

GALOIS EMBEDDING PROBLEMS WITH CYCLIC


QUOTIENT OF ORDER p


JÁN MINÁČ∗† AND JOHN SWALLOW‡


Abstract. Let K be a cyclic Galois extension of degree p over a field F
containing a primitive pth root of unity. We consider Galois embedding
problems involving Galois groups with common quotient Gal(K/F ) such
that corresponding normal subgroups are indecomposable Fp[Gal(K/F )]-
modules. For these embedding problems we prove conditions on solv-
ability, formulas for explicit construction, and results on automatic re-
alizability.


Introduction


Let p > 2 be a prime and F a field of characteristic not p containing a
primitive pth root of unity ξp. Suppose that K = F ( p


√
a) is a cyclic field


extension of F with Galois group Gal(K/F ) of order p. In this paper we
consider Galois embedding problems involving Kummer extensions of K of
degree pn that are Galois over F , and we establish new automatic realiz-
ability results, whereby the solvability of one Galois embedding problem
implies the solvability of another. (See e. g. [GrSmSw, Section 5] for some
automatic realizations of 2-groups as Galois groups.) We restrict ourselves
to the case p > 2 because p = 2 is quite simple and it does not lead to new
results.


A simple example serves as a motivating introduction to Galois embedding
problems of this type. Consider Heisenberg’s group E, a noncommutative
group of order p3 and exponent p. These conditions determine E up to
isomorphism. The center of E is cyclic of order p, and we have the following
short exact sequence:


1 → Z/pZ → E → Z/pZ × Z/pZ → 1. (1)


Now let L/K be an extension Galois over F such that Gal(L/F ) ∼= Z/pZ×
Z/pZ. Then the exact sequence naturally gives rise to a Galois embedding


Date: August 21, 2003.
∗Research supported in part by the Natural Sciences and Engineering Research Council


of Canada grant R0370A01, as well as by the special Dean of Science Fund at the University
of Western Ontario.


†Supported by the Mathematical Sciences Research Institute, Berkeley.
‡Research supported in part by National Security Agency grant MDA904-02-1-0061.


1
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problem, asking whether L embeds in a Galois extension L̃/F with group E
and such that the surjection in the exact sequence is the surjection of Galois
theory.


The obstruction to the solvability of this embedding problem may be
computed as follows. Since the group µp of pth roots of unity is contained
in F , we may identify the center of E with µp. Fixing a primitive root


ξp and an element σ ∈ Gal(L/F ) such that p
√


a
σ−1


= ξp, there must exist


τ ∈ Gal(L/F ) such that p
√


a
τ−1


= 1 and such that the commutator of the


lifts of σ and τ in E is ξp. Then there exists b ∈ F× such that p
√


b ∈ L,
p
√


b
σ−1


= 1, and p
√


b
τ−1


= ξp. It is well-known that the Galois embedding
problem admits a solution if and only if b ∈ N(K×), where N denotes the
norm map from K to F . (See, for instance, [JLY, page 161].)


Moreover, if we suppose that ω ∈ K satisfies N(ω) = b, then it has


been observed in [JLY, page 161] that all field extensions L̃/F solving the


Galois embedding problem may be written L̃ = L( p
√


fα), where f ∈ F× and
α = ωp−1σ(ω)p−2 · · ·σp−2(ω).


In this paper we generalize and motivate both the condition on solvability
and the form of the solution. Observe that in the example above L and L̃
are Kummer extensions of K of pth-power degree that are Galois over F ,
and the Galois groups Gal(L/K) and Gal(L̃/K) are naturally acted upon by
Gal(K/F ). The appropriate context for our results turns out to be Kummer
extensions L of K such that Gal(L/K) is an indecomposable Fp[Gal(K/F )]-
module; as we show later in Proposition 2, any Kummer extension of K of
degree pn that is Galois over F decomposes into a compositum of extensions
L/F of this type.


This example may be generalized, and one basic generalization is as
follows. Further generalizations appear in Theorems 2 and 3. Let G =
Gal(K/F ) ∼= Z/pZ, with generator σ, and let A = ⊕p−1


j=0Fpτ
j be a free


Fp[G]-module on the generator τ , where σ acts by multiplication by τ . Let
Ai be the Fp[G]-submodule generated by (τ −1)i. (See section 1 for details.)
Finally let Ei, 1 < i ≤ p, denote the following Galois embedding problem:


Ei : 1 → A1/Ai → (A/Ai) o G → A/A1 o G = Gal(L/F ) → 1.


Observe that A/A1
∼= Fp, a trivial Fp[G]-module; hence A/A1 oG ∼= Z/pZ×


Z/pZ. Further observe that in the case i = 2, A/A2 o G ∼= E. Hence E2 is
precisely the embedding problem in equation (1) above.


Given such an L/F , let b ∈ F be any element such that F ( p
√


b) is the
fixed field of 1 o G in Gal(L/F ). In the following theorem we consider the
embedding problems Ei where i = 2, . . . , p. We prove:


Theorem 1. The following are equivalent.
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(1) Any Ei is solvable.
(2) Each Ei is solvable.
(3) b ∈ N(K×).


