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Abstract. In this paper, we compute the essential dimension of cubics in three variables, when


the base field has characteristic different from 2 and 3 and contains a primitive third root of unity.


For this, we use canonical pencils of cubics, Galois descent techniques, and the material introduced


in[BeF].


§0 Introduction


Let C be a polynomial in n variables with coefficients somewhere, say in a ring or a field. A
question one may ask is whether is it possible, by changing linearly the coordinates, to drop
some of its coefficients or make it “nicer”. For instance, the quadratic polynomial X2 + bX + c
can always be brought to the form X2 + d as soon as one can divide by 2. Similarly the cubic
polynomial X3+aX2+bX+c can be reduced to X3+dX+d when 1


3 makes sense. In both cases
one feels that “only one parameter is needed” to describe these polynomials. We shall say that
in these cases the essential dimension is 1. Essential dimension makes precise the notion of “how
many parameters are needed to describe a given structure” in some general context. It turns
out that this number is not always easy to compute. One has to carry out some tools in order
to estimate it. The aim of this paper is to use techniques, previously developed in [BeF], for the
computation of the essential dimension of homogenous cubic polynomials in three variables.
The authors would thank warmly Philippe Chabloz, Manuel Ojanguren, Zinovy Reichstein
and Armin Rigo for helpful conversation. The first named author also gratefully acknowledges
support from the Swiss National Science Fundation, grant No 2100-065128.01/1 (Project leader:
E.Bayer-Fluckiger).


§1 Essential dimension of functors: some definition and results


Let k be a field. We denote by Ck the category of field extensions of k, i.e. the category whose
objects are field extensions K over k and whose morphisms are field homomorphisms which fix
k. We write Fk for the category of all covariant functors from Ck to the category of sets. If F


is such a functor in Fk and K/k −→ L/k is a morphism in Ck, for every element a ∈ F(K/k)
its image under the map F(K/k) −→ F(L/k) will be denoted by aL. When no confusion is
possible, we will write F(K) instead of F(K/k).
By ks we will always mean a separable closure of k. If k has characteristic different from 3, we
will denote by ε ∈ ks a primitive third root of unity.


Typeset by AMS-TEX


1
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We recall the definition of the essential dimension of a functor F : Ck −→ Sets as introduced
in [BeF].


Definition 1.1. Let F be an object of Fk, K/k a field extension and a ∈ F(K). For n ∈ N,
we say that the essential dimension of a is ≤ n (and we write ed(a) ≤ n), if there exists a
subextension E/k of K/k such that :


i) trdeg(E : k) ≤ n,


ii) the element a is in the image of the map F(E) −→ F(K).


We say that ed(a) = n if ed(a) ≤ n and ed(a) 6≤ n − 1. The essential dimension of F is
the supremum of ed(a) for all a ∈ F(K) and for all K/k. The essential dimension of F will be
denoted by edk(F).


For a group scheme G of finite type over k the essential dimension of the Galois cohomology
functor H1(−, G) will be denoted by edk(G).


Let us recall some results proved in [BeF]:


For any field extension k′/k, any functor F : Ck −→ Sets can be considered as an element
of Fk′ . We denote by edk′(F) its essential dimension. It is easily checked that the inequality
edk′(F) ≤ edk(F) holds. We will often use this fact. For example to give lower bounds of the
essential dimension of a functor one can suppose k algebraically closed.


We shall say that a morphism of functors f : F −→ F′ is a surjection if, for every L/k, the
corresponding map of sets fL : F(L) −→ F′(L) is a surjection.


Lemma 1.1. Let F // // F′ be a surjection between functors. Then edk(F) ≥ edk(F′).


Proof. See [BeF].


One case of special interest, though not used extensively in these notes, is when one of the
functors is a scheme over k. Indeed take X a k-scheme of finite type. One can view it as
a functor simply saying X(L) = Hom(Spec(L),X) for L/k. Its essential dimension is easily
computed as edk(X) = dim(X). Now we shall say that X is a classifying scheme for a
functor F if there is a surjection X // // F . In this case the above lemma tells us that
edk(F) ≤ dim(X).


Here is a new result which happens to be very useful for our purpose.


Let i : k → k′ an object of Ck. We will describe a construction which will give rise to a functor
i∗ : Fk′ −→ Fk.
Let F be any functor on Ck′ . For any object L/k of Ck we set


(i∗F)(L/k) =
∐


Homk(k′,L)


F(L/k′).


This means, more precisely, that for every k-linear map f : k′/k → L/k (if there is any) we
take a copy of the set F(L/k′) where L is considered as an object of Ck′ via f . In other
words elements of (i∗F)(L/k) are elements of F(L/k) labelled by k-morphisms from k′/k to
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L/k. We may write elements in (i∗F)(L/k) as pairs (f, a) where f : k′ → L is a morphism and
a ∈ F(L/k′). If now ϕ : L/k → L′/k is a morphism in Ck we define


i∗ϕ :
∐


Homk(k′,L)


F(L/k′) −→
∐


Homk(k′,L′)


F(L′/k′)


to be the map which sends an element a ∈ F(L/k′) (labelled by the morphism f : k′/k → L/k)
to the element F(ϕ)(a)(L′/L/k′) (labelled by the morphism ϕ ◦ f : k′/k → L/k). That is the
pair (f, a) goes to (ϕ ◦ f, aL′). The functoriality is left to the reader.


Take now the representable functor hi : Ck −→ Sets defined by hi(K/k) = Homk(k′/k,K/k).
One easily checks that i∗(1) = hi where 1 denotes the one-point functor over Ck′ sending each
object to a one-point set. Moreover one computes that edk(hi) = trdeg(k′ : k). The following
lemma generalizes this fact.


Lemma 1.2. Let i : k → k′ be any morphism and F be an object of Fk′ . Then


edk(i∗F) = edk′(F) + trdeg(k′ :k).


Proof. Take an element (f, a) ∈ i∗F(L/k) for some extension L/k where f : k′/k → L/k and
a ∈ F(L/k′). Take now a′ ∈ F(L′/k′) for some f ′ = L′/k′ and some k′-morphism L′ → L such
that a′


L = a, where trdeg(L′/k′) is minimal. The element (f, a) now comes from the element
(f ′, a′) ∈ i∗F(L′/k′/k). It follows that


ed(f, a) ≤ trdeg(L′ : k) = trdeg(L′ : k′) + trdeg(k′ : k) ≤ edk′(F) + trdeg(k′ : k).


