k(w) is normal over k(v) and canonical homomorphism
Stabπ(w) −→ Gal(k(w)/k(v) is surjective (see [Bou],?) one concludes easily (see
[SGA], ex. 5, sec. 2 or [S-V] Lemma 5.1) that the action of π on the set {w1, ..., wn}
is still transitive. Denote finally by I the ideal of K[Wv], consisting of functions
vanishing at all points wi. Thus I is a nilpotent ideal in K[Wv] and K[Wv]/I =
∏

i K(wi) =
∏

i K.

Lemma 3.5. The left ideal J•(v) · I is actually a nilpotent two-sided Differential
Graded Ideal (DGI).

Proof. To prove the statement we have to rewrite the formula defining the product
in the DGA J•(v) in a more algebraic way. To do so we define the following
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operations on cochains. Given a pair of integers n,m and cochains f ∈ Jn(v) =
Mor((π n G(r))

×n ×Wv,ΛK,a), f ′ ∈ Jm(v) = Mor((π n G(r))
×m ×Wv,ΛK,a) we

define two (n + m)-dimensional cochains Pn,m(f), Qn,m(f ′) via the formula

Pn,m(f)(g1, ..., gn+m, w) = f(g1, ..., gn, gn+1 · ... · gn+m · w)

Qn,m(f ′)(g1, ..., gn+m, w) = g1·...·gnf ′(gn+1, ..., gn+m, w)

It’s clear from the above definition that the homomorphism Pn,m : ΛK ⊗ K[π n
G(r)]

⊗n ⊗ K[Wv] −→ ΛK ⊗ K[π n G(r)]
⊗(n+m) ⊗ K[Wv] is induced by the homo-

morphism of commutative K-algebras K[Wv] −→ K[(π n G(r))
×m ×Wv] = K[(π n

G(r))]
⊗m ⊗K[Wv], corresponding to the multiplication morphism (π n G(r))

×m ×

Wv −→ Wv, whereas the homomorphism Qn,m : ΛK ⊗K[π n G(r)]
⊗m ⊗K[Wv] −→

ΛK ⊗ K[π n G(r)]
⊗(n+m) ⊗ K[Wv] is induced by the iterated diagonal morphism

∆ : Λ −→ Λ⊗k[πnG(r)]
⊗n corresponding to the rational πnG(r)-module Λ. Using

these operations P and Q we may rewrite the formula for f ∪ f ′ in the following
form

f ∪ f ′ = Pn,m(f) ∗Qn,m(f ′)

where ∗ on the right denotes the usual product operation on the algebra ΛK⊗K[πn
G(r)]

⊗(n+m) ⊗K[Wv]. An immediate verification shows Jm(v) · Ik = ΛK ⊗K[π n
G(r)]

⊗n ⊗ Ik. Moreover since the ideals Ik are stable with respect to the action of
π n G(r) (note that G(r) acts trivially on W and hence on Wv and I is obviously
stable with respect to the action of the discrete group π) we conclude easily from
the above formulae for P and Q that P (Jn(v) · Ik) ⊂ Jn+m(v) · Ik, Q(Jm(v) · Ik) ⊂
Jn+m(v) · Ik. The obvious formula (Jn+m(v) · Ik) ∗ (Jn+m(v) · I l) = Jn+m(v) · Ik+l

and the nilpotence of I show that J•(v) · I is a nilpotent two-sided ideal. To show
that this ideal is a DGI it suffices to check that d(f) ∈ J1(v) · I for any function
f ∈ I, which is straightforward from the above computations and definitions.

Remark 3.5.1. If we try to replace I by the corresponding ideal I ′ ⊂ K[W
(−r)
v ]

the proof won’t go since the ideal I ′ is not stable with respect to the action of G(r).

Lemma 3.5 shows that to verify nilpotence of t(v) ∈ H∗(J•(v)) we may reduce
J•(v) modulo the ideal J•(v)·I. Reducing J•(v) modulo J•(v)·I amounts to replac-

ing the tensor factor K[W
(−r)
v ] appearing in Jn(v) by

K[W
(−r)
v ]/I =

∏

i K[W
(−r)
wi ], where W

(−r)
wi denotes the fiber of the finite morphism

W (−r) F r

−−→ W over wi. We need to know the structure of this rational π n G(r)-
module. To do so we need to figure out the fibers of the Frobenius morphism
F r : G/B −→ (G/B)(r) = G(r)/B(r).