If the conditions hold, let ω ∈ K× satisfy N(ω) = b. Then a solution to
Ei is given by


L̃ = K(
p


√


fω(σ−1)p−i ,
p
√


ω(σ−1)p−i+1 , . . . ,
p
√


ω(σ−1)p−1),


f ∈ F×. Moreover, all solutions of Ei arise in this way.


Said another way, solutions of Ei are parameterized by ω with N(ω) = b
and f ∈ F×.


Note that in Fp[G] we have the identity


(σ − 1)p−2 = (p − 1) + (p − 2)σ + · · · + σp−2,


so the construction of L̃ in the theorem above is equivalent to that of [JLY,
page 161] in the case i = 2.


1. Preliminaries


In what follows F is a field containing a primitive pth root of unity ξp,
K = F ( p


√
a), and G = Gal(K/F ) ∼= Z/pZ. We let σ denote the generator


of G such that p
√


a
σ−1


= ξp. All modules and Galois extensions will be
acted upon on the left by their respective groups, even though we will use
exponential notation to denote Galois action on fields. We denote by F×


the multiplicative group of a field F , and we write N = NK/F for the norm
map from K to F . For a subset S of an Fp-module V we denote by 〈S〉 the
Fp-span of S in V .


1.1. Fp[G]-modules.


Let A = ⊕p−1
j=0Fpτ


j be a free Fp[G]-module on the generator τ , where σ


acts by multiplication by τ . There are p quotient modules A/Ai, i = 1, . . . , p
of A where for i < p,


Ai = 〈(τ − 1)i, (τ − 1)i+1, . . . , (τ − 1)p−1〉, and Ap = {0}.
These quotients are all cyclic and together form a complete set of inde-
composable Fp[G]-modules. Each A/Ai is of dimension i as a vector space
over Fp. We call this dimension the length, and denote the length of a
cyclic Fp[G]-module M by l(M), because we have the following criterion for
l(M), where M is a cyclic Fp[G]-module generated by m: l(M) = i such
that (σ − 1)im = 0, (σ − 1)i−1m 6= 0. Moreover, such a cyclic module
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M of length l contains precisely one submodule of each length 1 ≤ i ≤ l:
Mi = 〈(σ − 1)l−im, . . . , (σ − 1)p−1m〉.


For each i ∈ {1, . . . , p} we pick a basis {1, τ − 1, . . . , (τ − 1)i−1} of A/Ai


consisting of images of 1, τ − 1, . . . , (τ − 1)i−1. We define an Fp-linear map
λ : A/Ai −→ Fp by λ(f0+f1(τ − 1)+· · ·+fi−1(τ − 1)i−1) = fi−1, where fk ∈
Fp, k = 0, . . . , i− 1. Observe that ker(λ) contains no nonzero ideal of A/Ai.
Then B(a, b) := λ(ab) for each a, b ∈ A/Ai defines a nonsingular, symmetric
bilinear form B : A/Ai × A/Ai −→ Fp. Thus A/Ai is a symmetric algebra.


(See [Lam, page 442].) Further we have B(aσ, bσ−1
) = B(a, b) for each


a, b ∈ A/Ai and our bilinear form B induces a G-equivariant isomorphism
between A/Ai and its dual.


1.2. Groups.


In this section we classify the groups of interest in this paper and the
surjections among them. For e ∈ Fp, let Bi,e be the group extension of A/Ai


by G with σ̃p = e(τ − 1)i−1. Here σ̃ is a lift in Bi,e of σ ∈ G. Note that for
e = 0, Bi,0 = A/Ai o G. First we consider the equivalence classes of these
groups.


Lemma 1. (See [Wat, Theorem 2])


(1) If H is a group with a normal subgroup isomorphic to A/Ai as a
G-module, with quotient group G, then H = Bi,e for some e.


(2) For fixed 1 ≤ i < p, all Bi,e, e 6= 0, are isomorphic, and these groups
are not isomorphic to Bi,0 = A/Ai o G.


(3) For i = p, all Bi,e are isomorphic to Bp,0
∼= Fp[G] o G.


The Galois embedding problems in this paper consist of embedding an
extension L/F with group Bj,e′ in an extension with strictly larger group
Bi,e. We are interested in all surjections Bi,e → Bj,e′ for which the kernel
lies in A/Ai ⊂ Bi,e′ . We call these G-surjections.


Lemma 2. The G-surjections in the set of groups {Bi,e}i≥1 are precisely


Bi,e → Bj,0, i > j ≥ 1, e ∈ Fp, with kernel Aj/Ai.


