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Abstract

Let D be a noncommutative division algebra of finite dimension over

its centre F . Given a maximal subgroup M of GLn(D) with n ≥ 1, it is

proved that either M contains a noncyclic free subgroup or there exists

a finite family {Ki}
r
1 of fields properly containing F with K∗

i ⊂ M for

all 1 ≤ i ≤ r such that M/A is finite if CharF = 0 and M/A is locally

finite if CharF = p > 0, where A = K∗

1 × · · · × K∗

r .

1 Introduction

Let D be a division algebra of finite dimension over its centre F . Denote by

Mn(D) the n×n matrix ring over D and SLn(D) the commutator subgroup of

the multiplicative group GLn(D) = Mn(D)∗. Given a subgroup G of GLn(D),

we shall say that G is maximal in GLn(D) if for any subgroup H of GLn(D)

∗Key words: Free Subgroup, Division ring, maximal subgroup.
†AMS (1991) Subject classification : 15A33, 16K
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with G ⊂ H, one concludes that H = GLn(D). We know, by Corollary 1

of [11], that G(A) := A∗/RN(A∗)A′, where A := Mn(D), A′ = SLn(D), and

RN(A∗) is the image of A∗ under the reduced norm of A to F , is an abelian tor-

sion group of a bounded exponent dividing the degree of A over F . This group

is not trivial in general. For example, if A is the algebra of real quaternions,

then G(A) is trivial whereas for rational quaternions G(A) is isomorphic to a

direct product of copies of Z2, as it is easily checked. Assume that G(A) is not

trivial, then by Prũfer-Baer Theorem (cf. [13, p. 105]), we conclude that G(A)

is isomorphic to a direct product of Zri
, where ri divides the index of A over

F . In this way one may obtain normal maximal subgroups of finite index in

GLn(D). So, if G(A) is not trivial, then GLn(D) contains maximal subgroups.

For some examples of non-normal maximal subgroups of GLn(D), see [12] or

[3, p. 140]. It is shown in [12] that even for the case G(A) = 1 we may have

maximal subgroups in GLn(D). But the question of whether GLn(D) has a

maximal subgroup for any noncommutative division algebra D, is still open.

Now, let D be a noncommutative division ring not necessarily of finite dimen-

sion over its centre F . The problem of whether GLn(D) contains a noncyclic

free subgroup seems to be posed first by Lichtman in [8]. Stronger versions of

this problem which essentially deal with the existence of noncyclic free sub-

groups in normal or subnormal subgroups of GLn(D) have been investigated

in [4] and [5]. It is known so far that these problems have positive answers

as long as we work with a division algebra of finite dimension over its centre.

Further investigations for the infinite dimensional case are also dealt with in [4]

and [5]. The study of maximal subgroups of GLn(D) begins in [2] in relation

with an investigation of the structure of finitely generated normal subgroups

of GLn(D), where D is of finite dimension over its centre F . In [2] and [10] we

actually show that maximal subgroups arise naturally in GLn(D), n ≥ 1, and

finitely generated subnormal subgroups of GLn(D), n ≥ 1, are central. This

result is used to prove that a maximal subgroup of GLn(D) can not be finitely

generated for n ≥ 1. Therefore, we are not able to apply directly Tits’ result,

that any finitely generated linear group either is soluble-by-finite or contains

a noncyclic free group (cf. [19]), to a maximal subgroup M of GLn(D) to
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explore the structure of M . In [2], it is also shown that there is a similarity

between the behaviour of normal or subnormal subgroups of GLn(D) and the

maximal ones. So, it is natural to ask if there exists a noncyclic free group in

a maximal subgroup of GLn(D). In this direction, we observe that not every

subgroup of GLn(D) satisfies the Tits’ Theorem though any normal subgroup

does so (cf. [16, p. 154]). We also mention that the soluble subgroups of

the multiplicative group of a finite dimensional division algebra were studied

in 1962 by Suprunenko [17] and the soluble subgroups of the multiplicative

group of a finite dimensional simple algebra were considered by Zalesskii [22].