Consequently edk(i∗F) ≤ edk′(F) + trdeg(k′ : k).


For the reverse inequality take a ∈ F(L/k′) for some extension L/k′. This defines an element
(f, a) ∈ i∗F(L/k′/k) where f denotes the extension L/k′. Take an extension L′/k, a k-morphism
ϕ : L′ → L and an element (f ′, a′) ∈ i∗F(L′/k) such that (f ′, a′)L = (f, a), where trdeg(L′/k)
is minimal. This means that ϕ ◦ f ′ = f hence ϕ : L′/k′ → L/k′ is k′-linear. Consequently a is
defined over L′/k′ and we have


ed(a) ≤ trdeg(L′ : k′) = trdeg(L′ : k) − trdeg(k′ : k) ≤ edk(i∗F) − trdeg(k′ : k).


It follows that edk(F) ≤ edk(i∗F) − trdeg(k′ : k).


Remark. The previous things are almost trivial. The only real problem is notation. It is an
(tedious) exercice left to the reader to show that i∗ : Fk′ → Fk is a functor. One could go a
step further and prove that the association k 7→ Fk is functorial. We will not use such things
and leave it to the courageous reader.


The following result will be useful for our purpose. It relates the essential dimension of an
algebraic group to that of a closed subgroup.


Proposition 1.1. Let G be an algebraic group defined over k, and let H be a closed subgroup.
Then


edk(H) + dim(H) ≤ edk(G) + dim(G).


Proof. See [BeF].
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Proposition 1.2. Let G be an algebraic group over k acting linearly on an affine space A(V ).
Assume that there exists a non-empty G-stable open subset U of A(V ) such that:


1) the quotient U/G exists


2) for every L/k the stabilizer of each element of U(Ls) under G(Ls) is trivial.


Then U/G is a classifying scheme for H1(−, G). In particular, we have


edk(G) ≤ dim(V ) − dim(G).


Proof. See [BeF].


We now give an application of this last proposition which we will use later.


Proposition 1.3. Let G be a finite constant closed subgroup of PGLn defined over k, and


let G̃ be the inverse image of G under the canonical projection π : GLn −→ PGLn. Then


edk(G̃) ≤ n − 1.


Proof. The inclusion G̃ ⊂ GLn induces a natural action of G̃ on A
n. The idea is to find an


open subset of A
n for which the hypotheses of Proposition 1.2 are fulfilled. Notice first that the


quotient U/G̃ exists when one takes U = A
n \ {0}. Indeed it is easily seen that this quotient is


the same as the quotient of P
n−1 by the finite group G. So we only have to worry about the


condition of stabilizers. Actually one only has to cut out of A
n a bad closed set those points


have non trivial stabilizer. We will now go into all the details.


By definition G̃(K) = π−1
K (G(K)) for any field extension K/k and dim G̃ = 1. Moreover, the


map πK induces a group isomorphism G̃(K)/K× ' G(K). For any element of G(k), choose a


preimage in G̃(k). We choose In for the preimage of In. Denote by S the set of these preimages.
Since G is a constant group scheme we have G(K) = G(k) = G for all field extension K/k.
Hence the previous isomorphism shows that


G̃(K) = {µg | µ ∈ K×, g ∈ S}.


Take g ∈ S − {In} and write it g = (mij). Let Ig be the ideal of k[X1, . . . ,Xn] generated by
the polynomials


Xi


(∑


j


m1jXj


)
− X1


( ∑


j


mijXj


)
i = 1, . . . , n.


Let F =
⋃


V(Ig). This is a closed subset of A
n since S − {In} is finite. Notice that, by


construction, F (K) = {v ∈ Kn | there exists g ∈ S − {In} and λ ∈ K such that gv = λv}.
Let U = A


n \ F . This is a dense open subset of A
n which does not contain 0.


We first show that U(Ls) is G̃(Ls)-stable for every L/k.


Let v ∈ U(Ls), and µg ∈ G̃(Ls). Assume that (µg)v /∈ U(Ls), that is (µg)v ∈ F (Ls). Then


there exists λ ∈ Ls and g′ ∈ S − {In}, such that g′(µgv) = λ(µgv). Since G̃(K) acts linearly
on Kn and µ 6= 0, we get g′gv = λgv, hence (g−1g′g)v = λv. Let g′′ ∈ S which represents
πk(g−1g′g). Then there exists γ ∈ k× such that g−1g′g = γg′′. Then g′′v = γ−1λv. Since
v ∈ U(Ls), this implies that g′′ = In, so πk(g−1g′g) = In. Then we get πk(g′) = In. By
construction of S, this implies that g′ = In, which is a contradiction.
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We now check that the stabilizer of any element of U(Ls) is trivial.


Let v ∈ U(Ls), and let µg ∈ G̃(Ls) such that µgv = v. We then have gv = µ−1v, hence g = In


by hypothesis on v. Since v ∈ U(Ls), we have v 6= 0, hence µ = 1. This implies that µg = In.


Thus the action of G̃ on A
n
k satisfy the conditions of Proposition 1.2. Hence


ed(G̃) ≤ dim(An) − dim(G̃) = n − 1.


§2 Degree d curves and specialization


Let k be a field and let d ≥ 2, n ≥ 1 be two integers. We consider Cd,n the functor of nonzero
homogeneous polynomials of degree d in n variables up to a scalar. Elements of Cd,n are called
degree d curves in n variables. We will often use the same notation for a curve and for one
polynomial which defines it. We also will have to consider non-singular curves in the sequel.
Let’s denote by C+


d,n the functor of non-singular degree d curves in n variables.


We want to discuss the following general question. Take C a degree d curve in n variables and


write it down C =
∑


ai1,... ,in
Xi1


1 · · ·Xin
n (where i1 + · · ·+ in = d) for some coefficients ai1,... ,in


in a field extension of k. In general it has
(


d+n−1
n−1


)
coefficients. But as soon as one makes a


linear change of coordinates some of these coefficients may drop or become equal. Hence we
would like to know how many parameters are needed to describe the curve C as soon as we
allow ourselves to change a little the equation defining it.


