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Abstract. We study quadratic forms that can occur as trace forms
qL/K of Galois field extensions L/K, under the assumption that K con-
tains a primitive 4th root of unity. M. Epkenhans conjectured that qL/K


is always a scaled Pfister form. We prove this conjecture and classify
the finite groups G which admit a G-Galois extension L/K with a non-
hyperbolic trace form. We also give several applications of these results.


1. Introduction


The trace form of a finite separable field extension (or, more generally
of an étale algebra) L/K is the non-degenerate quadratic form qL/K : x 7→
trL/K(x2) defined over K. In this paper we shall address the following
problem: Given a finite group G, which quadratic forms over K are trace
forms of G-Galois extensions L/K? This question has been extensively
studied; see, e.g. [5] and the references there. In [9] D.-S. Kang and the
second author obtained the following partial answer:


Theorem 1.1. Let L/K be a G-Galois extension and let S be a Sylow 2-
subgroup of G. Assume


(a) S is not abelian, and


(b) K contains a primitive eth root of unity, where


e = min{exp(H) |H is a non-abelian subgroup of S} .


Then the trace form qL/K is hyperbolic over K.


In this paper we will study trace forms of G-Galois extensions L/K, as-
suming only that K contains a primitive 4th root of unity. M. Epkenhans
has conjectured that in this situation qL/K is always a scaled Pfister form.
Our first main result is a proof of this conjecture. Before giving the precise
statement, we introduce some notations.


If G is a group and i ≥ 1 is an integer, we set Gi = <gi | g ∈ G> ⊳ G. If S is
a finite 2-group, then S2 = Fr(S) is the Frattini subgroup of S. The Frattini
rank r of S is the rank of the elementary abelian group S/S2 ≃ (Z/2)r. Note
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that the Frattini rank of S equals the cardinality of any minimal generating
set of S; see, e.g., [18, 7.3].


Theorem 1.2. Suppose K is a field containing a primitive 4th root of unity,
L/K is G-Galois extension, S is a Sylow 2-subgroup of G, and r is the
Frattini rank of S. Then the trace form qL/K is Witt-equivalent to the scaled
Pfister form <|S|>⊗ ≪ a1, . . . , ar ≫, for some a1, . . . , ar ∈ K∗.


Several remarks are in order, regarding Theorem 1.2. First of all, both
Theorem 1.1 and 1.2 remain true for Galois K-algebras L that are not
necessarily fields. The reason is that both are enough to check for a single
“versal” G-Galois algebra, which is a field; cf. e.g., [9, Proposition 2.5].


Secondly, Theorem 1.2 was previously known for |S| ≤ 16; see [5, Corol-
lary 6, p. 227].


Thirdly, the “scaling factor” of <|S|> presents only a minor inconvenience
in working with the trace form qL/K . It can be dropped if |S| is a square
in K (and, in particular, if K contains a primitive 8th root of unity; cf.
Remark 9.1) and replaced by <2> in all other cases.


Finally, the requirement that K should contain a primitive 4th root of


unity is essential. Indeed, let K = Q and L = Q(
√


2 +
√


2). By [5, Propo-
sition 8] (with q = a = b = 1 and D = 2), the field extension L/K is Galois,
with Gal(L/K) = Z/4 and the trace form qL/K = <1, 2, 1, 1>. This form is
positive-definite and thus anisotropic. Consequently, qL/K cannot be Witt-
equivalent to a 2-dimensional form. This shows that Theorem 1.2 fails for
this extension.


Our second main result is a complete description of those finite groups G
which admit a G-Galois extension L/K with a non-hyperbolic trace form.
(Here we assume that K contains a primitive root of unity of degree 2m for
a fixed m ≥ 2.) It turns out that these groups belong to a rather small but
interesting family that was previously studied for entirely different reasons.


Theorem 1.3. Let G be a finite group, S be a Sylow 2-subgroup of G and
m ≥ 2 be an integer. Then the following conditions are equivalent:


(a) there exists a S-Galois extension E/F such that F contains a primi-
tive root of unity of degree 2m and the trace form qE/F is not hyperbolic,


(b) there exists a G-Galois extension L/K such that K contains a prim-
itive root of unity of degree 2m and the trace form qL/K is not hyperbolic,


(c) T/T 2m
is abelian for every subgroup T of S,


(d) there exist an integer s ≥ m, an abelian subgroup A ⊳ S, and an
element t ∈ S such that S = <A, t> and tat−1 = a1+2s


for every a ∈ A.


A simple argument based on Sylow’s theorem shows that condition (c)
is equivalent to H/H2m


being abelian for every subgroup H of G (see Re-
mark 5.2). Note also that the G-Galois extension L/K in part (b) can be
chosen so that char (K) = 0 (see Remark 7.3) and K does not contain a
primitive root of unity of degree 2m+1 (see Remark 5.1).
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The 2-groups T appearing in condition (c) are powerful in the sense of
Lubotzky and Mann [13]. Their results on the structure of powerful groups
will be used in the proof of Theorem 1.3, along with theorems of Iwasawa [8]
and Engler-Koenigsmann [6].


Theorems 1.2 and 1.3 have a natural cohomological interpretation. Let
G be a finite group, S be a Sylow 2-subgroup of G, r be the Frattini rank
of S and K be a field containing a primitive root of unity of degree 2m


for some integer m ≥ 2. Then to every G-Galois field extension L/K (and,
more generally, to a G-Galois K-algebra L) we can associate the well-defined
cohomology class φ(L) = (a1) ·(a2) . . . (ar) in Hr(K, Z/2Z), where a1, . . . , ar


are as in Theorem 1.2. In other words, φ(L) is the Arason invariant of the
Pfister form <|S|>⊗ qL/K ; cf. [1, Section 1]. The map φ so defined is easily
seen to be a cohomological invariant


φ : H1(∗, G) −→ Hr(∗, Z/2Z) ,


where ∗ ranges over the category of fields containing a primitive 2mth root of
unity. (Recall that the non-abelian cohomology set H1(K, G) parametrizes
G-Galois algebras over K.) Theorem 1.3 gives equivalent conditions for this
cohomological invariant to be non-trivial.