Inspired by Suprunenko’s results, it is shown in [12] that given a noncommu-

tative maximal subgroup M of GL1(D), then either M contains a noncyclic

free subgroup or there exists a maximal subfield K of D which is Galois over

F such that K∗ is normal in M and M/K∗ ∼= Gal(K/F ). Using some results

of algebraic groups and skew linear groups, in the present note our aim is to

extend this result for n > 1, i.e., to prove a variation of Tits’ Theorem for

maximal subgroups of GLn(D). To be more precise, let D be a noncommu-

tative division algebra of finite dimension over its centre F . Given a maximal

subgroup M of GLn(D), it is proved that either M contains a noncyclic free

subgroup or there exists a finite family {Ki}
r
1 of fields properly containing F

with K∗

i ⊂ M for all 1 ≤ i ≤ r such that M/A is finite if CharF = 0 and

M/A is locally finite if CharF = p > 0, where A = K∗

1 × . . . × K∗

r .

2 Notations and conventions

Let D be a division ring with centre F . Given a subgroup G of GLn(D), we

denote by F [G] the F -algebra generated by elements of G over F . We shall say

that G is absolutely irreducible if Mn(D) = F [G]. For any group G we denote

its centre by Z(G). Given a subgroup H of G, NG(H) means the normalizer

of H in G, [G : H] denotes the index of H in G, and < H,K > the group

generated by H and K, where K is a subgroup of G. We shall say that H is

soluble-by-finite if there is a soluble normal subgroup K of H such that H/K

3



is finite. Let S be a subset of Mn(D), then the centralizer of S in Mn(D)

is denoted by CMn(D)(S). We shall identify the centre FI of Mn(D) with F .

Some notations and conventions for linear groups and skew linear groups from

[15], [16] and [18] are frequently used throughout.

3 Free subgroups in maximal subgroups

Given a division ring D with centre F , let M be a maximal subgroup of

GLn(D). This section essentially deals with maximal subgroups of GLn(D)

and how they sit in GLn(D) with respect to F ∗ and SLn(D). We then present

some commutativity theorems that enable us to prove our main result. To be

more precise, let D be a noncommutative division ring not necessarily of finite

dimension over its centre F . It is shown that there exists no maximal subgroup

M of GLn(D), n ≥ 1, containing F ∗ such that [M : F ∗] < ∞. It is then proved

that M is nilpotent if and only if M is the multiplicative group of a maximal

subfield of Mn(D). We then use these results to show that given a maximal

subgroup M of GLn(D), n ≥ 1, if M is soluble, then there exists a finite family

{Ki}
r
1 of fields properly containing F with K∗

i ⊂ M , 1 ≤ i ≤ r, such that M/A

is finite, where A = K∗

1 × · · · × K∗

r , and so M is abelian-by- finite. Using this

fact, we then obtain the same conclusion when M ∩SLn(D) is commutative or

M/M ∩F ∗ is torsion for any maximal subgroup of GLn(D). Finally, we apply

these results to prove our main theorem that if M is a maximal subgroup of

GLn(D), n ≥ 1, then either M contains a noncyclic free subgroup or there

exists a finite family {Ki}
r
1 of fields properly containing F with K∗

i ⊂ M for

all 1 ≤ i ≤ r such that M/A is finite if CharF = 0 and M/A is locally finite

if CharF = p > 0, where A = K∗

1 × . . . × K∗

r . We begin our material with

Lemma 1. Let D be a division ring not necessarily of finite dimension

over its centre F . If either n = 1 and D is noncommutative or n > 1 and

D is infinite, then there exists no maximal subgroup M of GLn(D), n ≥ 1,

containing F ∗ such that [M : F ∗] < ∞.
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Proof. Assume on the contrary that there is a maximal subgroup M

such that M/F ∗ is finite and first suppose that [D : F ] < ∞. Let x1, . . . , xt

be the representatives for cosets of F ∗ in M , i.e., M = F ∗x1 ∪ . . . ∪ F ∗xt.