The group GLn acts on Cd,n as described above by linear change of coordinates. More precisely,
if C ∈ Cd,n(L) and ϕ ∈ GLn(L), define ϕ(C) to be the curve defined by C ◦ ϕ. Since scalar
matrices do nothing on curves this action induces an action of PGLn on Cd,n.


We denote by Fd,n the functor of curves up to this action, and sometimes by [C] the class of


C ∈ Cd,n(L). The action of GLn clearly restricts to C+
d,n. We then denote by F+


d,n the functor


C+
d,n/GLn. These are exactely the functors we are interested in (at least for small values of


d and n) since we would like to count the minimal number of parameters needed to describe
a degree d curve up to change of coordinates. In other words we would like to compute its
essential dimension.


At this point there is a useful remark to be made. In order to compute the essential dimension
of Fd,n one sees that it is sufficient to minimize the number of parameters appearing in the


most general polynomial, that is C0 =
∑


tIX
I where the tI ’s are algebraically independent


variables over k. This C0 is called the generic polynomial of degree d in n variables. We will
show in the detail that ed(Fd,n) = ed([C0]) = ed(F+


d,n). In the sequel we will often use this
fact.


So let C0 =
∑


tIX
I be the generic homogeneous polynomial of degree d in n variables, where


the tI ’s are independent indeterminates over k (with obvious notation). Set t = (tI) and
K0 = k(t).


We begin by a technical lemma, which says in particular that the generic cubic [C0] can be
specialized in almost any cubic [C].
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Technical Lemma. Let P ∈ k[t]. Let ϕ ∈ GLn(K0), L/k be a field extension and C be a
homogeneous polynomial of degree d in n variables with coefficients in L. If L is infinite, there
exists ψ ∈ GLn(L) and a specialization t → b = (bI) such that:


1) ϕ(b) is well-defined and ϕ(b) ∈ GLn(L),


2) P (b) 6= 0,


3) C0(b) ◦ ϕ(b) = C ◦ ψ ◦ ϕ(b).


Proof. Write ϕ = (ϕij(t)) =
(


Pij(t)


Qij(t)


)
and C0 ◦ ϕ =


∑


I


FI(t)X
I .


Clearly there exists some polynomials with coefficients in K0 in n2 variables Tij , say RI(Tij , t),
such that FI(t) = RI(ϕij(t), t). In particular, the set of poles of these FI ’s is contained is the


set of zeros of the Qij ’s. Hence FI(b) is well-defined if Qij(b) 6= 0 for all i, j. Set detϕ = D1(t)


D2(t)
.


The set of poles of det ϕ is contained in the set of zeros of the Qij ’s, so ϕ(b) is well-defined and
invertible if D1(b) 6= 0 and Qij(b) 6= 0 for all i, j.


Let ψ = (ψij) ∈ Mn(L), where ψij have to be determined, and write C ◦ ψ =
∑


bIX
I .


Clearly C◦ψ◦ϕ =
∑


RI(ϕij(t),b)XI . Since the bI ’s are polynomials in ψij (and in coefficients


of C), we can write bI = SI(ψij) for some polynomials SI(Tij) ∈ L[Tij ].
Set S = (SI) and let U(Tij) be the product of the polynomials Qij(S),D1(S), P (S) and det(Tij).
The polynomial U with coefficients in L is non zero, hence there exist an element (ψ11, · · · , ψnn)


of Ln2


such that U(ψij) 6= 0, since L is infinite. The specialization tI 7→ bI = SI(ψij) then
satisfies the required conditions.


Definition 2.1. Let [C] ∈ Fd,n(L). We say that [C] is isotropic if the equation C = 0 has a
non trivial solution in Ln. Clearly, this does not depends on the choice of C.


Corollary 2.1. Using the above notation the following holds:


1) The class of the cubic [C0] is anisotropic, hence non singular.


2) One has edk(Fd,n) = edk([C0]) and edk(F+
d,n) = ed+


k ([C0]), where ed+
k ([C0]) denotes the


essential dimension of [C0] viewed as an element of F+
d,n.


Proof. 1) Assume that [C0] is isotropic, and let (P1(t), · · · , Pn(t)) be a nontrivial solution of
the equation C0 = 0. Let P the product of all Pi’s which are non zero, let L = k(s1, · · · , sn),
where the si’s are independent indeterminates over k and let C = s1X


d
1 + · · · + snXd


n. By the
Technical Lemma, there is a specialization of the tI ’s such that [C0] maps to [C], and such that
the specialization of P is non zero. Consequently, the non zero Pi’s map to non zero elements
of L and [C] is then isotropic over L. This is not the case, by [Re], Theorem 3.2, hence we get
a contradiction.


2) We only show the first equality. The proof of the second one is similar. The inequality
ed([C0]) ≤ edk(Fd,n) follows from the definition. Let L/k be a field extension, and take [C] ∈
Fd,n(L). We have to show that ed([C]) ≤ ed([C0]).
If L is finite, then L/k is algebraic, hence ed([C]) = 0 ≤ ed([C0]).
Now assume that L is infinite. Let K ⊂ K0 be a field extension such that [C0] = [C ′


0]K0
for


some [C ′
0] ∈ Fd,n(K) with trdeg(K : k) = ed([C0]). By definition, there exists λ ∈ K×


0 and
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ϕ ∈ GLn(K0) such that λC0 ◦ϕ = C ′
0. Write C ′


0 =
∑


FI(t)X
I . Notice that C ′


0 is defined over


k(FI(t)). By minimality of the transcendence degree of K, we have


edk([C0]) = trdeg(K : k) = trdeg(k(FI(t)) : k).


Write λ = P1


P2
. By the Technical Lemma, there exists a specialization t → b such that C0 ◦ ϕ


maps to to a polynomial C ′ equivalent to C and P1P2 maps to a non zero element of L. It
follows that λ maps to a non zero element µ of L, hence C ′


0 maps to µC ′. In particular,


µC ′ =
∑


F (b)XI , so [µC ′] = [C] is defined over k(FI(b)). Since


ed([C]) ≤ trdeg(k(FI(b)) : k) ≤ trdeg(k(FI(t)) : k) = ed([C0])


we then get the result.


Corollary 2.2. We have edk(Fd,n) = edk(F+
d,n).


Proof. This follows from part 2) of the above corollary and the easy fact (left to the reader)
that the essential dimension of C0 in Fd,n is the same that its essential dimension in F+


d,n.