Proof. Considering the dimensions of A/Ai and A/Aj , if Bi,e → Bj,e′ is a
G-surjection then i > j. Now a surjection of G-modules A/Ai to A/Aj must
have as kernel an Fp[G]-submodule of A/Ai of Fp-rank i − j. But since
A/Ai is cyclic, there is precisely one such submodule, namely Aj/Ai. Hence


(τ − 1)k lies in the kernel for all j ≤ k < i. In particular, the kernel must
contain e(τ − 1)i−1, which is σ̃p in Bi,e. Therefore σ̃ ∈ Bi,e is sent to some
lift σ̂ ∈ Bj,e′ of σ ∈ G and hence σ̂p = 1 in Bj,e′ , or e′ = 0. ¤
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Observe that the order of each Bi,e is pi+1; the exponent of Bi,0 is p, and
the exponent of Bi,e, e 6= 0 is p2; and the nilpotent index of Bi,e is i.


1.3. Extensions and Submodules.


Now let J denote the Fp[G]-module J := K×/K×p. We denote elements
of J by [γ], γ ∈ K×. Let Ji be the kernel of the endomorphism (σ− 1)i and
let Mγ be the cyclic submodule of J generated by [γ]. Then [γ] ∈ Ji if and
only if l(Mγ) ≤ i.


We denote by M ↔ LM the Kummer correspondence over K of subspaces
M of the Fp-vector space J and abelian exponent p extensions LM of K:


M = (L×p
M ∩ K×)/K×p ↔ LM = K( p


√
γ : [γ] ∈ M).


Set C = Gal(LM/K). Then M and C are dual G-modules and the canonical
duality 〈m, c〉 := c( p


√
m)/ p


√
m of M and C is G-equivariant. (See [Wat,


pages 134 and 135].) The following proposition rephrases the results in
[Wat, page 135] in our notation.


Then we have the following


Proposition 1. Under the Kummer correspondence above,


(1) LM is Galois over F if and only if M is an Fp[G]-submodule of J .
(2) The following are equivalent:


(a) LM is the Galois closure, over F , of K( p
√


γ) for some γ ∈ K×;
(b) M = Mγ for some γ ∈ K×;
(c) Gal(LM/K) ∼= A/Ai, as G-modules, for some i;
(d) Gal(LM/F ) ∼= Bi,e, as G-extensions, for some i and e.
If these conditions hold, then i = l(M) and


LM = K( p
√


γ, p
√


γσ−1, . . . ,
p


√


γ(σ−1)i−1).


Proof. Because LM is Galois if and only if each automorphism of K extends
to an automorphism of LM , item (1) and (2a)⇔(2b) follow. That (2c)⇔(2d)
follows from Lemma 1.


Suppose (2b) holds. Then M ∼= A/Ai for some i ∈ {1, . . . , p} and
Gal(LM/K) is a G-equivariant dual of M . Since M is a G-equivariant
self-dual module, we see that Gal(LM/K) and A/Ai are G-isomorphic and
(2c) follows.


Suppose now that (2c) holds. Then again using the G-equivariant self-
duality of A/Ai and Kummer theory, we see that M must be a cyclic module
Mγ for some γ ∈ K×. Hence (2b) follows.
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The presentation of LM follows from the fact that a cyclic Fp[G]-module


M generated by m is generated over Fp by {(σ − 1)k(m)}l(M)−1
k=0 . ¤


We can now prove


Proposition 2. Let L/K be a Kummer extension of pth-power degree which
is Galois over F . Then L is a compositum of finitely many Galois closures,
over F , of extensions of the form Lγ = K( p


√
γ), γ ∈ K×.


Proof. The extension L/K corresponds to an Fp[G]-submodule M of J .
Since M is finite, it is decomposable into a direct sum of finitely many in-
decomposable Fp[G]-modules Mj . Each indecomposable Fp[G]-module Mj


is isomorphic to some A/Ai and is hence cyclic. By Proposition 1 (2), these
submodules correspond to Galois closures over F of extensions Lγ = K( p


√
γ).


The submodule of J generated by each of the indecomposables Mj then cor-
responds to the compositum of the Lγ , and we are done. ¤


1.4. The index.


The following homomorphism appears in a somewhat different form in
[Wat, Theorem 3]:


Definition. The index e([γ]) ∈ Fp for [γ] ∈ Jp−1 is defined by


ξe([γ])
p =


(


p


√


NK/F (γ)
)(σ−1)


.


The index is well-defined, as follows. First, since


1 + σ + · · · + σp−1 = (σ − 1)p−1 (2)


in Fp[G], [N(γ)] = [γ](σ−1)p−1
, which is the trivial class [1] by the assumption


[γ] ∈ Jp−1, and as a result p
√


N(γ) lies in K and is acted upon by σ. Observe
further that e([γ]) depends neither on the representative γ of [γ] nor on the
particular pth root of N(γ). Also the index function e above is a group
homomorphism from Jp−1 to Fp. Therefore the restriction of e to any Mγ


is either trivial or surjective.


We show that the index is trivial for any [γ] in the image of σ − 1:


ξe([γ](σ−1))
p = p


√


N(γσ−1)
(σ−1)


=
p
√


1
(σ−1)


= 1,


or e([γ]σ−1) = 0.