Then, we have M =< x1, . . . , xt > F ∗, where < x1, . . . , xt > is the group

generated by x1, . . . , xt. Take x ∈ GLn(D)\M . By maximality of M , we

obtain GLn(D) =< x1, . . . , xt, x > F ∗. Put H =< x1, . . . , xt, x >. Thus,

GLn(D) = HF ∗ and consequently we have SLn(D) = H ′ ⊂ H, i.e., H is

normal in GLn(D). Now, by Corollary 1 of [10], we conclude that H ⊂ F ∗,

i.e., GLn(D) = F ∗ which means that n = 1 and D = F that is a contradiction.

This takes care of the finite dimensional case.

Now consider the case [D : F ] = ∞. As above, we may assume M =

F ∗x1 ∪ . . . ∪ F ∗xt. Put A = {Σn
i=1fixi; fi ∈ F}. It is clearly seen that A

is a finite dimensional F -algebra and we have M ⊂ A∗. Since A is of finite

dimension over F we conclude that A 6= Mn(D) and so M = A∗ by maximality

of M in GLn(D). If n = 1, then it is easily seen that A is a division algebra.

Thus we have [A∗ : F ∗] < ∞. If A is infinite, then, by a result of Faith (cf. [7,

p. 225]), A = F and so M = F ∗ which is a contradiction. So, we may assume

that A is finite. Now, Wedderburn’s Theorem implies that A is a finite field.

So there exists an element a ∈ D∗ such that A∗ =< a >, i.e., an = 1 for some

positive integer n. Since a is non-central in D, by Herstein’s Lemma (cf. [7]),

there is an element b ∈ D∗ such that bab−1 = ai 6= a. Thus, b ∈ ND∗(A∗)

and so < M, b >⊂ ND∗(A∗). Now, by maximality of M , we conclude that

ND∗(A∗) = D∗. Therefore, by Cartan-Brauer-Hua’s Theorem, we have either

A ⊂ F or A = D, and it is clear that none of these cases can occur. This

completes the proof for the case n = 1 and [D : F ] = ∞.

So, we may assume that n ≥ 2 and [D : F ] = ∞. We claim that A

is simple. To see this, we first observe that the Jacobson radical J(A) = J

of A is nilpotent since A is left Artinian. It is known that a multiplicative

semi-group of nilpotent matrices over a division ring can be simultaneously

triangularized (cf. [6, p. 135]). Thus, we may assume that each element of

J is upper triangular. Now, denote by L the subring of all elements x in

Mn(D) such that xJ ⊂ J . It is clear that A ⊂ L. For any d ∈ D we see
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that I + de1n ∈ L. We claim that M contains only a finite number of these

elementary matrices. To prove this, assume that I + d1e1n, I + d2e1n ∈ F ∗xi

for some d1, d2 ∈ D∗. Then, we have I + d1e1n = λxi and I + d2e1n = µxi

for some λ, µ ∈ F ∗. This implies that d1 = d2 and λ = µ. Thus, at most t

elementary matrices of the form I + de1n belong to M . Since M = A∗ ⊂ L∗

and D is infinite we conclude that there is an element d ∈ D∗ such that

I + de1n ∈ L∗ \ M . By maximality of M , this implies that L = Mn(D), i.e.,

J is a left ideal of Mn(D). A similar argument applied to the subring R of

all elements x ∈ Mn(D) such that Jx ⊂ J , we conclude that J is also a right

ideal of Mn(D), i.e., J is a two sided ideal of Mn(D) which means that J = 0.