§3 Some considerations on cubics


0. Warm-up


Let us come back to our problem. For d = 3, elements of Cd,n are called cubics, and the


functor Fd,n (resp. F+
d,n) is simply denoted by Cubn (resp. by Cub+


n ).


We begin with the two variables case which can be handled without any extra tool.


Proposition 3.1. Let k be a field. If char(k) 6= 3, then edk(Cub2) = 1


Proof. We first show that edk(Cub2) ≤ 1. Let L/k be a field extension, and let C0 be the
generic cubic polynomial in 2 variables. Write C0 = t1X


3 + t2X
2Y + t3XY 2 + t4Y


3


We have to show that, up to a linear change of coordinates and to a scalar, C0 is defined over
an extension of k of transcendence degree at most 1.


Since t1 6= 0 one can divide by t1 and obtain X3 + s2X
2Y + s3XY 2 + s4Y


3 where si = ti


t1
.


Let ϕ =


(
1 − 1


3s2


0 1


)
. Then C ◦ϕ = X3 +uXY 2 +vY 3 for some some u, v ∈ k(s2, s3, s4) which


are easily computed to be non zero. Let now ϕ′ =


(
v
u 0
0 1


)
. Then


u3


v3
C ◦ ϕ′ = X3 +


u3


v2
XY 2 +


u3


v2
Y 3,


so [C] is defined over k(u3


v2 ), which has transcendence degree at most 1 over k.


It remains to show that edk(Cub2) ≥ 1. One can assume that k is algebraically closed. Let
L = k(t), where t is an indeterminate over k and C = X3 − tY 3. Assume that ed([C]) = 0.
This means that [C] is defined over k, since k(t)/k is purely transcendental. Hence there exists
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λ ∈ k(t)×, ϕ ∈ GL(k(t)) and a polynomial C ′ with coefficients in k, such that C = λC ′ ◦ ϕ.
In this case, C ′ would be isotropic over k (since k is algebraically closed), hence over k(t).
Consequently, C is also isotropic over k(t). But this is clearly not the case, since t /∈ k(t)×3.
Hence edk(Cub2) ≥ ed([C]) = 1. This concludes the proof of the statement.


1. Basic facts about cubics in three variables


From now on we will consider the case n = 3. Assume until the end of this section that
char(k) 6= 3.


For any field extension L/k and any λ ∈ L, let Cλ = X3
1 + X3


2 + X3
3 − 3λX1X2X3. We also


define C∞ = X1X2X3. It is easy to see that Cλ for λ ∈ L is non-singular if and only if λ is not
a 3rd root of unity.


We recall some well-known facts about cubics in 3 variables.


We first begin with the Hessian group G216. It plays a crucial role in our work. We follow [BK].


The Hessian group G216 is the group of special affinities SA2(F3), which is generated by the
translations of the plane F


2
3 and the elements of SL2(F3). One can view this group as a subgroup


of PGL3(ks) as follows:


Let x00, · · · , x22 the nine points of P
2
k(ε) defined by:


x00 = (0,−1, 1), x01 = (0,−ε, 1), x02 = (0,−ε2, 1)


x10 = (1, 0,−1), x11 = (1, 0,−ε), x12 = (1, 0,−ε2)


x20 = (−1, 1, 0), x21 = (−ε, 1, 0), x22 = (−ε2, 1, 0).


If g ∈ SA2(F3), then g induces a permutation σg of these nine points as follows:


If g(ā, b̄) = (c̄, d̄) (where a, b, c, d ∈ {0, 1, 2}), then set σg(xab) = xcd.


Computation then shows that there exists a unique element Mg ∈ PGL3(ks) which induces the
permutation σg on the points xab (the image of the point xab is computed by left multiplication
by xab, since we use the row convention).


The two translations T(20) and T(02) then correspond respectively to A and C, where


A =






0 0 1
1 0 0
0 1 0



 and C =






1 0 0
0 ε 0
0 0 ε2



.


The three generators


(
1 0
1 1


)
,


(
0 1
−1 0


)
and


(
2 1
1 1


)
correspond to D,E and E′, where


D =






1 0 0
0 ε 0
0 0 ε



, E =






1 1 1
1 ε ε2


1 ε2 ε



 and E′ =






ε2 1 1
ε 1 ε
ε ε 1



.


Notice that the set of generators for SA2(F3) in [BK] is not completely correct. Indeed, the
2-Sylow subgroup of G216 is the quaternion group, so it is generated by 2 elements of order 4,
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but the element


(
2 0
0 2


)
, which corresponds to the class of B =






1 0 0
0 0 1
0 1 0



, has order 2.


Notice that G216 is in fact a subgroup of PGL3(k(ε)).


When talking about cubics in three variables it’s hard not to mention the so called j-invariant.
For our purpose we will need only few things about it. First of all we have to know that it


exists. That is for a non-singular cubic C =
∑


i1+i2+i3=3


ai1,i2,i3X
i1
1 Xi2Xi3


3 with coefficients in


a field K there is a rational expression of the coefficients, denoted by j(C), which lies in the
ground field K and which does not depend on the class of the cubic. For a non-singular cubic


of the form Cλ one has j(Cλ) = λ3(λ3+8)3


(λ3−1)3 (see [BK] p.301-302).


We now recall some results proved in [BK], p.292-298:


Lemma 3.1. Assume that k = ks. Then:


1) Every non-singular cubic C can be mapped to some Cλ for some λ ∈ k. Moreover non-
singular cubics are classified by their j-invariant, that is two non-singular cubics are equiv-
alent if and only if they have same j-invariant.


2) Let λ ∈ k ∪ {∞}. For any ϕ ∈ PGL3(k), ϕ maps Cλ to some Cµ if and only if ϕ ∈ G216.


3) Let λ ∈ k ∪ {∞}. For any ϕ ∈ PGL3(k), ϕ maps the cubic Cλ to itself if and only if ϕ
belongs to the subgroup H = 〈A,B,C〉.


The two first statements are proved in the case where k is the field of complex numbers, but
it is easy to check that they are still true when k is a separably closed field of characteristic
different from 3. The third one is only mentionned without proof, but can be obtained by easy
computation. Notice that in the two last statements, Cλ is not supposed to be non-singular.