The rest of this paper is structured as follows. Theorem 1.2 is proved in
Sections 2 and 3. Theorem 1.3 is proved in Sections 4 - 7. In Section 8 we
discuss a number of applications of these results. In particular, we show that
the trace form of a G-Galois field extension L/K is hyperbolic if the field
K is “sufficiently small” in a suitable sense (see Proposition 8.1) or if G is a
simple group whose Sylow 2-subgroups are non-abelian (see Proposition 8.2).
In the last section we give a description of quadratic forms that can occur
as trace forms of M(2n)-Galois extensions, where


M(2n) =< σ, τ |σ2n−1
= 1 = τ2, τστ = σ1+2n−2


> .
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2. Orthogonal 2-groups


Most of our subsequent results will be based on the following lemma,
communicated to us by J.-P. Serre.


Lemma 2.1. Let K be a field containing a primitive 4th root of unity, (V, q)
be a non-degenerate finite-dimensional quadratic space over K and G be a
finite 2-subgroup, acting orthogonally on V . Then V can be decomposed as
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an orthogonal sum V = V Fr(G) ⊕ V0, such that the restriction of q to V0 is
hyperbolic.


Here, as usual, V Fr(G) = {v ∈ V |h(v) = v for every h ∈ Fr(G)}, and we
allow the trivial hyperbolic quadratic space V0 = {0}.
Proof. We argue by induction on dim(V ) + |G|. Assume, to the contrary,
that the lemma fails for some V , q and G; choose a counterexample with
dim(V ) + |G| as small as possible. Then G acts faithfully on V ; otherwise
we could obtain a counterexample with a smaller value of dim(V ) + |G| by
keeping the same V and replacing G by G/N , where N is the kernel of this
action.


We claim that every index 2 subgroup of G is elementary abelian. In-
deed, assume the contrary: Fr(H) 6= {1} for some index 2 subgroup H.


Equivalently, V Fr(H) 6= V . Since |H| + dimV < |G| + dimV , our induction
hypothesis applies and we can write V as an orthogonal sum


V = V Fr(H) ⊕ V1 ,


where the restriction of q to V1 is hyperbolic. In particular, (V Fr(H), q|V Fr(H))


is a regular quadratic space; see [11, p. 11, Corollary 2.6]. Since Fr(H) is a


normal subgroup of G, the action of G restricts to V Fr(H). This restricted
action is once again orthogonal, and since dimV Fr(H) < dimV , we can apply
our induction assumption to write V Fr(H) as an orthogonal sum


V Fr(H) = V Fr(G) ⊕ V2 ,


where the restriction of q to V2 is hyperbolic. To sum up,


V = V Fr(H) ⊕ V1 = V Fr(G) ⊕ V0 ,


where the restriction of q to V0 = V1 ⊕ V2 is hyperbolic, contradicting our
choice of V and G. This contradiction proves the claim.


If every element of G has order ≤ 2 then G is itself elementary abelian. In
this case the lemma is trivial, because Fr(G) = {1}. Thus we may assume G
has an element g of order 4. By the claim we just proved, g is not contained
in any subgroup of G of index 2. In other words, <g> is not contained in
any proper subgroup of G, i.e., G = <g> ≃ Z/4. We shall thus concentrate
on this case for the rest of the proof. Note that Fr(G) = <g2>. We now
proceed with an explicit description of V0.


Now recall that K is assumed to contain a primitive 4th root of unity; we
will denote it by ζ. Since g4 = 1, we can decompose V as a direct sum of
the four eigenspaces for g:


(2.1) V = V1 ⊕ V−1 ⊕ Vζ ⊕ V−ζ ,


where Vα = {v ∈ V | g(v) = αv}. Note that if x ∈ Vα and y ∈ Vβ then


B(x, y) = B(g(x), g(y)) = αβB(x, y)


and thus


(2.2) B(x, y) = 0 whenever αβ 6= 1.







TRACE FORMS 5


Here B denotes the bilinear form associated with the quadratic form q.
In particular V Fr(G) = V1⊕V−1 is orthogonal to Vζ⊕V−ζ , and thus we can


take V0 = Vζ ⊕V−ζ . By (2.2) both Vζ and V−ζ are totally isotropic. Thus V0


contains a totally isotropic space of dimension at least half the dimension
of V0. Observe also that from (2.2), and from our assumption that q is
non-degenerate on V , it follows that q is non-degenerate on V0. Thus we see
that V0 is hyperbolic; see [11, Chapter 1, Theorem 3.4(i)]. To sum up,


V = (V1 ⊕ V−1) ⊕ (Vζ ⊕ V−ζ) = V Fr(G) ⊕ V0 ,


where the restriction of q to V0 is hyperbolic. This contradicts our choice of
G and V , thus completing the proof of Lemma 2.1. ¤


Corollary 2.2. Let G be a finite 2-group and L/K be a G-Galois extension.
Assume K contains a primitive 4th root of unity. Then


(a) qL/K ≃ <|Fr(G)|> ⊗ qLFr(G)/K .


(b) More generally, for any normal subgroup H ⊂ Fr(G),


qLH/K ≃ <[Fr(G) : H]> ⊗ qLFr(G)/K .


Here ≃ denotes Witt equivalence.


Proof. (a) The 2-group G acts orthogonally on the quadratic space (V =
L, qL/K) over K. By Lemma 2.1, qL/K is Witt-equivalent to its restriction


to LFr(G). Finally, for every x ∈ LFr(G), we have


qL/K(x) = |Fr(G)| qLFr(G)(x) ,


and part (a) follows.
(b) Apply part (a) to the G/H-Galois extension LH/K, remembering


that Fr(G/H) = Fr(G)/H. ¤


3. Conclusion of the proof of Theorem 1.2


As usual, given a1, a2, . . . , an ∈ K∗, ≪ a1, . . . , an ≫= ⊗n
i=1<1,−ai> will


denote an n-fold Pfister form. Note that since we always assume K contains
a primitive 4th root of unity,


≪ a1, . . . , an ≫≃ ⊗n
i=1<1, ai> .


We now begin the proof of Theorem 1.2 by reducing to the case where
G = S is a 2-group.


Lemma 3.1. Let G be a finite group, K be a field containing a primitive 4th
root of unity, L/K be a G-Galois extension, S be the Sylow 2-subgroup of
G, K1 = LS and φ : W (K) −→ W (K1) be the natural (extension of scalars)
homomorphism of Witt rings.


(a) (cf. [2, 6.1.1]) qL/K1
= φ(qL/K) in W (K1).