So A is semisimple. Now, we observe that the centre Z(A) does not contain

any nonzero zero-divisor. For otherwise, if 0 6= u ∈ Z(A) is a zero-divisor in

A, consider l = l(u), the left annihilator of u in A. We have l 6= 0 since u is

a zero-divisor. Now, since u ∈ Z(A) we conclude that l is an ideal of A and

we have lu = 0. Since entries of each element of l belong to a division ring

we may reduce the j-th column of each element of l to zero. Now, the subring

R of Mn(D) consisting of all elements x ∈ Mn(D) such that lx ⊂ l contains

A and we have leji = 0. Thus, we conclude that I + deji ∈ R for all d ∈ D.

Now, since F ∗ is of finite index in M = A∗, we conclude as above that there

exists an element d ∈ D∗ such that I + deji ∈ R∗ \ M . Since M = A∗ ⊂ R∗

by maximality of M we obtain R = Mn(D), i. e., l is a right ideal of Mn(D).

Since l is a two sided ideal of A, a similar argument applied to the subring L of

Mn(D) consisting of all elements x ∈ Mn(D) such that xl ⊂ l, we may conclude

that L is also a left ideal of Mn(D), i. e., l = 0 which is a contradiction and

so no nonzero element of Z(A) is a zero-divisor. Now, since A is a semisimple

Artinian ring we conclude that A is simple as claimed. Therefore, there is

a positive integer n1 such that M ∼= GLn1
(D1), for some division ring D1 of

finite dimension over its centre K, say. We know that F ∗ is of finite index

in M . Thus, the image of F ∗ in GLn1
(D1), which is a subfield of K, is also

of finite index in GLn1
(D1). We identify this image by F ∗. Thus, D∗

1/K
∗ is

torsion and so, by a result of Kaplansky (cf. [7, 259]), we obtain D1 = K, i. e.,

A ∼= Mn1
(K), where K is of finite dimension over F . Now, since M/F ∗ is finite,
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we conclude that GLn1
(K)/F ∗ is finite. Thus, we have GLn1

(K) = ∪t
1F

∗ui for

some ui ∈ GLn1
(K). Take an elementary matrix I + beij ∈ GLn1

(K), where

b ∈ K∗. As observed above, for each b, I + beij may be contained in only

one coset F ∗ui. Therefore, there is a finite number of elements I + beij which

occur in M ∼= GLn1
(K). Thus, there are at most n2t elementary matrices in

GLn1
(K). This means that SLn1

(K), which is generated by I + beij, is finitely

generated. Now, by Corollary 1 of [10], we conclude that SLn1
(K) ⊂ K∗. This

in turn implies that n1 = 1 and consequently M = K∗, i. e., K∗/F ∗ is finite.

But it is known that this is not possible unless M = K∗ is finite. Now, by

Theorem 4 of [1], that asserts that a normal subgroup of GLn(D) does not

contain a finite maximal subgroup, we arrive at a contradiction and so the

proof is completes.

In the next result we show how maximal subgroups of GLn(D) sit in

GLn(D) with respect to F ∗ and SLn(D).

Proposition 2. Let D be a division ring not necessarily of finite dimen-

sion over its centre F . Assume that M is a maximal subgroup of GLn(D),

n ≥ 1. Then we have

(i) M contains F ∗ or SLn(D).

(ii) Either M is (absolutely) irreducible or M is the group of units of a proper

subring of Mn(D).

(iii) Assume that D is noncommutative and [D : F ] < ∞. Then M is nilpotent

if and only if M is the multiplicative group of a maximal subfield of Mn(D).

Proof. (i) Assume that M does not contain F ∗. Then we must have

GLn(D) = F ∗M , and consequently SLn(D) = M ‘ ⊂ M .

(ii) Consider the F - algebra F [M ] generated by M over F . By maximality

of M , we have either GLn(D) = F [M ]∗ or M = F [M ]∗. In the first case we

obtain Mn(D) = F [M ], and the second case implies that M is the group of

units of a proper subring of Mn(D).