2. Canonical pencils of cubics


If C is a cubic polynomial in 3 variables with coefficients in L, let HC = det
(


∂2C
∂Xi∂Xj


)
, and let


FC be the set of cubics of the form αC + βHC , for some α, β ∈ L. The set FC is called the


canonical pencil associated to C. Since HαC = α3HC for any α ∈ L×, this set does only
depend on the cubic defined by C.


Let P(L) denote the set {FC | C ∈ C3,3(L)}. For a cubic C over a field L and for any k-
morphism L → L′ we define a map P(L) −→ P(L′) by sending the pencil FC to the pencil
FC


L′
. We then obtain a functor P : Ck −→ Sets. The association C 7→ FC gives rise to


a surjective map of functors C3,3
// // P . Let now act the group GL3 naturally on P as


follows: for ϕ ∈ GL3(L) and C ∈ C3,3(L) we set ϕ(FC) = Fϕ(C).


We say that FC and FC′ are isomorphic over L if they are in the same orbit under this
action. We denote by [FC ] the isomorphism class of FC and we denote by Pen3 the functor of
isomorphism classes of such pencils.







10 GRÉGORY BERHUY & GIORDANO FAVI


Lemma 3.2. Let C be a cubic in three variables with coefficients in L. Then sending the class
of C to the class of its pencil FC induces a well defined morphism of functors Cub3 −→ Pen3.


Proof. The statement follows from the formula HC◦ϕ = (det ϕ)2HC ◦ ϕ. The proof of this
formula is left to the reader.


Lemma 3.1 tells us that, over a separably closed field, one can bring every non-singular cubic
to some canonical form depending on one parameter. However, unlike quadratic forms, there
are several cubics defined over L which are not isomorphic over Ls. Hence one cannot classify
cubics using Galois cohomology like in the quadratic form case. However the next lemma shows
that one can do something for pencils of cubics.


Lemma 3.3. Assume that chark 6= 2, 3 and let L/k be a field extension. For any λ ∈ L, λ3 6= 1,
we have


FCλ
=


{
Cµ | µ ∈ L ∪ {∞}


}
.


In particular, for all C,C ′ ∈ Cub+
3 (Ls), the pencils FC and FC′ are isomorphic.


Proof. It is easy to see that HCλ
= −54λ2(X3


1 + X3
2 + X3


3 ) − 3(18λ3 − 72)X1X2X3,
hence we get


αCλ + βHCλ
= (α − 54λ2β)(X3


1 + X3
2 + X3


3 ) − 3(αλ + 18λ3β − 2β)X1X2X3.


Let µ ∈ L. If µ = λ, take α = 1 and β = 0. Assume now that µ 6= λ. Take β = 1 and


α =
72 − 54λ2µ − 18λ3


λ − µ
.


We claim that α−54λ2 6= 0. Indeed, assume the contrary. Then we easily get that 72(1−λ3) = 1.
Since char(k) 6= 2, 3, this implies that λ3 6= 1, which is not the case.


Thus, with these choices of α and β, we get αCλ+βHCλ
= (α−54λ2)Cµ, hence the polynomials


αCλ + βHCλ
and Cµ belong to the same class.


If µ = ∞, take α = − λ2


4(λ3 − 1)
and β = − 1


216(λ3 − 1)
.


Remark 3.1. If λ3 = 1, the lemma is not true. Indeed, it is easy to see that in this case
FCλ


= {Cλ}. Since we want to apply Galois descent to pencils of cubics, we have to restrict
ourselves to pencils of non-singular cubics.


We will denote by P+ and Pen+
3 the corresponding functors. This little restriction does not


matter for the computation of essential dimension for we have seen that ed(Cub3) = ed(Cub+
3 ).


Lemma 3.4. Let L/k be a field extension and let C ∈ Cub+
3 (L). Then


ed([FC ]) ≤ ed([C]) ≤ ed([FC ]) + 1.


Proof. Let K/k such that trdeg(K : k) = edk([C]). Then clearly FC is defined over K, hence
ed([FC ]) ≤ ed([C]). Assume now that ed([FC ]) = n. Then there exists a field extension E/k of
transcendence degree equal to n, and C ′ ∈ C3,3(E) such that FC = FC′


K
. By definition, there


exists ϕ ∈ GL3(K) such that Fϕ(C) = FC′


K
. In particular, there exists α, β ∈ K such that the


polynomials C ◦ϕ and αC ′ +βHC′ are proportional. Hence [C] = [αC ′ +βHC′ ]. Since α or β is


non zero, C is then defined over E(α
β ) or E(β


α ). Thus C is defined over a field of transcendence


degree at most n + 1.
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§4 Galois descent for functors. Applications to cubics


We just dealt with pencils of cubics and saw how all pencils become isomorphic over a separably
closed field. A natural idea is then to classify them using Galois cohomology set. The problem
is that the objects we want to classify are not standard “algebraic structures”. In this section,
we prove a Galois descent lemma for reasonable functors which is a slight generalization of
[BOI], Proposition (29.1). This lemma will apply to our situation.


Let k be any field, and let F be an object of Fk. We denote by Aut(F) the functor defined by


Aut(F)(L) = {η : FL −→ FL | η is an isomorphism of functors}


for any L/k. Notice that for any extension L/k, the action of the absolute Galois group ΓL on
Ls induces an action on F(Ls) by functoriality.


Let G be a group-valuated functor and ρ : G −→ Aut(F) be a morphism of group-valuated
functors which is Γ-equivariant. For each E/k we define an equivalence relation on F (E) saying
that b, b′ ∈ F (E) are equivalent if there exists g ∈ G(E) such that ρE(g)(b) = b′. We note this
by b ∼E b′.
Let k′/k be a field extension, and a ∈ F(K). For every extension L/k′ set


X(L) = {b ∈ F(L) | b ∼Ls
a}.


Denote by StabG(a) the subfunctor of G defined by


StabG(a)(L) = {g ∈ G(L) | ρL(g)(aL) = aL}


for any extension L/k′. This is a group valuated subfunctor of GK .


Finally, we denote by Fa(L) the set of equivalence classes of elements of X(L) under the relation
b ∼L b′. This defines an object of Fk′ , denoted by Fa.


We now state the Galois descent lemma:


Galois Descent Lemma. Let ρ : G −→ Aut(F) as above. Assume that for any L ∈ Ck, the
following conditions hold:


1) H1(L,G(Ls)) = 1


2) F(Ls)
ΓL = F(L) and G(Ls)


ΓL = G(L).