(b) qL/K is hyperbolic if and only if qL/K1
is hyperbolic.
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(c) Let a ∈ K∗. Then qL/K = <a>⊗ ≪ a1, . . . , ar ≫ in W (K), for some
a1, . . . , ar ∈ K∗, if and only if qL/K1


= <a>⊗ ≪ b1, . . . , br ≫ in W (K1) for
some b1, . . . , br ∈ K∗


1 .


Proof. (a) φ(qL/K) is clearly the trace form of the K1-algebra L1 = L⊗K K1


and L1 is isomorphic, as a K1-algebra, to


(3.1) L ⊕ · · · ⊕ L (m times),


where m = [G : S] is odd. Moreover, (3.1) is an orthogonal direct sum with
respect to the trace form. Thus


φ(qL/K) = qL/K1
⊕ · · · ⊕ qL/K1


(m times);


cf. [3, Theorem I.5.1]. Since we are assuming K (and thus K1) contains a
primitive 4th root of unity, 2W (K1) = {0}, and part (a) follows.


By Springer’s theorem, φ is injective; see, e.g., [11, Theorem 7.2.3]. Part
(b) now follows from (a).


(c) By Rost’s theorem on the descent of Pfister forms [16, Section 3] (see
also [2, 4.4.1]), <a> ⊗ qL/K is Witt-equivalent to a Pfister form over K if
and only if <a> ⊗ qL/K1


is Witt-equivalent to a Pfister form over K1. ¤


We now continue with the proof of Theorem 1.2. By Lemma 3.1(c) we
may assume that G is a 2-group. By Corollary 2.2


qL/K ≃ <|Fr(G)|> ⊗ qLFr(G)/K .


Note that LFr(G)/K is a G/ Fr(G)-Galois extension, where G/ Fr(G) ≃
(Z/2)r. Thus it is enough to prove Theorem 1.2 in the case where Gal(L/K)
is an elementary abelian 2-group; indeed, if we know that


qLFr(G)/K ≃ <|G/ Fr(G)|> ⊗ (r-fold Pfister form) .


then by Corollary 2.2(a)


qL/K ≃ <|Fr(G)|> ⊗ qLFr(G)/K ≃ <|G|> ⊗ (r-fold Pfister form),


as claimed.
Now assume G = (Z/2)r. Here any G-Galois extension L/K has the form


L = K(
√


a1, . . . ,
√


ar), for some a1, . . . , ar ∈ K∗, and an easy computation


in the basis {a
ǫ1
2


1 . . . a
ǫr
2


r }, with ǫ1, . . . , ǫr = 0, 1, shows that


(3.2) qL/K ≃ <2r>⊗ ≪ a1, . . . , ar ≫ ;


cf. [2, 6.2.1] or [9, Lemmas 2.1(b) and 2.2]. This completes the proof of
Theorem 1.2. ¤
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4. Iwasawa structures


An Iwasawa structure of level s ≥ 1 on a 2-group G is a normal abelian
subgroup A and an element t such that G = <A, t> and


tat−1 = a1+2s
for every a ∈ A.


Informally speaking, the higher the level is, the closer G is to an abelian
group. In particular, if exp(A) = 2e and s ≥ e then G is abelian. Conversely,
any finite abelian 2-group G of exponent ≤ 2s admits an Iwasawa structure
of level s, with A = G and t = {1}.


If a 2-group G admits an Iwasawa structure of level ≥ 2, we will call G
an Iwasawa group. Note that the level of an Iwasawa group G is not well-
defined in general, since G may admit Iwasawa structures of different levels
(see Example 4.2 below).


For any 2-group G we define the strength of G by


str(G) = max {m | G/G2m
is abelian} .


In particular, str(G) = ∞ iff G is abelian and str(G) ≥ 2 iff G is powerful
in the sense of Lubotzky and Mann; cf. [13, Definition, p. 499].


Lemma 4.1. Suppose that G is a finite 2-group which admits an Iwasawa
structure (A, t) of level s. Then


(a) [G, G] = A2s
,


(b) str(G) ≥ s,


(c) If s ≥ 2 then G2m
= <A2m


, t2
m


> for every m ∈ N.


Proof. (a) From the definition of an Iwasawa structure of level s, we see that
A2s ⊂ [G, G] and G/A2s


is abelian. Hence, [G, G] = A2s
.


(b) By part (a) G/A2s
is commutative. Hence, so is G/G2s


, and part (b)
follows.


(c) By part (b), str(G) ≥ 2. Thus [G, G] ⊂ G4, i.e., G is a powerful
2-group. The desired conclusion now follows from [4, Theorem 2.7]. ¤


We remark that part (c) remains true even if s = 1. This stronger as-
sertion will not be used in the sequel; we leave it as an exercise for the
reader.


Example 4.2. The inequality str(G) ≥ s may be strict, even if G is non-
abelian. Indeed, let


G = <a, t|a25
= 1, a22


= t2
3
, tat−1 = a1+8>.


One checks readily that G is a metacyclic group of order 28 and that G
admits an Iwasawa structure (A, t) of level 3, where A = <a>. We claim
that str(G) = 4. By Lemma 4.1, [G, G] = <a8>. Since a8 = t16, we see
that [G, G] is contained in G16 but not in G32 = <a32, t32> = <a16>. Thus
str(G) = 4, as claimed.
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On the other hand, observe that G admits another Iwasawa structure


(Ã, t̃) of level 4, where Ã = <t> and t̃ = a−1. Indeed, have t̃ t t̃−1 =


a−1ta = t1+24
. Thus we see that by switching the role of t and a−1, we are


able to find another Iwasawa structure whose level equals the strength of G.
In the next lemma we shall show that such a switch is always possible.


Lemma 4.3. Suppose G be a non-abelian Iwasawa 2-group. Then


str(G) = max{level(A, t)} ,


where the maximum is taken over all Iwasawa structures (A, t) on G.


Proof. Let m = str(G) and (A, t) is an Iwasawa structure on G of level s.
By Lemma 4.1, s ≤ m. If s = m we are done. Thus we may assume s < m.
Our goal is to construct another Iwasawa structure on G of level m.


Since G is an Iwasawa 2-group, m ≥ 2. Thus [G, G] ⊂ G4, so that G is a
powerful group. By Lemma 4.1,


A2s
= [G, G] ⊂ G2m


= <A2m
, t2


m
> .