(iii) One way is clear. So, assume that M is nilpotent. By (i), we have

either F ∗ ⊂ M or SLn(D) ⊂ M . If the second case occurs, then SLn(D) is

nilpotent. Thus, in particular, the derived group D′ of D∗ is nilpotent and so
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D∗ is soluble. Therefore, by Hua’s Theorem (cf. [7, 223]), D is commutative

which is a contradiction. So, we may assume that F ∗ ⊂ M but SLn(D) 6⊂ M .

The case n = 1 follows from Theorem 7 of [2]. Thus, we may suppose n > 1 and

consider the F -algebra A := F [M ] which is left Artinian since [D : F ] < ∞.

We may also view M as a linear group since [D : F ] < ∞. By (ii), we conclude

that either M is (absolutely) irreducible or A∗ = M . If the first case happens,

i. e., Mn(D) = A, then it is clear that Z(M) = F ∗ and M is an irreducible

linear group (cf. [18, p. 100]). Now, it is known that if a linear group M is

irreducible and nilpotent, then [M : Z(M)] < ∞ (cf. [17, p. 57]). But this is

not possible by Lemma 1. Thus, we must have A∗ = F [M ]∗ = M . If we prove

that A is simple, then we obtain M ∼= GLm(∆) for some positive integer m

and division ring ∆. Consequently, by Hua’s Theorem as above, we conclude

that m = 1 and ∆ = K is a field and therefore M is the multiplicative group of

a field. Furthermore, we then have CMn(D)(A) = A by maximality of M , and

this shows that M is the multiplicative group of a maximal subfield of Mn(D).

So, it remains to prove that A is simple. To do this, we first observe that the

Jacobson radical of A, J(A) = J , is nilpotent. As noted in the proof of Lemma

1, the elements of J may be assumed to be upper triangular. Now, let L be the

subring of all elements x ∈ Mn(D) such that xJ ⊂ J . It is clear that A ⊂ L.

For any d ∈ D∗ we see that the matrix Dn(d) = I + (d − 1)enn belongs to L.

If M contains all matrices Dn(d) for d ∈ D∗, then M contains a copy of D∗.

But this is not possible by Hua’s Theorem unless D is commutative which is

a contradiction. Therefore, by maximality of M , we obtain L = Mn(D), i.e.,

J is a left ideal of Mn(D). A similar argument applied to the subring of all

elements x in Mn(D) such that Jx ⊂ J , we conclude that J is a right ideal and

thus J = 0. This means that J is semisimple. A similar argument as used in

the proof of Lemma 1, one can show that Z(A) is a field and thus A is simple

and the result follows.

To prove our next result, we need the following theorems:

Theorem A.(Rosenberg, [14]) If A is a simple ring with unit, the only

subrings of Mn(A), n ≥ 2, invariant under all inner automorphisms of Mn(A),
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are subrings of the centre or Mn(A) itself.

Theorem B.(Snider, [16]) Let G be an absolutely irreducible subgroup of

GLn(D), let N be a normal subgroup of G and K a subring of Mn(D) nor-

malized by G with F ⊂ K. If G/N is locally finite, then K[N ] is semisimple

Artinian.

Theorem C. Let D be a division ring that is not a locally finite field and

let n > 1 be an integer. If N is any non-central normal subgroup of GLn(D),

then N contains a noncyclic free subgroup(cf. [16, p.154]).

Theorem D. Every irreducible soluble subgroup of GLn(F ) has an abelian

normal subgroup of finite index(cf. [18, p. 135]).

The next result gives a criterion for when a maximal subgroup M of

GLn(D) is soluble, i. e., M is soluble if and only if there exists an abelian

normal subgroup A such that M/A is finite and soluble.