Lemma 3.6. Let g ∈ G(k) be a rational point and let g(r) be its image in G(r).
Then the fiber of the Frobenius morphism F r : G/B −→ G(r)/B(r) over the rational
point g(r) ·B(r) ∈ G(r)/B(r) identifies canonically with G(r)/gB(r)g

−1.

Proof. Note that the scheme G(r)/B(r) = (G/G(r))/(B/B(r)) may be identified
with G/B · G(r). This identification implies readily that the following diagram of
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schemes is Cartesian

G/B(r) −−−−→ G/G(r) = G(r)




y





y

G/B −−−−→ G/B ·G(r) = G(r)/B(r)

Hence the fiber of the bottom arrow over g(r) ·B(r) coincides with the fiber of the
top arrow over g(r). Finally the fiber of the top arrow over g(r) coincides with
G(r)/gB(r)g

−1 as one sees from the Cartesian diagram (see [S-F-B] (4.1.1)):

G(r)/gB(r)g
−1 −−−−→ Spec k

x7→xg





y g(r)





y

G/B(r) −−−−→ G/G(r) = G(r)

Corollary 3.6.1. In conditions and notations of Lemma 3.6 let h ∈ G(k) be an-
other rational point. Then we have a commutative diagram relating the fibers of F r

over the rational points g(r), (hg)(r) ∈ G(r)

G(r)/gB(r)g
−1 ∼

−−−−→ (G/B)g(r)

Ad(h)





y
h





y

G(r)/hgB(r)(hg)−1
∼

−−−−→ (G/B)(hg)(r)

Here the horisontal arrows are the identifications of Lemma 3.6, the left vertical
arrow is conjugation by h and right vertical arrow is left multiplication by h.

Proof. This follows immediately from the explicit formulae for the maps involved
in the above diagram.

Proposition 3.7. The rational (π n G(r))K-module K[W
(−r)
v ]/I =

∏

i K[W
(−r)
wi ]

identifies with K[π n G(r)]
π1ngB(r),Kg−1

, where π1 is the stabilizer of the point w1
and g ∈ G(K) is an appropriate element.

Proof. Since the field K is algebraically closed and the morphism F r : G/B −→

(G/B)(r) is purely inseparable, the point w1 lifts canonically to a point w
(−r)
1 ∈

G/B. Using once again the fact that K is algebraically closed we conclude that

w
(−r)
1 admits a lifting g ∈ G(K), i.e. w

(−r)
1 = g ·B, w1 = g(r) ·B(r). According to

Lemma 3.6 for any σ ∈ π the fiber (G/B)σw1 identifies with G(r),K/σgB(r),K(σg)−1.

So
∐

i W
(−r)
wi =

∐

σ∈π/π1
G(r),K/σgB(r),K(σg)−1 = (πnG(r),K)/(π1ngB(r),Kg−1).

Finally Corollary 3.6.1 implies easily that this isomorphism is compatible with the
left action of π n G(r),K on schemes involved.
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Corollary 3.7.1. The DGA J•(v)/J•(v) · I identifies with (I•⊗k K)π1ngB(r),Kg−1

and hence its cohomology identifies with H∗(π1 n gB(r),Kg−1,ΛK).

End of the Proof of the Theorem 3.1 We can sum up all the previous
computations by saying that to verify the nilpotence of the cohomology class z ∈
Hn(π n G(r),Λ) = Hn(π n B, Ind Λ) it suffices to check that for any open affine

V ⊂ π \G(r)/B(r) and any geometric point v : Spec K −→ V the image of z under
the natural homomorphism

Hn(π n G(r),Λ) = Hn(π n B, Ind Λ) −→ Hn(π n B, k[U ]⊗k[G(r)] Ind Λ) =

= Hn(C∗(Λ, π n G(r),W
(−r))) −→ Hn(C∗K(ΛK , π n G(r),K ,W

(−r)
v ) −→

−→ Hn(C∗K(ΛK , π n G(r),K ,
∐

i

W (−r)
wi

) = Hn(π1 n gB(r),Kg−1,ΛK)

is nilpotent. An easy computation shows that the above composition takes z to
(zK)|π1ngB(r)g−1 . Furthermore the resulting cohomology class of π1 n gB(r),Kg−1

still have the same defining property : it restricts nilpotently to all elementary
abelian subgroups and hence is nilpotent according to Lemma 3.1.0.