We now see that the group G2m
/A2m


is cyclic, and hence, so is its subgroup
A2s


/A2m
. Since s < m this implies that A2s


is itself cyclic.
Let a2s


= t2
m


be a generator of A2s
with a ∈ A. Since the order of a


is equal to the exponent of A, we see that there exists a subgroup B of A
such that A = <a> ⊕ B. Moreover, since A2s


/A2m
is cyclic, we see that


B2s
= {1}. Therefore, tbt−1 = b1+2s


= b for each b ∈ B, and B is a subgroup
of the center Z(G) of G.


Set Ã = <t, B> and t̃ = a−1. We claim that (Ã, t̃) is an Iwasawa structure
on G of level m. First we have


<Ã, t̃> = <t, B, a−1> = <t, A> = G.


Also Ã is an abelian subgroup of G as B ⊂ Z(G). Further t̃ t t̃−1 = a−1ta =


a−1a1+2s
t = a2s


t = t1+2m
, as a2s


= t2
m


. Because Ã = <B, t> and B ⊂
Z(G) we see that t̃ ã t̃−1 = ã 1+2m


for each ã ∈ Ã. Hence (Ã, t̃) is the
Iwasawa structure of level m. ¤


Remark 4.4. In view of Lemma 4.3, a 2-group S satisfies condition (d) of
Theorem 1.3 if and only if it is an Iwasawa group of strength ≥ m.


5. Proof of Theorem 1.3 (a) =⇒ (b) =⇒ (c) =⇒ (d)


(a) =⇒ (b): Let k be the subfield of F generated by the prime field and
the primitive 2mth root of unity and let V be a faithful linear representation
of G over k (e.g., we can take V to be the group algebra k[G]). Denote the
field of rational functions on V by k(V ). Since the trace form of the S-Galois
extension E/F is not hyperbolic [9, Proposition 2.5] tells us that the trace
form of k(V )/k(V )S is not hyperbolic. Now by Lemma 3.1(b), k(V )/k(V )G


is not hyperbolic either. Thus we can take L = k(V ) and K = k(V )G.
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(b) =⇒ (c): Let L/K be a G-Galois field extension with a non-hyperbolic
trace form, as in (b). Assume, to the contrary, that T/T 2m


is non-abelian for
some subgroup T of S. Then the trace form of L/LT is still non-hyperbolic;
see [9, Lemma 2.1(c)]. Thus, replacing G by T and K by LT , we may assume
G = T .


Now let H = G2m
. Then LH/K is a Galois extension with Galois group


G/H, which by our assumption, is non-abelian of exponent ≤ 2m. Thus,
by Theorem 1.1, qLH/K is hyperbolic. Now, since H ⊂ G2 = Fr(G), Corol-
lary 2.2 tells us that qL/K is hyperbolic as well, contradicting our assumption.


(c) =⇒ (d): By our assumption every subgroup T of S satisfies [T, T ] ⊂
T 4, i.e., T is powerful. By [13, Theorem 4.3.1] this implies that S is modular
but not Hamiltonian. On the other hand, by a theorem of Iwasawa [8]
modular non-Hamiltonian 2-groups are precisely the 2-groups that admit
an Iwasawa structure of of level ≥ 2. 1


It remains to show that S admits an Iwasawa structure of level s ≥ m.
First suppose S is abelian. Then, as we pointed out in Section 4, we can
take A = S, t = 1, and s = max{m, e}, where e is the exponent of S. Now
assume S is not abelian. Then by our assumption (c), str(S) ≥ m. The
desired conclusion now follows from Lemma 4.3. ¤


Remark 5.1. If char (K) = 0 then the G-Galois extension L/K in part (b)
can be chosen so that K does not contain a primitive root of unity of degree
2m+1.


Proof. Let k = Q(ζ2m) be the subfield of K generated by its prime subfield
and a primitive 2mth root of unity. Let V = kn be a faithful G-representation
(over k), as in the proof of the implication (a) =⇒ (b). Since the trace form
of the S-Galois extension E/F is not hyperbolic, [9, Proposition 2.5] tells us
that the trace form of k(V )/k(V )S is not hyperbolic. Thus we can replace
E by E′ = k(V ) and F by F ′ = k(V )G. Since k is algebraically closed in
E′, E′ (and hence, F ′) does not contain a primitive root of unity of degree
2m+1. ¤


The same argument goes through in characteristic p, provided that k =
Fp(ζ2m) does not contain ζ2m+1 .


Remark 5.2. Condition (c) of Theorem 1.3 is equivalent to


(c′) H/H2m
is abelian for every subgroup H of G.


Proof. Clearly, (c′) =⇒ (c). To prove the converse, let T be a Sylow 2-
subgroup of H. After replacing S by a conjugate Sylow subgroup in G, we
may assume T ⊂ S. Let T be the image of T in H/H2m


. We claim that
T = H/H2m


. Indeed, on the one hand, the exponent of H/H2m
divides


2m, so that H/H2m
is a 2-group. On the other hand, since T is a Sylow


1The proofs of Iwasawa’s theorem in [8] and [20, Theorem 14] had some gaps that were
later pointed out and closed by Napolitani [14]. For a detailed exposition of Iwasawa’s
theorem and related group-theoretic results, we refer the reader to [17].
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2-subgroup of H, the index [H : T ] is odd. The index of T in H/H2m
is


thus both odd and a power of 2; hence, T = H/H2m
, as claimed.


Consequently,


T/T 2m onto−→ T/(T ∩ H2m
) ≃ H/H2m


.


If T/T 2m
is abelian, then so is H/H2m


. This shows that (c) =⇒ (c′). ¤


Remark 5.3. Let G be a finite group. If A and B are subgroups of G, we
shall denote the set of intermediate subgroups A ⊂ X ⊂ B by [A, B]. This
set is naturally a lattice, where X ∧ Y = X ∩ Y and X ∨ Y = subgroup
generated by X and Y .


Let S be a Sylow 2-subgroup of G. Suppose for some subgroups A and B of
S, the map ϕA,B : [A, A∨B] −→ [A∧B, B], defined by ϕA,B(X) = A∧X,
is not a lattice isomorphism. Then the trace form qL/K is hyperbolic for
every G-Galois extension L/K such that K contains a primitive 4th root of
unity.