Then for any k′/k and for any a ∈ F(k′), there is a natural isomorphism of functors of Fk′


Fa−̃→H1(−,StabG(a)).


Moreover, this isomorphism maps the class of aL to the base point of H1(L,StabG(a)(Ls)).


Proof. We fix once for all an extension k′/k and an element a ∈ F(k′).
Let L/k′ an extension of k′. For the proof we will denote by Γ instead of ΓL the Galois group
of L. We set A = StabG(a)(Ls) and B = G(Ls).
It is well-known that there is a natural bijection between ker(H1(L,A) −→ H1(L,B)) and the
orbit set of the group BΓ in (B/A)Γ (see [BOI], Corollary 28.2 for example).
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Since the group G(Ls) acts transitively on X(Ls), the Γ-set X(Ls) can be identified with the
set of left cosets of G(Ls) modulo StabG(a)(Ls), hence B/A ' X(Ls). By assumption on F,
the set (B/A)Γ is then equal to X(L). Moreover, BΓ = G(Ls)


Γ = G(L). It follows that the
orbit set of BΓ in (B/A)Γ is precisely X(L). Since H1(L,G(Ls)) is trivial, we then obtain is a
natural a bijection of pointed sets between H1(L,StabG(a)(Ls)) and Fa(L). The functoriality
is left to the reader.


Example 4.1. Assume that chark 6= 2, 3. Take F = P+ and let the group G = GL3 act on
P+. Take λ ∈ k with λ3 6= 1 and set a = FCλ


. Then Lemma 3.3 tells us that Fa(L) = Pen+
3 (L)


for any extension L/k.


We now determine the stabilizer of the pencil FCλ
. Notice that the functors Cub3,Cub+


3 ,Pen3


and Pen+
3 can be naturally extended to k-algebras. The functor StabG(a) is then the stabilizer


of a point of the Grassmanian, hence is a representable functor. This shows that StabG(a) is
an algebraic group scheme defined over k.


We first compute the image of this group scheme by the natural projection π : GL3 → PGL3.
We have π(StabG(a))(ks) = {ϕ ∈ PGL3(ks) | ϕ(FCλ


) = FCλ
}.


Since over ks the pencilFCλ
is equal to {Cµ | µ ∈ ks∪{∞}} it follows that any ϕ in StabG(a)(ks)


maps Cλ to some Cµ. So the same holds for ϕ and hence ϕ belongs to G216 ⊆ PGL3(k(ε))
by Lemma 3.1. Conversely, if ϕ ∈ G216, then it is clear that ϕ ∈ π(StabG(a))(ks) by Lemma
3.1 again. Hence π(StabG(a))(ks) = G216. Since Γk acts continuously on G216, the group
π(StabG(a)) is then the étale group scheme G216,ét (see [BOI], Proposition 20.16). Thus


StabG(FCλ
) = π−1(G216,ét).


We denote this last group by G̃216. Since the hypotheses of the Galois Descent Lemma are
clearly fulfilled, we get


Pen+
3 ' H1(−, G̃216).


In particular, edk(Pen+
3 ) = edk(G̃216).


Example 4.2. Assume that chark 6= 3. Take F = C+
3,3 and let G = GL3 act on it as usual.


Let k′/k be a field extension and take a = Cλ for some λ ∈ k′ with λ3 6= 1. Then Fa(L) is
the set of cubics in L which are equivalent to Cλ over Ls. Arguing as previously, one can see
that StabG(a) is the algebraic group k′-scheme π−1(Hét), where H is the subgroup of G216


described in Lemma 3.1. We will denote it by H̃. Hence, for any field extension k′/k, for any
λ ∈ k′, λ3 6= 1, and for any field extension L/k′, we have a one-to-one correspondence


Fa(L) = {[C] ∈ Cub+
3 (L) | C ∼Ls


Cλ} ' H1(L, H̃).


Hence edk′(Fa) = edk′(H̃). Again we have classified cubics which become isomorphic to a fixed
cubic by a Galois cohomology set.
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§5 Essential dimension of cubics


We can finally state and prove our main result:


Theorem 5.1. Let k be a field. Assume that char(k) 6= 2, 3. If k contains ε, then


edk(Cub3) = 3.


In particular, edk(Cub3) ≥ 3 for any field k.


This section is devoted to the proof of the statement. We will prove the first part of the
statement, the second one will follow from the fact that edk(ε)(F) ≤ edk(F). We will restrict


ourselves to the functor Cub+
3 since we know by §2 that ed(Cub3) = ed(Cub+


3 ).


By Example 4.1, we have edk(Pen+
3 ) = edk(G̃216). Since ε ∈ k, the group Γk acts trivially


on G216,ét(ks), hence G216,ét is the constant algebraic group G216. Applying Proposition 1.3


with G = G216 and n = 3 then gives edk(G̃216) ≤ 2. Lemma 3.4 implies in particular that


edk(Cub+
3 ) ≤ edk(Pen+


3 ) + 1, hence edk(Cub+
3 ) ≤ 3. Notice that G̃216 contains the constant


subgroup (Z/3Z)3 generated by εI3, C and D, so using Proposition 1.1, we get edk(G̃216) =
edk(Pen+


3 ) = 2.


The hard part is to show the converse inequality. We will proceed in several steps.


Let k′/k be a field extension and λ ∈ k′ with λ3 6= 1. We define an object Fλ of Fk′ as follows.
If L/k′ is a field extension, set


Fλ(L/k′) = {[C ′] ∈ Cub+
3 (L) | there exists E/L such that C ′ ∼E Cλ}.


Notice that Fλ(L/k′) = {[C ′] ∈ Cub+
3 (L) | C ′ ∼Ls


Cλ}. Indeed, let [C ′] ∈ Cub+
3 (L) such


that C ′ ∼E Cλ, for some E/L. We then have j(C ′
E) = j(CλE), hence j([C ′]) = j(CλL). Thus


j(C ′
Ls


) = j(CλLs
), so C ′ ∼Ls


Cλ. The reverse inclusion is clear. Example 4.2 then shows that


Fλ ' H1(−, H̃) and thus


edk′(Fλ) = edk′(H̃).


This means in particular that the essential dimension of Fλ does not depend on λ.


Our next task is to compute the essential dimension of Fλ, that is the essential dimension of


H̃. Precisely, we will show the following result:


Proposition 5.1. Let k′ be a field of characteristic different from 2 and 3 containing µ3. Then


edk′(H̃) = 2.