§4. The General Case of the Detection Theorem

Theorem 4.1. Let G/k be a finite group scheme over a field k of positive char-
acteristic p. Let further Λ be an associative unital rational G-algebra and let
z ∈ Hn(G,Λ) be a cohomology class. Assume that for any field extension K/k
and any elementary abelian subgroup scheme ν : π0 ×Ga(r),K ↪→ GK the pull-back
ν∗(zK) ∈ Hn(π0 ×Ga(r),K ,Λ) is nilpotent. Then z is nilpotent itself.

Proof. Extending scalars we may obviously assume that the base field k is alge-
braically closed. In this case the group scheme G identifies canonically with the
semidirect product G = π n G0 where π = G(k) is a finite discrete group and G0
is the connected component of G. The group scheme G0 is obviously infinitesimal
and we denote by r its height. Denote by π′ the Sylow p-subgroup in π. The usual
transfer argument (see [Be], Lemma 5.4) shows that the restriction homomorphism

H∗(π n G0,Λ)
res
−−→ H∗(π′ n G0,Λ) is injective. Thus in what follows we may as-

sume that G = π n G0 where π is a finite p-group and G0 is an infinitesimal group
scheme of height r. Embed G into GLn = GLn,k with n large enough.

Lemma 4.2. There exists a Borel subgroup B ⊂ GLn such that π ⊂ B(k).

Proof. The embedding G ↪→ GLn makes kn into a rational G-module and in partic-
ular into a π-module. Since π is a p-group and char k = p the only simple π-module
is the trivial π-module k. This implies readily the existence of a flag of π-invariant
subspaces

0 = W0 ⊂W1 ⊂ . . . ⊂Wn = kn dimkWi = i

such that the action of π on all subsequent factors Wi/Wi−1 is trivial. Now it
suffices to take B to be the Borel subgroup in GLn determined by this flag.
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Since G0 was assumed to be of height r we conclude that G0 ⊂ GLn(r) and hence

G ⊂ G′ = πnGLn(r). Set Λ′ = IndG
′

G Λ. Then Λ′ is an associative unital G′-algebra.
Moreover H∗(G,Λ) = H∗(G′,Λ′) as graded algebras. Denote by z′ ∈ H∗(G′,Λ′)
the cohomology class corresponding to z under the above identification. In view
of Theorem 3.1 to show that z′ is nilpotent it suffices to show that for any field
extension K/k and any elementary abelian subgroup scheme ν ′ : π0×Ga(s),K ↪→ G′K
the pull-back (ν ′)∗(z′K) is nilpotent. This fact is proved in exactly the same way
as the corresponding statement was proved for infinitesimal groups in [S-F-B] ,
Theorem 4.3. For the sake of completeness we remind the proof.

Extending scalars and replacing GLn,k by GLn,K it suffices to show that for any
elementary abelian subgroup scheme ν ′ : π0 × Ga(s) ↪→ π n GLn(r) the restriction
of z′ to π0×Ga(s) is nilpotent. Denote π0×Ga(s) by H ′ and set H = H ′×G′ G, so
that we have a cartesian diagram of finite group schemes

H
ν

−−−−→ G




y





y

H ′ ν′
−−−−→ G′

Note that H is a closed subgroup scheme in an elementary abelian group scheme H ′

and hence is elementary abelian as well. Consider the homomorphism of rational
H ′-modules

θ : Λ′ = IndG
′

G (Λ) −→ IndH
′

H (Λ)

determined by adjointness of Ind and Res. This homomorphism is surjective. To
prove this consider the commutative diagram of schemes:

H ′ ν′
−−−−→ G′

pH





y

pG





y

H ′/H
ν′

−−−−→ G′/G

Note that there are canonical quasicoherent sheaves ÃLG(Λ) on G′/G and ÃLH(Λ)

on H ′/H with the property that Γ(G′/G, ÃLG(Λ)) = IndG
′

G (Λ),Γ(H ′/H, ÃLH(Λ)) =

IndH
′

H (Λ) and Γ(G′, p∗G(ÃLG)) = k[G′] ⊗ Λ,Γ(H ′, p∗H(ÃLH)) = k[H ′] ⊗ Λ - see [J],
ch.1, 5.8 or [S-F-B], §3. Thus p∗H(ν′)∗(ÃLG) = (ν′)∗p∗G(ÃLG) is a quasicoherent OH′ -
module corresponding to the k[H ′]-module k[H ′] ⊗ Λ and the same is true for
p∗H(ÃLH). This shows that the canonical homomorphism of quasicoherent OH′/H -
modules (ν′)∗(ÃLG) −→ ÃLH becomes an isomorphism when we apply p∗H to it. Since
the morphism pH is faithfully flat we conclude that ÃLH = (ν′)∗(ÃLG). Taking global

sections of both sheaves we see that IndH
′

H (Λ) = k[H ′/H]⊗k[G′/G]Ind
G′

G (Λ). Finally

it’s not hard to see that H ′/H
µ′

−→ G′/G is a closed embedding (see Theorem 4.3
below) and hence the homomorphism k[G′/G] −→ k[H ′/H] is surjective
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As was seen above the homomorphism θ is actually a homomorphism of k[G′/G]-
algebras which may be identified with the composition