Proof. If ϕA,B is not a lattice isomorphism for some A and B then the lattice
[{1}, S] is not modular; see [17, Theorem 2.1.5]. Then, by Iwasawa’s theorem
(the easy direction), S does not satisfy condition (d) of Theorem 1.3. The
desired conclusion follows from the implication (b) =⇒ (d). ¤


6. Proof of Theorem 1.3 (d) =⇒ (a): Preliminary reductions


We begin by observing that for the purpose of proving the implication
(d) =⇒ (a), we may assume that G = S is a 2-group and that m = s. We
shall say that S admits a non-hyperbolic trace form if it satisfies condition
(a) of Theorem 1.3.


It is easy to see that every abelian 2-group admits a non-hyperbolic trace
form; see, e.g., [9, Remark 3.2]. Thus we will assume from now on that S
is non-abelian. Recall that by our assumption (d), S = <A, t>, where A is
abelian and


(6.1) tat−1 = a1+2s
for every a ∈ A.


Our proof of the implication (d) =⇒ (a) of Theorem 1.3 will consist of
two parts. In this section we will reduce the problem to the case where
A = (Z/2eZ)r and S is a semidirect product of A and <t>; in the next
section we will show that every S of this form admits a non-hyperbolic trace
form. (Note that here r is the Frattini rank of A; the Frattini rank of S is
r + 1.)


In order to facilitate working with Iwasawa groups, we will write them in
terms of generators and relations. Decompose the abelian 2-group


A = <a1> × · · · × <ar> ≃ Z/2e1Z × · · · × Z/2erZ ,


as a product of cyclic subgroups, where ai has order 2ei . Then exp(A) = 2e,
where e = max{e1, . . . , er}. Since S is non-abelian,


(6.2) s < e .
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Denote the order of the image of t in G/A by 2q and let a0 = t2
q ∈ A. Note


that the order of a0 in A is 2−q|<t>| and, since a0 commutes with t, a2s


0 = 1
in A.


Lemma 6.1. (a) The group X = A ∗ <t>/<tat−1 = a1+2s | a ∈ A> is
isomorphic to A >⊳ <t>, with the action of t on A given by (6.1). Here
A ∗ <t> denotes the free product of the subgroups A and <t> of G.


(b) Let c ∈ A be an element of order 2−q|<t>|, satisfying c2s
= 1 and


Y = A ∗ <t>/<t2
q


= c , tat−1 = a1+2s | a ∈ A>. Then every element of Y
can be uniquely written in the form ati for some a ∈ A and 0 ≤ i < 2q.


(c) S is isomorphic to Z = A ∗ <t>/<t2
q


= a0 , tat−1 = a1+2s | a ∈ A>.


Proof. (a) Consider the natural surjective homomorphism X −→ A>⊳<t>,
taking a to a and t to t. Since X has at most |A| × |<t>| elements (every
element of X can be written in the form ati for some a ∈ A and 0 ≤ i <
|<t>|), this homomorphism is an isomorphism.


(b) The defining relations of Y tell us that every element of Y can be
written as ati, with a ∈ A and i ∈ {0, 1, . . . , 2q − 1}. To prove uniqueness,
it is enough to show that |Y | = 2q · |A|. Note that Y is the quotient of
X = A>⊳<t> by the central cyclic subgroup C = <ct−2q


>. (This subgroup
is central in X because c2s


= 1 in A.) Since c has order 2−q|<t>| in A and
t2


q
has order 2−q|<t>| in <t>, we have |C| = 2−q|<t>|


|Y | =
|X|
|C| =


|A| · |<t>|
|C| = 2q|A| ,


as desired.


(c) Every element of S can be uniquely written in the form ati, for some
a ∈ A and 0 ≤ i < 2q. Thus the natural surjective homomorphism Z −→
S ≃ <A, t> is an isomorphism. ¤


We are now ready to prove the main result of this section. We will continue
to use the notations of Lemma 6.1.


Reduction 6.2. In the proof of the implication (d) =⇒ (a) of Theorem 1.3
we may assume without loss of generality that


(1) e1 = · · · = er and


(2) S is a semidirect product of A and <t>.


Proof. We will use the following two simple “moves” to go from an arbitrary
Iwasawa group to one satisfying (1) and (2):


(i) If H is a subgroup of G and G admits a non-hyperbolic trace form
then so does H.


(ii) Suppose T is a 2-group and N be a normal subgroup of T contained
in T 2 = Fr(T ). If T admits a non-hyperbolic trace form then so does T/N .


(ii) is immediate from Corollary 2.2. To prove (i), note that if the trace form
of a G-Galois extension L/K is not hyperbolic then neither is the trace form
of L/LH ; see, e.g., [9, Lemma 2.1(c)]
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(1) Let e = max{e1, . . . , er} and embed A in the abelian group


B = <b1> × · · · × <br> ≃ Z/2e × · · · × Z/2e ,


where each bi has order 2e and ai = b2e−ei


i for all i = 1, 2, . . . , r. Let


S1 = B ∗ <t>/<t2
q


= a0 , tbt−1 = b1+2s | b ∈ B> .


Then there is a natural homomorphism S ≃ Z −→ S1, which sends t to t
and a to a for every a ∈ A ⊂ B. By Lemma 6.1(b), this homomorphism is
injective. Thus by (i) we may replace S by S1. This completes the proof of
(1).


From now on, we will assume that e1 = · · · = er = e.


(2) Let X and Z be as in Lemma 6.1. Consider the natural homomorphism
f : X −→ Z ≃ S which sends t to t and a to a for every a ∈ A. By
Lemma 6.1(a) X ≃ A >⊳ <t>. It now suffices to show that Ker(f) ⊂
Fr(X) = X2; part (2) will then follow from (ii), with T = X. For notational
convenience, we will denote the image t in S by t.


Suppose ati ∈ Ker(f) for some a ∈ A and 0 ≤ i < |<t>|; in other words,
at i = 1 in S. Then, since the order of t A in S/A is 2q, we conclude that
i is a multiple of 2q. In particular, since S is not abelian, we have q ≥ 1
and thus ti ∈ X2. It remains to show that a ∈ X2. Indeed, since a = t−i


in S, a and t commute in S, i.e., a2s
= 1 in S. Since we are assuming that


A ≃ (Z/2eZ)r and s < e, cf. part (1) and (6.2), we conclude that a ∈ A2 in
A, and consequently a ∈ X2 in X, as claimed. ¤


7. Conclusion of the proof of Theorem 1.3 (d) =⇒ (a)


In view of Reduction 6.2, it remains to prove the following


Proposition 7.1. Let S = A >⊳ <t>, where <t> is a finite cyclic 2-group,
acting on A = (Z/2eZ)r by tat−1 = a1+2s


, and 2 ≤ s < e. Then there exists
a S-Galois extension E/F such that F contains a primitive root of unity ζ2s


of degree 2s and the trace form qE/F is non-hyperbolic.