Let S be the constant subgroup of PGL3 isomorphic to (Z/3Z)2 generated by A and C, and


let S̃ = π−1(S).
Clearly, we have the following exact sequence of group schemes:


1 −→ Gm −→ S̃ −→ S −→ 1,


hence dim(S̃) = 1. Similarly, we have dim(H̃) = 1. Applying Proposition 1.3 we get edk′(H̃) ≤
2. We now prove the reverse inequality.
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By Proposition 1.1. we have edk′(H̃) ≥ edk′(S̃). Since µ3 ∈ k′ ⊆ L, we can identify the
algebraic group S with µ3 × µ3, where the identification is given on the L-points by mapping
A


m
C


n ∈ S(L) to (εm, εn) ∈ µ3(L) × µ3(L). We then have


1 −→ Gm −→ S̃ −→ µ3 × µ3 −→ 1,


where the second map is given by


S̃(L) −→ µ3(L) × µ3(L)


λAmCn 7→ (εn, εm).


Moreover, for any field extension L/k′, the above exact sequence induces the following exact
sequence in cohomology:


H1(L, S̃) −→ H1(L, µ3) × H1(L, µ3) −→ H2(L, Gm).


Recall that H1(L, µ3) is in one-to-one correspondence with L×/L×3 as follows:


For aL×3 ∈ L×/L×3, let α ∈ Ls such that α3 = a. Then the map ca : ΓL → µ3 defined by


σ 7→ σ(α)
α is a 1-cocycle, and its cohomology class does not depend on the choice of α and a.


We will write (a)3 the class of the correponding cocycle.


Lemma 5.1. For any field L, the connecting map


∂ : H1(L, µ3) × H1(L, µ3) → H2(L, Gm)


is defined by ∂((a)3, (b)3) = −(a)3 ∪ (b)3, where ∪ is the cup-product associated to the natural
pairing µ3(L) × µ3(L) → µ3(L) defined by (εm, εn) 7→ εmn.


Proof. Let (a)3, (b)3 ∈ H1(L, µ3). Let a, b ∈ L×. If σ ∈ ΓL, write ca(σ) = εmσ and cb(σ) = εnσ


for some mσ, nσ ∈ {0, 1, 2}. Since ΓL acts trivially on µ3 × µ3, the element ∂((a)3, (b)3) is the
class of the 2-cocycle


α : σ, τ ∈ ΓL × ΓL 7→ βσσβτβ−1
στ ,


where βσ is any preimage of (ca(σ), cb(σ)).


If (ca(σ), cb(σ)) = (εmσ , εnσ ), we choose βσ = AmσCnσ . Notice that we have σβτ = βτ for any
σ, τ ∈ ΓL. We then have ασ,τ = AmσCnσAmτ Cnτ C−nστ A−mστ . Since CA = εAC, we get


α(σ, τ) = εnσmτ Amσ+mτ Cnσ+nτ−nστ A−mστ .


The fact that ca and cb are cocycles and that ΓL acts trivially on µ3(Ls) implies that mσ +
mτ − mστ and nσ + nτ − nστ are divisible by 3. Hence we get


α : (σ, τ) ∈ ΓL × ΓL 7→ εmσnτ ∈ µ3(L),


which is precisely a cocycle representing (b)3 ∪ (a)3 since ΓL acts trivially on µ3(Ls). The
conclusion then follows from the equality (b)3 ∪ (a)3 = −(a)3 ∪ (b)3.


We then have a surjection of functors ∂ : H1(−, S̃) → N, where N is the object of Fk′ defined
by


N(L) =
{(


(a)3, (b)3
)
∈ H1(L, µ3) × H1(L, µ3) | (a)3 ∪ (b)3 = 0


}


for any field extension L/k′. Hence, by Lemma 1.1 we get


edk′(S̃) ≥ edk′(N).


To conclude the proof of Proposition 5.1, it suffices to prove the following:
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Lemma 5.2. We have edk′(N) ≥ 2.


Proof. It suffices to show the inequality when k′ is algebraically closed.


Let ((a)3, (b)3) ∈ N(L) for some L/k′. Let’s consider the cubic in 4 variables


Ca,b = X3 + aY 3 + bZ3 + abT 3.


The equivalence class of the cubic Ca,b does not depend on the choice of representatives of
(a)3 and (b)3. Moreover, this assignment is functorial in L. Hence we have a morphism of
functors N −→ Cub4. Notice that ((a)3, (b)3) ∈ N(L) if and only if a is a norm of the
extension L(β)/L, where β3 = b. Now let s, t, u be independent inderminates over k′, and set
b = t, a = 1 + ts3 + t2u3 − 3stu. Set L = k′(s, t, u). Then a = NL(β)/L(1 + sβ + uβ2), hence
((a)3, (b)3) ∈ N(L).


Now assume that ((a)3, (b)3) is defined over a field L′/k′ of transcendence degree at most 1
over k′, then so is [Ca,b]. Then L′ is a C1 field (since k′ is algebraically closed), hence [Ca,b] is
isotropic over L′, hence over L.


To get a contradiction, it remains to show that Ca,b is anisotropic over L.


Lemma 5.3. The polynomial Ca,b, with a = 1+ ts3 + t2u3 −3stu and b = t is anisotropic over
k′(s, t, u).


Proof. Assume the contrary. Then there exists P1, · · · , P4 ∈ k′[s, t, u] not all zero, such that
P 3


1 + aP 3
2 + bP 3


3 + abP 3
4 = 0. Consider P1, · · · , P4 and a as elements of k′(s, u)[t] , and write


Pi = aniQi where Qi is not divisible by a as soon as Qi 6= 0. If n1 ≤ n2, n3, n4, then one gets


Q3
1 + a3(n2−n1)+1Q3


2 + ta3(n3−n1)Q3
3 + ta3(n4−n1)+1Q3


4 = 0.


Hence Q3
1 + ta3(n3−n1)Q3


3 = 0 in E = k′(s, u)[T ]/(a).