IndG
′

G (Λ) −→ k[H ′/H]⊗k[G′/G] Ind
G′

G (Λ) = IndH
′

H (Λ)

Since k[G′/G] = k[GLn(r)/G0] is a local artinian k-algebra we conclude that the
ideal J = Ker(k[G′/G] −→ k[H ′/H] is nilpotent and hence the ideal I = Ker θ =

IndG
′

G (Λ) · J is nilpotent as well. Now consider the following portion of the exact
cohomology sequence:

Hn(H ′, I) −→ Hn(H ′,Λ′) −→ Hn(H ′, IndH
′

H Λ) = Hn(H,Λ)

To prove that (ν ′)∗(z′) ∈ Hn(H ′,Λ′) is nilpotent we first observe that its image in
Hn(H,Λ) is nilpotent by our original hypothesis on z for this image equals ν∗(z).
Thus, replacing z by its appropriate power, we may assume that ν ′

∗
(z′) is in the

image of Hn(H ′, I). Since I is nilpotent the ring without unit H∗(H ′, I) is also
nilpotent and hence ν ′

∗
(z′) is nilpotent.

Theorem 4.3. Let ν ′ : H ′ −→ G′ be a homomorphism of affine group schemes over
k. Let further G ⊂ G′ be a subgroup scheme and let H denote its inverse image in
H. The canonical morphism of quotient schemes ν ′ : H ′/H −→ G′/G is always a
locally closed embedding. If all group schemes involved are finite then ν ′ is a closed
embedding.

This statement is of too general character not to be well-known. Unfortunately
I was not able to find a reference so I will provide a detailed proof of this Theorem
in the next section. This proof (worked out jointly with Eric Friedlander) follows
closely the proof presented in [Wa] of a theorem that says that any homomorphism
of affine group schemes with trivial kernel is a closed embedding. Right now I would
note only that the second statement of the above theorem is an obvious corollary
of the first one since for finite group schemes all morphisms appearing above are
obviously finite.

§5. Proof of the Theorem 4.3.

In this section we are going to provide the proof of the theorem 4.3. We start
with few preliminary definitions and remarks.

Definition 5.0. We’ll be saying that the morphism f : Y → X is a weak epimor-
phism iff the closed image of Y in X coincides with X, i.e. iff the associated map
of sheaves of rings f∗ : OX → f∗(OY ) is injective.

Note that a weak epimorphism need not be surjective even in the set theoretical
sence. The best we can say is that f(Y ) contains an open dense subset of X.

Theorem 5.1. Let G be an affine group scheme over an algebraically closed field
k. Let further X/k be a scheme provided with an action of G and let x ∈ X(k) be
a k-rational point of X. Assume that the translation map mx : G→ X g 7→ g · x
is weakly surjective then the mx is flat and, in particular its image is open in X.
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Proof. Note that the image of mx coincides with the orbit of x and hence is locally
closed in X (see [Hu] ch. 2, 8.3) since on the other hand the closure of this image
coincides with X we conclude that U = mx(G) is open in X. Replacing X by U
we may assume in the future that the map mx is surjective i.e. the action of G
on X is transitive. We first consider the case when X is reduced. In this case our
statement follows from the following more general result.

Lemma 5.2. Let f : Y → X be a G-equivariant morphism of schemes provided
with an action of G. Assume that the scheme X is reduced and the action of G on
X is transitive. Then f is flat.

Proof. Note that every morphism to an integral scheme is flat in the neighbourhood
of the generic point. Thus there exists an open dense subset V ⊂ X such that f is
flat over V . Since the morphism f is G-equivariant we conclude further that f is
flat over g · V for any g ∈ G(k). Finally ∪g∈G(k)g · V = X since the action of G on
X is transitive and hence f is everywhere flat.