Our proof of Proposition 7.1 below relies on valuation theory; our primary
background references are [6], [15] and [22]. We shall denote the finite field
of order q by Fq.


Lemma 7.2. For every integer s ≥ 2, there exists a field F with a 2-
henselian valuation v with value group Γv, and residue field K, such that


(i) char K 6= 2,


(ii) F contains a primitive root of unity ζ2s of degree 2s but does not
contain the primitive root of unity ζ2s+1 of degree 2s+1,


(iii) dimF2 Γv/2Γv ≥ r.


(iv) K(2) = K(ζ2∞), where K(ζ2∞) is the extension of K obtained by
adjoining all 2nth roots of unity to K, for n = 1, 2, . . . and K(2) is the
maximal 2-extension of K in some algebraic closure of K.


Moreover, we can choose F so that char (F ) = 0.
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Proof. We shall give two constructions: a simple one in prime characteristic
and a slightly more complicated one in characteristic zero.


Construction 1: Observe that 52s−2 − 1 is divisible by 2s but not by 2s+1


for any integer s ≥ 2; see, e.g., [18, 5.3.17]. Therefore if q = 52s−2
then


ζ2s ∈ Fq but ζ2s+1 /∈ Fq. Let F = Fq((X1))((X2)) . . . ((Xr)) be the field of
the iterated power series in variables X1, . . . , Xr over Fq and v be the natural
2-henselian valuation v : F −→ Z × · · · × Z (r-times), where Z × · · · × Z


is lexicographically ordered. One also has K(v) = Fq, so that properties
(i)-(iv) hold.


Construction 2: Alternatively consider the field


F = Qp((x1))((x2)) . . . ((xr))


of characteristic 0 and the natural 2-henselian valuation


v : F −→ Z × · · · × Z (r times).


This valuation composed with the p-adic valuation on Qp (see e.g., [15, p.
63]) yields a new 2-henselian valuation v′ : F −→ Z×· · ·×Z ((r +1)-times)
with a residue field K(v′) = Fp. (The fact that v′ is again 2-henselian follows
from [15, Proposition 10, page 211]; see also [10, p. 4].) Thus v′ satisfies
conditions (i), (iii) and (iv).


It remains to show that we can choose the prime p so that condition (ii)
holds. We claim that for each s ∈ N there is a prime p such that ζ2s ∈ Qp


but ζ2s+1 /∈ Qp. By Hensel’s Lemma it is enough to show that for each s ∈ N


there exists a prime p such that p − 1 is divisible by 2s but not by 2s+1.
To construct p, note that by Dirichlet’s theorem there exists n ∈ N such
that p = (1 + 2s) + 2s+1n is a prime number; this prime p has the desired
properties. ¤


For the rest of this section, we shall assume that F , v, Γv and K are as
in Lemma 7.2, Z2 is the additive group of 2-adic integers and furthermore,


• F (2) is the maximal 2-extension of F in some algebraic closure,


• GF (2) := Gal(F (2)/F ) is the Galois group of F (2)/F ,


• Tv ≃ Z2 × · · · × Z2 (d-times), where d = dimF2 Γv/2Γv. Here Tv


denotes the inertia subgroup of GF (2) associated with v,


• w is the unique valuation of F (2) which extends v on F .


By a result of Engler and Koenigsmann [6, Proposition 1.1b],


GF (2) ≃ (Tv × GK(ζ2∞ )(2)) >⊳ Z2 ,


where Z2 =< σ > and the action of σ on Tv is σ−1τσ = τ2s+1 for every
τ ∈ Tv.


It is also worthwhile to recall that Tv/T 2
v is the Pontrjagin dual of Γv/2Γv,


and this duality is induced by the Kummer pairing


< , > : Tv/T 2
v × Γv/2Γv −→ {±1} ,
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where < [θ] , [f ] > = θ(
√


f)/
√


f for each θ ∈ Tv and f ∈ F ∗. Here [θ] ∈
Tv/T 2


v and [f ] ∈ Γv/2Γv denote the images in θ and f in the factor groups
Tv/T 2


v and Γv/2Γv, respectively.
We are now ready to finish the proof of Proposition 7.1. Suppose


GK(ζ2∞ )(2) = {1}, i.e., K(2) = K(ζ2∞). Then we have


GF (2) ≃ Tv >⊳ Z2.


Since d = dimF2 Γv/2Γv ≥ r we deduce that


Tv = Z2 × · · · × Z2︸ ︷︷ ︸
r times


×S


for some suitable subgroup S of Tv. Therefore there exists a surjective
homomorphism ϕ̃ : Tv −→ A which projects the first factor on A and is
trivial on S. Because the action of σ on Tv is given by σ−1τσ = τ1+2s


for
each τ ∈ Tv, we see that ϕ̃ extends uniquely to a surjective homomorphism


ϕ : GF (2) −→ S such that ϕ(σ) = t−1.


Let R be the kernel of ϕ and E the fixed field of R. Then E/F is Galois and
Gal(E/F ) ≃ S. From the fact that Tv ≃ Hom(Γw/Γv, ζ2∞) (see [6, page
2474]) and the fact that the outer factor Z2 in the semidirect decomposition
of GF (2) as Tv >⊳ Z2 is Gal(F (ζ2∞)/F ), we see that the maximal Galois
subextension E′/F of E/F with a Galois group of exponent 2 has the form


E′ = F (
√


a1, . . . ,
√


ar, ζ2s+1),


where a1, a2, . . . , ar ∈ F ∗ such that their values v(a1), . . . , v(ar) ∈ Γv are
linearly independent in Γv/2Γv over F2.


From [22, Proposition 4.7] we see that the Pfister form


≪ a1, . . . , ar, ζ2s ≫
is non-hyperbolic. By Corollary 2.2 the trace form of E/F is Witt equivalent
to a scalar multiple of ≪ a1, . . . , ar, ζ2s ≫, which is also non-hyperbolic.
This completes the proof of Proposition 7.1 and thus of Theorem 1.3. ¤


Remark 7.3. Our proof shows that if the equivalent conditions (a) - (d)
of Theorem 1.3 hold then the fields F and K in parts (a) and (b) can be
chosen to be of characteristic zero.