Theorem 3. Let D be a noncommutative division algebra of finite di-

mension over its centre F . Suppose M is a maximal subgroup of GLn(D),

n ≥ 1. If M is soluble, then there exists a finite family {Ki}
r
1 of fields prop-

erly containing F with K∗

i ⊂ M , 1 ≤ i ≤ r, such that M/A is finite, where

A = K∗

1 × · · · × K∗

r , and so M is abelian-by-finite.

Proof. The case n = 1 follows from Corollary 4 of [12]. So, we may assume

that n ≥ 2. By Proposition 2, we know that either F ∗ ⊂ M or SLn(D) ⊂ M .

If SLn(D) ⊂ M , then SLn(D) is soluble. But, by Theorem C, we know that

SLn(D) contains a noncyclic free subgroup which is a contradiction. So, we

may assume that F ∗ ⊂ M but SLn(D) is not contained in M . Now, consider

the F -algebra A := F [M ]. By Proposition 2, we have either A = F [M ] =

Mn(D) which implies that M is (absolutely) irreducible or A∗ = M . If the

first case occurs, then since [D : F ] < ∞ we conclude that M is an irreducible

linear group (cf. [18, p. 100]). Therefore, by Theorem D, M contains an

abelian normal subgroup B, say, of finite index. Now, consider K := F [B].

By Theorem B, we conclude that F [B] is semisimple Artinian. If F [B]∗ 6⊂ M ,

then by maximality of M we have GLn(D) =< F [B]∗,M >⊂ NGLn(D)(F [B]∗).
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This implies, by Theorem A, that either F [B] = Mn(D) or F [B] ⊂ F . The first

case can not happen since n > 1 and the second case implies that [M : F ∗] < ∞

which contradicts Lemma 1. Thus, we must have F [B]∗ ⊂ M . Now, since F [B]

is commutative we have K ∼= K1×· · ·×Kr for some fields Ki. It is now clearly

seen that M/K∗ is finite and the result follows in this case.

Therefore, suppose A∗ = M . Since [D : F ] < ∞, A is left Artinian.

We claim that A is semisimple. To see this, we first note that the Jacobson

radical J(A) = J of A is nilpotent. As observed in the proof of Lemma 1,

we may assume that each element of J is upper triangular. Now, denote by

L the subring of all elements x ∈ Mn(D) such that xJ ⊂ J . It is clear

that A ⊂ L. For any d ∈ D∗ we see that the dilatation matrix Dn(d) =

I + (d − 1)enn ∈ L. If M contains Dn(d) for all d ∈ D∗, then M contains a

copy of D∗. Now, by Hua’s Theorem (cf.[7, p. 223]), this reduces to D = F

which is a contradiction. Therefore, there is an element d ∈ D∗ such that

Dn(d) ∈ L∗ \ M . By maximality of M , this implies that L = Mn(D), i. e., J

is a left ideal of Mn(D). A similar argument applied to the subring R of all

elements x ∈ Mn(D) such that Jx ⊂ J , one concludes that J is also a right

ideal of Mn(D). Thus, J is two-sided and we have J = 0. Therefore, A is

semisimple, i. e., there exist positive integers ni such that A ∼= Mn1
(D1) ×

· · · × Mnr
(Dr) for some division rings Di, 1 ≤ i ≤ r. This means that M =

A∗ ∼= GLn1
(D1) × · · · × GLnr

(Dr). But this is not possible since M is soluble

whereas GLni
(Di), by Theorem C, contains a noncyclic free subgroup unless

ni = 1 for all 1 ≤ i ≤ r. Now, use Hua’s Theorem to conclude that Di = Ki

for some fields Ki. This implies that M ∼= K∗

1 × · · · × K∗

r and so the result

follows.

In the following result we show that if M ∩ SLn(D) is commutative, then

M is abelian-by-finite. This is used later on to prove that if M/M ∩ F ∗ is

torsion, then M is abelian-by-finite.