Next we consider the case when X has only one point (namely x), i.e. k[X] is
a finite dimensional local k-algebra. in this case we show that the k[X]-algebra
k[G] is actually a free k[G]-module. Denote by I the maximal ideal of k[X], which
obviously is nilpotent. Set Gx = StabG(x) = G×X Spec k (where x : Spec k → G is
the unique point of X. One checks immediately that Gx is a closed subgroup scheme
in G, moreover k[Gx] = k[G]/I · k[G]. Choose a family of functions {fj ∈ k[G]}j∈J
such that their restrictions f j to Gx form a basis of k[Gx] over k.

Lemma 5.3. In conditions and notations introduced above the functions {fj}j∈J
form a basis of k[G] over k[X].

Proof. Consider the homomorphism of k[X]-modules

f :
⊕

j∈J

k[X]
ej 7→fj
−−−−→ k[G]

If we reduce both sides modulo I, then f becomes an isomorphism since f j form a
basis of k[Gx] = k[G]/I · k[G] over k[X]/I = k. Thus denoting by C the cokernel
of f we conclude that I · C = C and hence C = 0 since I is nilpotent. This shows
that f is an epimorphism. To show that f is also a monomorphism we tensor it
with k[G] over k[X] and consider the diagram

⊕

j∈J k[X]
f

−−−−→ k[G]




y





y

⊕

j∈J k[G]
1k[G]⊗k[X]f
−−−−−−−→ k[G]⊗k[X] k[G]

where the vertical arrows are canonical maps induced by the k-algebra homomor-

phism k[X]
(mx)

∗

−−−−→ k[G]. Since the morphism mx was assumed to be weakly sur-

jective we conclude that k[X]
(mx)

∗

−−−−→ k[G] is a monomorphism and hence the left
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vertical arrow in the above diagram is a monomorphism. To conclude that the
top horizontal arrow is a monomorphism it suffices now to verify that the bottom
horizontal arrow is a monomorphism. To do so we note that the bottom horizon-
tal arrow is an epimorphism (since f is an epimorphism) and moreover becomes
an isomorphism if we reduce modulo a nilpotent ideal I · k[G]. To conclude now
that the bottom horizontal arrow is actually an isomorphism we observe that the
k[G]-module k[G] ⊗k[X] k[G] = k[G ×X G] is actually free and hence the bottom
horizontal arrow is a split epimorphism. In fact we have a canonical isomorphism
of schemes over G: G×X G = G×Gx and hence an isomorphism of k[G]-algebras
k[G] ⊗k[X] k[G] = k[G ×X G] = k[G] ⊗k k[Gx]. Since 1G ⊗k[X] f splits and also
becomes an isomorphism being reduced modulo I · k[G] we conclude that its kernel
K satisfies the property K = I ·K and hence K = 0 since I is nilpotent.

We now treat the general case. Assume first that char k = 0. Since every
group scheme over a field of characteristic zero is reduced we conclude first that
OG has no nontrivial nilpotents. According to our assumptions the homomorphism
OX −→ (mx)∗(OG) is a monomorphism, which implies that the sheaf OX also has no
nontrivial nilpotents, i.e. the scheme X is reduced. However this case was settled
above in Lemma 5.2.

Assume now that char k = p > 0. For any scheme X we denote by X [n] the
closed image of X under the Frobenius morphism F n : X → X(n).

Lemma 5.4. a) If X is reduced then X(n) is reduced as well and X [n] = X(n) for
all n.
b) For any X/k there exists N ≥ 0 such that X [n] is reduced for all n ≥ N .

Proof. In both cases it clearly suffices to treat the case of affine schemes. If X =
Spec A is affine then X(n) = Spec A(n), where the k-algebra A(n) may be identified

with A with a new k-algebra structure, given by the formula λ∗a = λp−na(λ ∈ k, a ∈
A). Moreover after this identification the Frobenius homomorphism F n : A(n) −→ A
coincides with the raising to the power pn. The first statement is now obvious: if A
is reduced A(n) is also reduced and the Frobenius homomorphism F n : A(n) −→ A
is injective. To prove the second statement we note that there exists n ≥ 0 such
that ap

n

= 0 for all a from the nilradical of A and hence k[X [n]] which may be
identified with the subring of A = k[X] consisting of pn-th powers of all elements
of A is reduced.