Assume first that Q3 = 0. Then the previous equation shows that Q1 is divisible by a, which
implies that Q1 = 0 by choice of the Qi’s. Hence Q1 = Q3 = 0, so Q2 and Q4 are both non
zero, and a3(n2−n1)+1Q3


2 + ta3(n4−n1)+1Q3
4 = 0. If n2 − n1 6= n4 − n1, it would imply that Q1


or Q3 is divisible by a, which gives a contradiction since Q1 and Q2 are non zero polynomials.
Hence n2 − n1 = n4 − n1, and t is then a cube in E. Assume now Q3 is non zero. In this case
Q3 is not divisible by a, so t is a cube in E. The remaining cases also give that t is a cube in E.


By definition, we have E = k′(s, u)(
√


∆), where ∆ = (s3−3su)2−4u3, and t =
3su − s3 ±


√
∆


2u3
.


Then, if t is a cube in E then 12su−4s3±4
√


∆ is a cube in E. Let denote by τ the unique non
trivial k′(s, u)-automorphism of E. An element λ ∈ E is a cube if and only if τ(λ) is a cube.


So λ = 12su − 4s3 + 4
√


∆ is a cube.


Write λ = µ3, with µ = R1+R2


√
∆


R3
, where R1, R2, R3 ∈ k′[s, u]. One can assume that R1, R2, R3


are relatively prime. We have NE/k(s,u)(λ) = 16(3su − s3)2 − 16∆ = 64u3, hence


64R6
3u


3 = (R2
1 − R2


2∆)3.


We also have (12su − 4s3 + 4
√


∆)R3
3 = R3


1 + 3R1R
2
2∆ + (R3


2∆ + 3R2
1R2)


√
∆, hence


4R3
3 = R3


2∆ + 3R2
1R2 and (12su − 4s3)R3


3 = R3
1 + 3R1R


2
2∆.
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We now show that R3 is a constant. Assume that S is an irreducible divisor of R3. Then S
divides R2


1 − R2
2∆ by the first equation, hence S divides 3R3


1 − 3R1R
2
2∆. The third equation


implies that S divides R3
1 + 3R1R


2
2∆, hence S divides R3


1, so S divides R1. Hence S3 divides
(12su − 4s2)R3


3 − R3
1, so S2 divides 3R2


2∆. Consequently, S divides R2
2 (even if S = ∆), so S


divides R2. This is impossible since R1, R2, R3 are relatively prime. Hence, one can assume
that R3 = 1.


We then have the equations


64u3 = (R2
1 − R2


2∆)3, 4 = R3
2∆ + 3R2


1R2, 12su − 4s3 = R3
1 + 3R1R22∆.


The second equation then implies that R2 and R2
2∆ + 3R2


1 are non zero constant polynomials.
In particular R2


1 and ∆ has same degree in u. This gives a contradiction since these degrees
don’t have the same parity.


We are now able to finish the proof of Theorem 5.1 using Proposition 5.1 and Lemma 1.2.


Let t be an indeterminate over k, let k(t) be an algebraic closure of k(t). Let i be the composite


k → k(t) → k(t), where the first map is the natural inclusion, and k(t) → k(t) is a fixed k-linear


morphism which maps t to itself. In the sequel we set k′ = k(t). Let λ ∈ k′ such that j(Cλ) = t
and consider the functor Fλ. By Lemma 1.2, we have


edk(i∗Fλ) = edk′(Fλ) + trdeg(k′ : k).


By Proposition 5.1, we have edk′(Fλ) = 2. Moreover we have trdeg(k′ : k) = 1, so we get


edk(i∗Fλ) = 3.


Thus there exists a field extension L/k with trdeg(L : k) = 3 and and an element x = (f, [C]) ∈
(i∗Fλ)(L/k) which can not be defined over a subextension of L of a smaller transcendence de-
gree. By definition of i∗Fλ(L/k), the extension L/k is the composite f ◦i. Since [C] ∈ Fλ(L/k′),
then in particular [C] ∈ Cub+


3 (L/k′), so [C] can be viewed as an element of Cub+
3 (L/k) via i.


We now proceed to show that ed([C]) = 3 in Cub+
3 .


Assume that there exists a subextension K ′/k of L/k with trdeg(K ′ : k) ≤ 2 and [C ′] ∈
Cub+


3 (L) such that [C ′]L = [C].


Let ϕ : k −→ L,ψ : k −→ K ′ and θ : K ′ −→ L. Since K ′/k is a subextension of L/k, we then
have θ ◦ ψ = ϕ.


Since [C] ∈ Fλ(L/k′), we have j(C ′
L) = j(C) = j(CλL) = f(t), hence j(C ′


L) is transcendental
over k. Consequently, j(C ′) ∈ K ′ is transcendental over k and we can define a morphism of
k-extensions β : k(t) → K ′ by β(t) = j(C ′) and β|k = ψ.


We now check that the composite maps η1 : k(t) −→ k′ −→ L and η2 : k(t) −→ K ′ −→ L are
the same.


Let α ∈ k. We have η1(α) = f(α) and η2(α) = θ(ψ(α)) = ϕ(α). By definition of L/k, we have
ϕ = f ◦ i (since L/k factors through i). Hence η2(α) = f(i(α)) = f(α). Moreover, since we
have η1(t) = f(t) and η2(t) = ψ(j(C ′)) = j(C ′


L), the maps η1 and η2 coincide.







ESSENTIAL DIMENSION OF CUBICS 17


Hence we can define the compositum E/k(t) of k′/k(t) and K ′/k(t) in L/k(t).


By definition of E/k(t), the composite map K ′ −→ E −→ L is equal to θ, so we have
([C ′]E)L = [C ′]L = [C]. Now consider the extension E/k defined by k −→ k′ −→ E. By
construction, this extension factors through i. Let g : k′ −→ E. We then have (g, [C ′]E) ∈
(i∗Fλ)(E/k). Moreover, by definition of E/k(t) again, the map k′ −→ E −→ L is precisely f ,
hence (g, [C ′]E)L = (f, [C]).
Since trdeg(K ′ : k) ≤ 2 and trdeg(k(t) : k) = 1, we have trdeg(K ′ : k(t)) ≤ 1. Moreover,
trdeg(k′ : k(t)) = 0, hence trdeg(E : k(t)) ≤ 1, so trdeg(E : k) ≤ 2. Consequently, x = (f, [C])
is defined over a subextension of L/k of transcendence degree at most 2, which is impossible
by choice of x.


We then get edk(Cub+
3 ) ≥ ed([C]) = 3, which concludes the proof of Theorem 5.1.
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