Lemma 3. (See [Wat, Theorem 2].) Let [γ] ∈ J and M = Mγ.


(1) If l(M) < p and e = e([γ]) then Gal(LM/F ) ∼= Bi,e.
(2) If l(M) = p then Gal(LM/F ) ∼= Bp,0.
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Proof. The second item follows from Proposition 1 and Lemma 1. The
fact that Gal(LM/F ) ∼= Bi,e for some e ∈ Fp follows in the same manner.
Therefore it remains only to show that Gal(LM/F ) ∼= Bi,e([γ]).


Let σ̃ denote a pullback of σ ∈ G to Gal(LM/F ). Then σ̃p lies in
Z(Gal(LM/F )) ∩ Gal(LM/K). (Here Z(Gal(LM/F )) means the center of
Gal(LM/F ).) Recall that using Kummer theory and the G-equivariant self-
duality of A/Ai we may identify Gal(LM/K) with A/Ai. Adopting this
identification we pick a basis {1, τ − 1, . . . , (τ − 1)i−1} of the Gal(LM/F )


dual with {[γ](σ−1)i−1
, . . . , [γ]σ−1, [γ]} with respect to Kummer pairing. Un-


der our identification, σ̃p lies in the G-invariant submodule of A/Ai, which is
〈(τ − 1)i−1〉. Observe that (τ − 1)i−1 sends p


√
γ to ξp


p
√


γ. If σ̃p = e(τ − 1)i−1


then
( p
√


γ)(σ̃
p−1) = ξe


p.


Therefore


p
√


γ(σ̃p−1) = p
√


γ(1+σ̃+···+σ̃p−1)(σ̃−1) =
(


p


√


NK/F (γ)
)(σ̃−1)


= ξe([γ])
p .


¤


We characterize elements of J fixed by σ and of trivial index with the
following


Lemma 4. If [γ] ∈ J1 and e([γ]) = 0 then there exists f ∈ F× such that
[γ] = [f ].


Proof. By [MS, Remark 2], we have the following short exact sequence:


0 → 〈[a]〉 i−→ F×/F×p ε−→ J1
N−→ 〈[a]〉,


where 〈[a]〉 is the subgroup of F×/F×p generated by [a] ∈ F×/F×p, i is the
inclusion map, ε is the natural homomorphism induced by the inclusion map
F× → K×, and N is the map induced by the norm map from K to F . Now
e([γ]) = 0 implies that [γ] is in the kernel of the surjection N above, and we
are done. ¤


We will also need a lemma on the smallest lengths of cyclic submodules
of J generated by an element [γ] with nontrivial index. Let Υ = 1 if ξp ∈
N(K×) and Υ = 0 otherwise.


Lemma 5.


(1) If Υ = 1 then there exists δ ∈ K× such that [δ] ∈ J1 and e([δ]) 6=
0. These are precisely the δ such that K( p


√
δ)/F is a cyclic Galois


extension of degree p2.
(2) If Υ = 0 then [ p


√
a] ∈ J2 \ J1, e([ p


√
a]) 6= 0, and e([γ]) = 0 for all


[γ] ∈ J1.
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Proof. By [A, Theorem 3], Υ = 1 if and only if K/F embeds in an extension


L = K( p
√


δ) Galois over F with group Z/p2Z ∼= B1,e, e 6= 0. By Proposition 1
and Lemma 3, then, Υ = 1 if and only if there exists [δ] ∈ J1 with e([δ]) 6= 0.
This proves the first statement.


Assume now that Υ = 0. We have [ p
√


a] ∈ J2, since [ p
√


a]σ−1 = [ξp] ∈ J1,
and we calculate e([ p


√
a]) = 1. Since Υ = 0, [ξp] 6= [1] in J1 and therefore


[ p
√


a] 6∈ J1. Now consider any [γ] ∈ J1. Then L = K( p
√


γ) is Galois over
F and since Υ = 0 we see from [A, Theorem 3] that Gal(L/F ) is B1,0


∼=
Z/pZ × Z/pZ. Hence e([γ]) = 0 and the second statement is proved. ¤


Finally, we introduce a variant of [MS, Lemma 1] for submodules gener-
ated by elements with trivial index. This is our key lemma:


Lemma 6. Let [γ] ∈ J . Suppose that 2 ≤ l(Mγ) < p and e([γ]) = 0.


Then there exists [γ′] ∈ J such that


(1) l(Mγ′) = l(Mγ) + 1.


(2) [γ′](σ−1)2 = [γ]σ−1.
(3) The fixed elements MG


γ of Mγ under G coincide with MG
γ′ .


(4) If l(Mγ) < p − 1 then e([γ′]) is defined and has a value of 0.


Proof. Let c = Nγ. Since l(Mγ) < p, we have [c] = [γ](σ−1)p−1
= [1]. Hence


c ∈ F×∩K×p. In fact, c = asfp for some f ∈ F and s ∈ Z, as follows. Since
c ∈ K×p, F ( p


√
c) ⊂ K. The Kummer extension F ( p


√
c) is either F or K; if


the former, then c ∈ F×p, while if the latter, then by Kummer theory c also
has the desired form.