End of the Proof of the Theorem 5.1 We assume that char k = p > 0 and
the action of G on X is transitive (see beginning of the proof). Pick up an integer
n such the scheme Y = X [n] is reduced and denote by y the image of x in Y . The
action of G on X determines an action of G(n) on X(n) and hence determines also an
action (via the Frobenius homomorphism F n : G −→ G(n)) of G on X(n). Moreover
the Frobenius map Fn : X −→ X(n) is G-equivariant and hence the closed image
X [n] of X in X(n) is a G-invariant closed subscheme. Note next that the morphism

my : G→ Y may be written as a composition G
mx−−→ X

Fn

−−→ Y . Since both arrows
are weak epimorphisms we conclude immediately that their composition is a weak
epimorphism as‘well. Finally the morphism F n : X −→ Y gives a bijection on the
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set of k-points from which we conclude that the action of G on Y is transitive as
well. Lemma 5.2 implies that both my and Fn : X → Y are flat. Thus we get a
diagram of G-equivariant morphisms

G
mx−→ X

my ↘ ↙ Fn

Y

with flat diagonals. Using once again the fact that G acts transitively on X we see
that it suffices to establish that mx is flat over x, and for that (since my and Fn

are flat) it suffice to establish that the induced morphism on fibers over y is flat –
see [SGA1] ex. 4, 5.9 or [Bou] III 5.4. Denote by Gy = StabG(y) = G ×Y y and
Xy = X ×Y y the fibers of G and X respectively over y. Note further that we have
canonical identifications

G×Gy
∼
−→ G×Y G (g, h) 7→ (g, gh)

G×Xy
∼
−→ G×Y X (g, z) 7→ (g, gz)

Moreover under these identifications the morphism 1G ×Y mx identifies with 1G ×
(mx)|Gx

. Since OX → (mx)∗(OG) is a monomorphism and OG is a flat OY -algebra
we conclude easily that OG×Y X −→ (1G ×Y mx)∗(OG×Y G) is still a monomorphism
i.e. 1G ×Y mx = 1G × (mx)|Gx

is a weak epimorphism, which readily implies that
(mx)|Gx

is a weak epoimorphism. Finally the scheme Xy has only one point i.e. we
are in the infinitesimal situation considered in Lemma 5.3 and hence may conclude
that k[Gy] is even a free k[Xy]-module. In any event the induced morphism on the
fibers Gy −→ Xy is flat and hence mx : G→ X is flat.

Proof of the Theorem 4.3 Recall that we start with a homomorphism ν ′ :
H ′ −→ G′ of affine group schemes over k and a closed subgroup scheme G ⊂ G′.
We set H = H ′ ×H G and want to conclude that the induced map on the quotient
schemes H ′/H −→ G′/G is a locally closed embedding. Denote by x the distin-
guished point of G′/G, i.e. x = G/G. The composition morphism H ′ −→ H ′/H −→
G′/G coincides obviously with the map mx considered above (corresponding to the
action of H ′ on G′/G given by the composition of the homomorphism ν ′ : H ′ −→ G′

and the left regular action of G′ on G′/G). Denote by X the closed image of H ′/H
in G′/G or what amounts to the same thing the closed image of H ′ in G′/G. Ac-
cording to Theorem 5.1 the image U of mx is open in X, i.e. locally closed in G′/G
and moreover the composition morphism

H ′ p
−→ H ′/H −→ U

is faithfully flat. Since the projection p : H ′ −→ H ′/H is faithfully flat as well
we immediately conclude that the arrow H ′/H −→ U is faithfully flat. We next
observe that the morphism of fppf-sheaves on Sch/k defined by the morphism ν ′ is
injective. In fact the fppf-sheaf represented by the scheme G′/G is associated to the
presheaf X 7→ G′(X)/G(X) - see [J], ch.1, § 5. Since for any X the corresponding
map H ′(X)/H(X) −→ G′(X)/G(X) is clearly injective we conclude that the map
of presheaves is injective and since the functor of associated sheaf is exact the same
is true for associated sheaves. Now it suffices to use the following Lemma.
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Lemma 5.5. Let f : X → Y be a faithfully flat morphism. Assume that for any
scheme S ∈ Sch/k the corresponding map HomSchk(S,X) −→ HomSchk(S, Y ) is
injective. Then f is an isomorphism.

Proof. Take S = X ×Y X. The projections p1, p2 : X ×Y X −→ X coincide being
composed with f . Thus our condition implies that p1 = p2. This implies further
that the morphisms p1 = p2 : X ×Y X −→ X and ∆X : X → X ×Y X are mutually
inverse isomorphisms. Finally the morphism p2 is obtained from f making the base
change X → Y . Since f becomes an isomorphism after a faithfully flat base change
it was an isomorphism from the starts.
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