Lemma 4. Let D be a noncommutative division algebra of finite dimension

over its centre F and n ≥ 1. Suppose M is a maximal subgroup of GLn(D). If

M ∩ SLn(D) is commutative, then there exists a finite family {Ki}
r
1 of fields
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properly containing F with K∗

i ⊂ M , 1 ≤ i ≤ r such that M/A is finite, where

A = K∗

1 × · · · × K∗

r , and so M is abelian-by- finite.

Proof. Assume that M ∩ SLn(D) is commutative. It is clear that

SLn(D) 6⊂ M . We have M ′ ⊂ M ∩ SLn(D) and so M is soluble. Now,

by Theorem 3, the result follows.

Theorem 5. Let D be a noncommutative division algebra of finite dimen-

sion over its centre F . Assume that M is a maximal subgroup of GLn(D) with

n ≥ 1. If M/M ∩F ∗ is torsion, then there exists a finite family {Ki}
r
1 of fields

properly containing F with K∗

i ⊂ M , 1 ≤ i ≤ r such that M/A is finite, where

A = K∗

1 × · · · × K∗

r , and so M is abelian-by-finite.

Proof. The case n = 1 follows from Theorem 6 of [12]. So, we may

assume that n ≥ 2. By Proposition 2, we know that either F ∗ ⊂ M or

SLn(D) ⊂ M . If SLn(D) ⊂ M , then PSLn(D) = SLn(D)/Z(SLn(D)) is

torsion. Thus, by Corollary 2 of [9], we obtain D = F which is a contradiction.

So, we may assume that F ∗ ⊂ M but SLn(D) 6⊂ M . Consider the F -algebra

A := F [M ]. Since M is maximal in GLn(D) we conclude that either A∗ = M

or A∗ = GLn(D). We now deal with these cases separately:

Case 1. If A∗ = GLn(D), then we clearly have A = F [M ] = Mn(D)

which means that M is an irreducible linear group since [D : F ] < ∞ (cf. [18,

p.100]). We now consider two subcases:

Subcase 1. Char F = 0. By Theorem 1 of [19], either M contains a

noncyclic free subgroup or it is soluble-by-finite. The first case can not occur

since M/F ∗ is torsion. Thus, there is a soluble normal subgroup S in M

such that [M : S] < ∞. Now, consider the F -algebra F [S]. We know that

< F [S]∗,M >⊂ NGLn(D)(F [S]∗).

If F [S]∗ 6⊂ M , then, by Theorem A, we conclude that either F [S]∗ ⊂ F ∗

or F [S] = Mn(D). If F [S]∗ ⊂ F ∗, then S is central and so [M : F ∗] < ∞.

Thus, by Lemma 1, we obtain a contradiction. Now, if F [S] = Mn(D), then

S is an irreducible linear group (cf. [18, p. 100]). Therefore, by Theorem

D, we conclude that S contains an abelian normal subgroup of finite index,

consequently, M contains an abelian normal subgroup B, say, of finite index.
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Put K = F [B]. Then, we have F [B]∗ 6= GLn(D) since n > 1. Thus, K∗ =

F [B]∗ ⊂ M . If K∗ ⊂ F ∗, then [M : F ∗] < ∞ which contradicts Lemma 1.

So, assume that F ∗ ⊂ K∗ ⊂ M . By 1.2.5 of [16, p.11], we conclude that

K is semiprime and since [D : F ] < ∞ we conclude that K is semiprime

Artinian. Therefore, by Theorem 10.24 of [7, p.173], K is semisimple. Thus,

there exist fields Ki, 1 ≤ i ≤ r, and positive integers ni such that K∗ ∼=

GLn1
(K1) × · · · × GLni

(Ki), where for each i, Ki contains a copy of F . Since

K∗ ⊂ M and M/F ∗ is torsion we conclude that Ki is radical over F . By

Kaplansky’s Lemma (cf. [7]), we conclude that char F = p > 0 which is a

contradiction.