Thus Nγ = asfp for some s and f . But e(γ) = 0, so p divides s and we see
that Nγ = fp for some f ∈ F×. Since N(γ/f) = 1, by Hilbert’s Theorem
90 there exists a ω ∈ K× such that ωσ−1 = γ/f . Then l(Mω) = l(Mγ) + 1.


If l(Mγ) < p − 1 then let t = e([ω]) and set γ′ = ω/(at/p); otherwise let
t = 0 and set γ′ = ω.


We compute [γ′]σ−1 = [ξ−t
p γ/f ] and, since ξp, f ∈ F×, [γ′](σ−1)2 = [γ]σ−1,


which is nontrivial since 2 ≤ l(Mγ). Hence (1) and (2) follow.


Now if l(Mγ) < p − 1 then l(Mγ′) = l(Mγ) + 1 < p and so γ′ ∈ Jp−1.
Then e([γ′]) = e([ω]) − t = 0. Therefore (4) is valid.


Finally observe that MG
γ is generated by [γ](σ−1)l(Mγ )−1


as well as [γ′](σ−1)
l(M


γ′ )−1


,


which in turn generates MG
γ′ . Hence MG


γ = MG
γ′ and therefore (3) follows


from (2).


¤
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2. Embedding Problem Conditions and Solutions


We consider all embedding problems involving groups Bi,e, based on the
G-surjections determined in Lemma 2, defining the following embedding
problems for i > j ≥ 1:


Ei,j(L) : 1 → Aj/Ai → Bi,0 → A/Aj o G = Gal(L/F ) → 1.


and, for any e 6= 0,


E ′
i,j(L) : 1 → Aj/Ai → Bi,e → A/Aj o G = Gal(L/F ) → 1.


In each case we ask if there exists a Galois extension L̃/F containing L such


that Gal(L̃/F ) ∼= Bi,0 or Gal(L̃/F ) ∼= Bi,e, and under the identification


of Gal(L̃/F ) with Bi,0 (or Bi,e), the surjection Gal(L̃/F ) → Gal(L/F ) is
identical to the surjection above.


Since Bp,0
∼= Bp,e as G-extensions for all e, the embedding problems


Ep,i(L) and E ′
p,i(L) are identical. Moreover note Ei,1(L) = Ei(L). (See page 2


for the discussion of Ei.)


For each of these problems, by Proposition 1, L is the Galois closure
of K( p


√
γ) for some γ ∈ K×. Hence under the Kummer correspondence


Mγ ↔ L, and by Proposition 1, l(Mγ) = j.


Theorem 2. Let p ≥ i > j ≥ 1 and L be the Galois closure of K( p
√


γ) over
F .


Then Ei,j(L) is solvable if and only if [γ] = [ω](σ−1)p−j
for some ω ∈ K×.


If so, then a solution L̃ to Ei,j(L), where i > j + 1, is given by


L̃ = L(
p


√


fω(σ−1)p−i ,
p
√


ω(σ−1)p−i+1 , . . . ,
p
√


ω(σ−1)p−j−1),


f ∈ F×.


In the case when i = j + 1 a solution L̃ to Ej+1,j is given by L̃ =


L( p
√


fω(σ−1)p−i), f ∈ F×.


Moreover, all solutions to Ei,j(L) arise in this way.


Proof. By Proposition 1, there exists a field L̃ with Gal(L̃/F ) ∼= Bi,e for
some i and e if and only if there exists a cyclic submodule Mβ of J of length


i, and in this case we have Mβ ↔ L̃ under the Kummer correspondence.


Furthermore, by Lemma 3, if i < p then Gal(L̃/F ) ∼= Bi,e, where e =


e([β]), and if i = p then Gal(L̃/F ) ∼= Bp,0. Hence if i < p then Ei,j(L) is
solvable if and only if there exists β ∈ K× with e([β]) = 0, l(Mβ) = i, and
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Mβ ⊃ Mγ . If i = p then Ep,j is solvable if and only if there exists β ∈ K×


with l(Mβ) = p and Mβ ⊃ Mγ .


Now suppose that [γ] = [ω](σ−1)p−j
for some ω ∈ K×. Then let β =


ω(σ−1)p−i
. Since l(Mγ) = j and [γ] = [β](σ−1)i−j


, l(Mβ) = i. Now if i = p
then the condition of the previous paragraph is satisfied. If i < p then β
is in the image of the endomorphism σ − 1, therefore e([β]) = 0 and the
condition of the previous paragraph is satisfied.