8. Applications


Trace forms over “small” fields.


Proposition 8.1. Let G be a finite group, S be a Sylow 2-subgroup of G,
K be a field containing a primitive 4th root of unity and L/K be a G-Galois
extension. Denote the Frattini rank of S by r.


(a) If K is a Cr−1-field then the trace form qL/K is hyperbolic.


(b) If cd2(K) ≤ r − 1 then the trace form qL/K is hyperbolic.


(c) If K is a number field and r ≥ 3 (i.e., S cannot be generated by two
elements) then the trace form qL/K is hyperbolic.
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Here cd2(K) refers to the 2-cohomological dimension of K. For the defi-
nition of cohomological dimension and of the Ci property for fields, see [19,
II.4].


Proof. By Theorem 1.2 it is enough to show that under the assumptions of
the corollary every r-fold Pfister form q over K is hyperbolic.


In part (a) q is necessarily isotropic and, hence, hyperbolic; see, e.g., [11,
Corollary 10.1.6]. In part (b), by Milnor’s conjecture (recently proved by
Voevodsky [21]) q lies in Ir+1, where I is the fundamental ideal in the Witt
ring W (K) and by the Arason-Pfister theorem this is only possible if q is
hyperbolic; see [11, Corollary 10.3.4].


Part (c) is a special case of (b), since a totally imaginary number field
has cohomological dimension 2; see [19, II.4.4]. However, a much more
elementary argument, based on the Hasse-Minkowski principle, is available
in this case. Indeed, every quadratic form of dimension ≥ 5 over K is
isotropic; see [11, Corollary 3.5, p. 169]. In particular, for r ≥ 3, every
r-fold Pfister form is isotropic and hence hyperbolic over K. ¤


Simple groups.


Proposition 8.2. Let G be a finite simple group and let S be the Sylow
2-subgroup of G. Then the following are equivalent.


(a) S is abelian, and


(b) There exists a G-Galois field extension L/K such that K contains a
primitive 4th root of unity and the trace form qL/K is not hyperbolic.


Proof. By Theorem 1.3 it is sufficient to prove that S cannot be a non-
abelian Iwasawa group. Equivalently (via Iwasawa’s theorem [8]) S cannot
be a non-abelian modular non-Hamiltonian 2-group. The last assertion is
an immediate consequence of [24, Proposition 4.2]. (It can also be deduced
from [17, page 197, Exercise 1].) ¤


For the sake of completeness we remark if a finite simple group G has an
abelian 2-Sylow subgroup S then S is necessarily elementary abelian (see [7,
Theorem 4.2.3]); moreover, Walter [23] classified all finite simple groups G
with this property.


The extension problem. Let G be a finite group and N be a normal
subgroup of G and K ⊂ L be a G/N -Galois field extension. Recall that
the extension problem for this data is the question of existence of a tower
K ⊂ L ⊂ M , such that M/K is a G-Galois field extension, and the natural
quotient map Gal(M/K) −→ Gal(L/K) coincides with G −→ G/N .


Now assume that G is a nonabelian 2-group of Frattini rank r, N =
Fr(G) = G2, and L = K(


√
a1, . . . ,


√
ar) is a multiquadratic extension of K


of degree 2r such that Gal(L/K) ∼= G/ Fr(G) = (Z/2Z)r. Assume also that
K contains a primitive eth root of unity, where


e = min{exp(H) |H is a non-abelian subgroup of G} .
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Proposition 8.3. If the extension problem for G, N , and L/K defined
above has a solution, then the r-fold Pfister form ≪ a1, . . . , ar ≫ is a hy-
perbolic over K.


Proof. Suppose L/K is the required G-Galois field extension. Then from
Theorem 1.1 we see that the trace form qL/K is hyperbolic. But from
Corollary 2.2(a) we see that qL/K is Witt equivalent to a scalar multiple
of ≪ a1, . . . , ar ≫. Hence ≪ a1, . . . , ar ≫ is hyperbolic as required. ¤


9. Which quadratic forms are trace forms?


We now return to the question we posed at the beginning of the Intro-
duction. Let G be a finite group and K be a field containing


√
−1. Which


quadratic forms q over K can occur as trace forms of G-Galois field extension
L/K? In view of Theorem 1.3 we may assume that the Sylow 2-subgroup S
of G is an Iwasawa 2-group; otherwise every trace form will be hyperbolic.
By Theorem 1.2


q ≃ |S| ⊗ (r-fold Pfister form)


but, in general, we do not know which r-fold Pfister forms can occur, even
if G = S is a 2-group. In this section we will describe the trace forms for
one particular family of groups.


Recall that the modular group M(2n) of order 2n is defined as


M(2n) = < σ, τ |σ2n−1
= 1 = τ2, τστ = σ1+2n−2


> .


In the sequel


(9.1) we will always assume that n ≥ 4.


It is easy to see that M(2n) is an Iwasawa group of order 2n, exponent 2n−1


and strength n − 2. Setting A = <σ>, we see that (A, τ) is an Iwasawa
structure on M(2n) of level n − 2. Note also that the Frattini subgroup of
M(2n) is Fr(M(2n)) = <σ2>.


For future reference we record the following elementary observation. As
usual, we shall denote the class of a ∈ K∗ in K∗/(K∗)2 by [a].


Remark 9.1. Let K be a field containing a primitive 4th root of unity ζ4.
Then 2ζ4 = (1 + ζ4)


2 and thus


(9.2) [2] = [ζ4] in K∗/(K∗)2.


In particular,


(i) if K contains a primitive 8th root of unity then 2 is a square in K and


(ii) if K contains a primitive root of unity ζ2n−2 then 2n is a square in K.


Indeed, (i) is immediate from (9.2). To prove (ii), consider two cases:
n = 4 and n ≥ 5; see (9.1). If n = 4 then 24 = 42 is certainly a square. For
n ≥ 5 (cf. (9.1)), (ii) follows from (i).


We now proceed with the main result of this section. As usual, ζi will
denote a primitive ith root of unity.
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Proposition 9.2. Let n ≥ 4 be an integer, K be a field such that ζ2n−2 ∈ K
but ζ2n−1 6∈ K and q be a non-degenerate 2n-dimensional quadratic form
over K. Then the following are equivalent:


(a) q is Witt equivalent to the trace form of some M(2n)-Galois field
extension L/K.