Going the other way, suppose that there exists β ∈ K× with l(Mβ) = i,
Mβ ⊃ Mγ , and, if i < p, e([β]) = 0. Since Mγ is the unique Fp[G]-submodule
of Mβ of length j, Mγ = M


β(σ−1)i−j . Further since the linear map Mβ → Mγ


defined by [α] 7→ [α](σ−1)i−j
is surjective, there is a [β′] ∈ Mβ such that we


have [β′](σ−1)i−j
= [γ]. Moreover, l(Mβ′) = l(Mβ) so Mβ′ = Mβ . In the


case of i < p, because e is trivial on [β], then e is trivial on Mβ and hence
e([β′]) = 0.


If i = p then let ω = β′. Otherwise, by repeated application of Lemma 6,


we may find an ω ∈ K× such that [ω](σ−1)p−i+1
= [β′]σ−1. Then [ω](σ−1)p−j


=


[β′](σ−1)i−j
= [γ].


We now treat the explicit construction of the solution fields. Let Mβ be
a solution field to an embedding problem Ei,j(L). Let β′ and ω be defined


as above. Note that [ω](σ−1)p−i+y
= [β′](σ−1)y


for all y ≥ 1. Hence δ =


ω(σ−1)p−i
/β′ satisfies [δ](σ−1) = [1]. Now e([δ]) = 0, so by Lemma 4, [δ] = [f ]


for some f ∈ F×. If we have a solution L̃ to Ei,j(L) with Mβ ↔ L̃, then


L̃ = L( p
√


θ : [θ] ∈ Mβ), or


L̃ = L( p
√


β,
p


√


β(σ−1), . . . ,
p


√


β(σ−1)i−j−1),


by Proposition 1. Since Mβ′ = Mβ, [ω](σ−1)p−i+y
= [β′](σ−1)y


for all y ≥ 1,


and [β′] = [ω(σ−1)p−i
/f ], we have


L̃ = L(
p


√


f−1ω(σ−1)p−i ,
p
√


ω(σ−1)p−i+1 , . . . ,
p
√


ω(σ−1)p−j−1),


in the case when i > j + 1 and L̃ = L( p
√


f−1ω(σ−1)p−i) if i = j + 1 again by
Proposition 1.


Finally observe that if we have a solution L̃ to Ei,j(L) with Mβ ↔ L̃,
then for each f ∈ F× a module Mfβ also corresponds to a solution of


Ei,j(L). Hence in our explicit formula for a solution field L̃, any f ∈ F× is
eligible. ¤


Theorem 3. Let p ≥ i > j ≥ 1 and L be the Galois closure of K( p
√


γ) over
F .
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(1) E ′
i,j(L), i > j + 1 − Υ or j = p − 1, is solvable if and only if [γ] =


[ω](σ−1)p−j
for some ω ∈ K×. If so, then a solution L̃ to E ′


i,j(L) is
given by


L̃ = L(
p


√


fαω′(σ−1)p−i ,
p
√


ω′(σ−1)p−i+1 , . . . ,
p
√


ω′(σ−1)p−j−1),


f ∈ F×, where in the case Υ = 1, α is any element in K× with
K( p


√
α)/F cyclic of degree p2, and in the case Υ = 0, α is p


√
a.


Furthermore ω′ = ωc0+c1(σ−1)+···+ci−1(σ−1)i−1
for suitable ci ∈ Z.


(2) E ′
j+1,j(L), Υ = 0, is solvable if and only if [γ] = [ξp]


e[ω](σ−1)p−j
for


some ω ∈ K× and e 6≡ 0 mod p. If so, then a solution L̃ to E ′
i,j(L)


is given by


L̃ = L(
p


√


fae/pω(σ−1)p−j−1), f ∈ F×.


Moreover, all solutions to E ′
i,j arise in the way described above.


Note that the two parts of the theorem overlap when i = p, j = p − 1,
and Υ = 0.


Proof. We begin in the same manner as the previous proof: if i < p then
E ′


i,j(L) is solvable if and only if there exists β ∈ K× with e([β]) 6= 0, l(Mβ) =


i, and Mβ ⊃ Mγ . If i = p then E ′
p,j is solvable if and only if there exists


β ∈ K× with l(Mβ) = p and Mβ ⊃ Mγ .


We first treat the conditions on [γ] that are equivalent to solvability. Then
we consider the explicit presentations of the solution fields.


In the case i = p, since E ′
p,j = Ep,j , the condition on [γ] is the same


as the condition on [γ] for the solvability of Ep,j determined in the previous
theorem. This gives us the condition in part 1. Now if additionally j = p−1,


consider the condition of part 2: [γ] = [ξp]
e[ω′](σ−1)p−j


= [ξp]
e[ω′]σ−1 for


e 6≡ 0 mod p. If this condition holds, ω = a−e/pω′ satisfies the condition


[γ] = [ω](σ−1)p−j
= [ω]σ−1 of part 1. Conversely, if the condition of part 1


holds, set ω′ = a1/pω and observe that the condition of part 2 holds with
e = 1.


Now suppose i < p and E ′
i,j(L) is solvable with field L̃ such that Mβ ↔ L̃.


We show that the specified conditions on [γ] must hold.


If i > j + 1, then Mβσ−1 ↔ L̄, where, by Lemma 3, L̄ is a solution to


Ei−1,j(L). Then by the previous theorem the condition [γ] = [ω](σ−1)p−j
is


satisfied.
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If i = j + 1 and Υ = 1, then let [α] ∈ J1 with e([α]) 6= 0. (See Lemma 5.
Observe that K( p


√
α)/F is cyclic of degree p2.) Since E ′


j+1,j(L) is solvable


there exists Mβ ⊃ Mγ , l(Mβ) = j +1 and e([β]) 6= 0. Set β′ = βe([α])/αe([β]).
Then e([β′]) = 0. Since α ∈ J1 we have M(β′)σ−1 = Mβσ−1 = Mγ . By


Proposition 1 and Lemma 3, Mβ′ ↔ L̄, where L̄ is a solution to Ej+1,j(L).


By the previous theorem, the condition [γ] = [ω](σ−1)p−j
is satisfied.


Now consider the case i = j+1 and Υ = 0. By choosing another generator
[β] of Mβ if necessary, we may assume that [β]σ−1 = [γ]. Consider β′ =


βa−e([β])/p. Then e([β′]) = 0. Now [a−e([β])/p]σ−1 = [ξ
−e([β])
p ], so [β′]σ−1 =


[ξ
−e([β])
p γ]. Therefore if l(M


ξ
−e([β])
p γ


) is at least 1 there exists a solution to an


embedding problem corresponding to Mβ′ and M
ξ
−e([β])
p γ


. By the previous


theorem, the condition [ξp]
−e([β])[γ] = [ω](σ−1)p−j


is satisfied. If [ξ
−e([β])
p γ] =


[1] then we can set ω = 1 and again the condition [ξp]
−e([β])[γ] = [ω](σ−1)p−j


is satisfied.


In all cases, then, we have shown that if E ′
i,j(L) is solvable, the corre-


sponding condition on [γ] holds.


Now suppose that the condition of part 1 holds: [γ] = [ω](σ−1)p−j
for some


ω. Here we include the case i = p.


If Υ = 1 then let [α] ∈ J1 with e([α]) 6= 0. (See Lemma 5.) Consider


β = αω(σ−1)p−i
. If i < p, e([ω](σ−1)p−i


) = 0 and hence e([β]) 6= 0. Since
[α] ∈ J1, l(Mβ) = l(M


ω(σ−1)p−i ) = l(Mγ) + i − j = i. Moreover, since


[β](σ−1)i−j
= [γ], Mβ ⊃ Mγ and we have shown that E ′


i,j(L) is solvable. In


the case when i = p and Υ = 1 we observed above that E ′
p,j(L) is equivalent


with Ep,j(L) and also the solvability conditions are the same. Hence by
Theorem 2 we see that E ′


p,j(L) is solvable.


If Υ = 0 and i > j + 1, then let α = p
√


a. Consider β = αω(σ−1)p−i
.


Again if i < p then e([ω](σ−1)p−i
) = 0 and hence e([β]) 6= 0. Since [α] ∈ J2


(see Lemma 5) and i > j + 1, l(Mβ) = l(M
ω(σ−1)p−i ) = l(Mγ) + i − j = i.


Moreover, since [β](σ−1)i−j
= [γ], Mβ ⊃ Mγ and we have shown that E ′


i,j(L)


is solvable. (Observe that we employed the condition i < p only to ensure
that e([β]) 6= 0 in this case. If i = p then e([β]) plays no role, and therefore
we have covered this case in the construction above.)


Now suppose that the condition of part 2 holds: [γ] = [ξp]
e[ω](σ−1)p−j


for


some ω ∈ K× and e 6≡ 0 mod p. Let β = ae/pω(σ−1)p−j−1
. If j + 1 < p


then because e([ω](σ−1)p−j−1
) = 0 we have e([β]) = e 6≡ 0 mod p. Moreover,


[β]σ−1 = [ξe
p][ξ


−e
p ][γ] = [γ], so Mβ ⊃ Mγ and we have shown that E ′


j+1,j(L) is
solvable. Finally observe that if j +1 = p we showed at the beginning of our
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proof that both embedding problems E ′
p,p−1 and Ep,p−1 are the same, and


that also the conditions in Theorem 2 and Theorem 3 for the existence of a
solution of this problem are equivalent. Hence the existence of a solution in
this case follows from Theorem 2.


Next we shall derive an explicit form of any solution field L̃ of our em-
bedding problem.


Observe that for any f ∈ F× and Jp−1 ⊃ Mβ % Mγ , we have l(Mfβ) =
l(Mβ), Mfβ ⊃ Mγ , and e([fβ]) = e([β]). Recall that in the case Υ = 1, α
is any element in K× with K( p


√
α)/F cyclic of degree p2, and in the case


Υ = 0, α is p
√


α. By Proposition 1, then,


L̃ = L( p
√


fβ,
p


√


β(σ−1), . . . ,
p


√


β(σ−1)p−1)


is a solution to the appropriate embedding problem for β = αω(σ−1)p−i
in


the case i > j+1−Υ or j = p−1 and β = ae/pω(σ−1)p−i
in the case i = j+1,


Υ = 0, as above.