(b) q is Witt equivalent to ≪ ζ2n−2 , a ≫ for some a ∈ K∗, where [a] 6= [1],
[ζ2n−2 ] in K∗/(K∗)2.


Our assumption that ζ2n−1 6∈ K is harmless, since otherwise Theorem 1.1
tells us that the trace form of every M(2n)-Galois extension is hyperbolic.
On the other hand, the assumption that ζ2n−2 ∈ K is essential.


Proof. Set K ′ = K(ζ2n−1), where ζ2n−1 is a primitive root of unity of degree
2n−1. By our assumption on K, [K ′ : K] = 2.


(b) =⇒ (a): Suppose q ≃≪ ζ2n−2 , a ≫, where a 6= [1], [ζ2n−2 ] in
K∗/(K∗)2. We will construct an M(2n)-Galois extension L/K whose trace
form is Witt equivalent to q by modifying [9, Example 6.1], due to Serre.


Let L = K ′( 2n−1√
a). By our assumption on [a], a is not a square in K ′.


Thus [L : K ′] = 2n−1 (see, e.g., [12, Theorem VIII.9.16]) and consequently,
[L : K] = 2n. Now the computations in [9, Example 6.1] show that L/K
is an M(2n)-Galois extension whose trace form qL/K is Witt equivalent to
<2n>⊗ ≪ ζ2n−2 , a ≫. Finally by Remark 9.1(ii), 2n is a square in K and
thus the factor of <2n> can be removed. In other words, q is Witt equivalent
to ≪ ζ2n−2 , a ≫, as claimed.


(a) =⇒ (b): Assume that q = qL/K for some M(2n)-Galois extension
L/K. Then q ⊗K K ′ is the trace form of the M(2n)-Galois K ′-algebra
L ⊗K K ′. By Theorem 1.1, we know that q ⊗K K ′ is hyperbolic. (Recall
that Theorem 1.1 applies to Galois algebras as well as field extensions; see
the first remark after the statement of Theorem 1.2 in Section 1.) On the
other hand, combining Theorem 1.2 and Remark 9.1, we see that q is Witt
equivalent to a 2-fold Pfister form. The basic theory of Pfister forms (see,
e.g., [1, p. 465]) now tells us that q is Witt equivalent to ≪ ζ2n−2 , a ≫ for
some a ∈ K∗.


It remains to show that a can always be chosen so that [a] 6= [1], [ζ2n−2 ] in
K∗/(K∗)2. Note that if [a] = [1] or [ζ2n−2 ] then ≪ ζ2n−2 , a ≫ is a hyperbolic
trace form. Thus in order to finish the proof of the proposition, it suffices
to establish assertions (i) and (ii) below. Recall that a field K containing a
primitive 4th root of unity ζ4 is called rigid if and only if for every k 6∈ (K∗)2,
the form <1, k> represents only the classes [1] and [k] in K∗/(K∗)2; cf. [25,
Section 3].


(i) If K is rigid then no M(2n)-Galois field extension L/K has a hyperbolic
trace form.


(ii) If K is not rigid then ≪ ζ2n−2 , b ≫ is hyperbolic for some b ∈ K∗ such
that [b] 6= [1], [ζ2n−2 ] in K∗/(K∗)2.
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In other words, if K is rigid then the case where [a] = [1] or [ζ2n−2 ] can never
occur. If K is not rigid then, after possibly replacing a by b, we can always
assume that [a] 6= [1], [ζ2n−2 ] in K∗/(K∗)2.


To prove (i), note that if L/K is an M(2n)-Galois extension then


LFr(M(2n)) is a Z/2 × Z/2-Galois extension of K. Hence, LFr(M(2n)) has


the form K(
√


a,
√


b) for some a, b ∈ K∗, where a and b are F2-linearly inde-
pendent in K∗/(K∗)2. By Corollary 2.2(a),


q ≃ <|Fr(M(2n))|> ⊗ qK(
√


a,
√


b)/K .


Here |Fr(M(2n))| = 2n−2 because Fr(M(2n)) is the cyclic subgroup of M(2n)
generated by σ2. Combining this with formula (3.2) for qK(


√
a,
√


b)/K , we


obtain


q ≃ <2n>⊗ ≪ a, b ≫≃≪ a, b ≫ ,


where the factor of <2n> can be removed in view of Remark 9.1(ii). Over
a rigid field such a form cannot be isotropic, since otherwise <1, a> would
take on the same value as <b> ⊗ <1, a>, thus making [a] and [b] linearly
dependent over F2. This proves (i).


To prove (ii), we appeal to [25, Theorem 2.16(2)], which tells us that over
a non-rigid field K the form <1, ζ2n−2> assumes a value b such that [b] 6= [1],
[ζ2n−2 ] in K∗/(K∗)2. Then ≪ ζ2n−2 , b ≫ is hyperbolic, as claimed. ¤


Remark 9.3. Suppose n = 4. Then by Remark 9.1, we can replace the
form ≪ ζ4, a ≫ in the statement of Proposition 9.2 by ≪ 2, a ≫. This way
we recover [5, Corollary 6(b)] for G = M(16).
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8. K. Iwasawa, Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J.
Fac. Sci. Imp. Univ. Tokyo. Sect. I. 4 (1941), 171–199.


9. D.-S. Kang and Z. Reichstein, Trace forms of Galois field extensions in the presence


of roots of unity, J. Reine Angew. Math. 549 (2002), 79–89.
10. J. Koenigsmann, Solvable absolute Galois groups are metabelian, Invent. Math. 144


(2001), 1–22.







TRACE FORMS 19


11. T. Y. Lam, The algebraic theory of quadratic forms, Benjamin/Cummings Publishing
Co. Inc. Advanced Book Program, Reading, Mass., 1980, Revised second printing,
Mathematics Lecture Note Series.


12. S. Lang, Algebra, Addison-Wesley Publishing Co., Inc., 1965.
13. A. Lubotzky and A. Mann, Powerful p-groups. I. Finite groups, J. Algebra 105 (1987),


no. 2, 484–505.
14. F. Napolitani, Sui p-gruppi modulari finiti, Rend. Sem. Mat. Univ. Padova, 39 (1967),


296–303.
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