To show that every solution field L̃ takes this form, suppose that Mβ ↔ L̃
is a solution to E ′


i,j(L). Hence Mβ ⊃ Mγ . We consider first the case of part 1


when Υ = 1. If i < p then by Lemma 3, e([β]) 6= 0; in this case we let c ∈ Z
be such that e([βc]) = e([α]) and set β′ = βc so that e([β′/α]) = 0. If i = p
then let β′ = β. Because i > j ≥ 1 and [α] ∈ J1, l(Mβ′/α) = l(Mβ′) = i.


Observe that [β′/α](σ−1) = [βc](σ−1), so Mβ′/α ⊃ M(β′/α)(σ−1) = Mβ(σ−1) ⊃
Mγ , because Mγ is properly contained in Mβ and Mβ(σ−1) is the maximal


proper Fp[G]-submodule of Mβ . Hence Mβ′/α ↔ L̄, for L̄ a solution to
Ei,j(L).


By Kummer theory and Theorem 2,


Mβ′/α = 〈[fω(σ−1)p−i


], [ω(σ−1)p−i+1
], . . . , [ω(σ−1)p−1


]〉
for some f ∈ F× and ω ∈ K×. Observe that hence Mβ′/α = M


fω(σ−1)p−i .


Because [β′/α] and [fω(σ−1)p−i
] are both Fp[G]-module generators of the


same module of length i,


β′/α = (fω(σ−1)p−i


)c0+c1(σ−1)+···+ci−1(σ−1)i−1


for some ci ∈ Fp. Let f ′ = f c0 and ω′ = ωc0+c1(σ−1)+···+ci−1(σ−1)i−1
. Then


β′/α = f ′(ω′)(σ−1)p−i
, or β′ = f ′α(ω′)(σ−1)p−i


. Since Mβ′ = Mβ ↔ L̃, L̃
takes the form


L̃ = L(
p


√


f ′α(ω′)(σ−1)p−i ,
p


√


(ω′)(σ−1)p−i+1 , . . . , p


√


(ω′)(σ−1)p−1)


by Proposition 1.


The case when Υ = 0 can be treated as above with slight modifications.
First in this case instead of [α] ∈ J1 we take [ p


√
a]. We use our hypothesis
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i > j +1 to make sure as above that l(Mβ′/ p
√


a) = l(Mβ′). Next observe that


Mβ′/ p
√


a ⊃ M
(β′/ p


√
a)(σ−1)2 = M


β(σ−1)2 ⊃ Mγ


as the Fp[G]-submodules of Mβ are linearly ordered by inclusion and l(Mβ)−
l(Mγ) ≥ 2. The rest of the argument for case (1) when Υ = 0 faithfully
follows the argument for case (1) when Υ = 1 as above.


In order to show that every solution field L̃ in part 2 takes the spec-
ified form, observe that Aj/Aj+1 is in the center of Bj+1,e. Therefore,
since we have one solution of the embedding problem E ′


j+1,j of the form


L′ = L(
p
√


ae/pω(σ−1)p−j−1), by the well-known theorem on solutions of cen-


tral embedding problems (see [JLY, Lemma A.1.1]), any other solution L̃ of
the embedding problem E ′


j+1,j takes the form


L̃ = L(
p


√


fae/pω(σ−1)p−j−1), f ∈ F×,


as required. ¤


Remark. Lemma 2 implies that among our embedding problems, only Ga-
lois extensions L/F with Gal(L/F ) ∼= Bj,0 may be solved. This result agrees
with our Theorems 2 and 3, as follows. Suppose that L is the Galois closure
of K( p


√
γ), γ ∈ K×, and l(Mγ) = j. From our solvability conditions we see


that if L can be embedded in some extension L̃ such that Gal(L̃/F ) ∼= Bi,e


and p ≥ i > j ≥ 1, e ∈ Fp, then necessarily e([γ]) = 0.


3. Proof of Theorem 1


Proof. The condition on b preceding the statement of the theorem implies
that Mb ↔ L/K under the Kummer correspondence. Since Ei = Ei,1, by


Theorem 2 we need only show that there exists α with [b] = [α](σ−1)p−1
if


and only if there exists ω with N(ω) = b. By equation (2),


[ω](σ−1)p−1
= [ω]1+σ+···+σp−1


= [ω1+σ+···+σp−1
] = [N(ω)] = [b],


so if ω exists satisfying N(ω) = b, then α = ω satisfies [b] = [α](σ−1)p−1
.


Going the other way, suppose that [b] = [α](σ−1)p−1
for some α. By


equation (2) again, [b] = [N(α)]. Then N(α) = kpb for some k ∈ K×.
Hence N(α)/b ∈ F× ∩ K×p, and by Kummer theory kp = asfp for some


s ∈ Z. Choosing ω = α/(as/pf) we obtain N(ω) = b. ¤
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