So, we may suppose F [S]∗ ⊂ M . Now, by 1.2.5 of [16, p.11] again, we

conclude that F [S] is semiprime and as above F [S] is semisimple Artinian

since [D : F ] < ∞. Therefore, F [S]∗ ∼= GLm1
(D1) × · · · × GLmt

(Dt) for

some positive inegers mi and division rings Di. This case, via a theorem of

Kaplansky (cf. [7]), also leads to a contradiction. This takes care of subcase

1.

Subcase 2. Char F = p > 0. Consider the group G := SLn(D)∩M which

is normal in M . If G ⊂ F ∗, then by Lemma 4, the result follows. So, we may

assume that G is not central. Now, take x ∈ G. We know that xn(x) = a ∈ F ∗.

Taking the redaced norm RN of Mn(D) to F from both sides of the last

equation, we conclude that 1 = RN(x)n(x) = am, where m =
√

dimF Mn(D).

This means that G is a torsion group. Since [D : F ] < ∞, we conclude that G

is a torsion linear group. Thus, by Schur’s Theorem (cf.[7, p. 154]), G is locally

finite. Now, consider the P -algebra S = P [G], where P is the prime subfield

of F . By 1.1.14 of [17, p. 9], we conclude that S is a semisimple Artinian ring.

Therefore, S = S1 ×· · ·×Sr, where Si is simple Artinian. Suppose that r = 1.

Then S is a matrix ring, S = Mt(K), say, for some locally finite field K. If

S∗ 6⊂ M , then GLn(D) =< S∗,M >⊂ NGLn(D)(S
∗). This means, by Theorem

A, that either S∗ ⊂ F or GLn(D) = S∗. If S∗ ⊂ F , then G ⊂ F ∗ and so,

by Lemma 4, the result follows. Otherwise, S = Mt(K) ∼= Mn(D), for some

positive integer t and locally finite field K. This implies that D is algebraic

over its prime subfield and so D = F , by a result of Jacobson (cf. [7]), which is
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a contradiction. Therefore, we may assume that r > 1 and set T = ∩r
1NM(Si).

Consider the F -algebra F [T ] = B. Then B is semiprime by 1.2.5 of [16,

p.11], and it is also left Artinian since [D : F ] < ∞. Thus, B is semisimple

Arinian. The central idempotents of S are central in B, and so B is not simple.

Therefore, we have in particular B 6= Mn(D). Thus, B ∼= B1 ×· · ·×Bt, where

Bi is simple Artinian. Now, consider B∗ = GLn1
(D1) × · · · × GLnt

(Dt) for

some positive integers ni and division rings Di. If B∗ 6⊂ M , then GLn(D) =<

B∗,M >⊂ NGLn(D)(B
∗). This means, by Theorem A, that either B = Mn(D)

which is impossible or B∗ ⊂ F ∗ which is nonsense since B is not simple.

Therefore, F ∗ ⊂ B∗ ⊂ M . Since M/F ∗ is torsion, by Kaplansky’s Theorem

(cf. [7]), we conclude that Di = Ki is commutative for all i. If for some i,

ni > 1, then the matrix D1(k) = I + (k − 1)e11, k ∈ Ki is torsion modulo F ∗.

Thus, Ki is algebraic over the prime subfield and since Ki contains a copy of

F we conclude that F is algebraic over the prime subfield, i. e., D is algebraic

over P and so D = F by Jacobson Theorem. This contradiction allows us

to assume ni = 1 for all i and Di = Ki for some fields, where Ki contains a

copy of F for all i. Thus, B is commutative and this in turn implies that G is

commutative. Now, by Lemma 4, the result follows. This establishes Case 1.

Case 2. Assume that A∗ = M . Then F [M ] is left Artinian since [D :

F ] < ∞. We claim that F [M ] is simple. To prove this, we first observe that

the Jacobson radical of A, J(A) = J , is nilpotent. As we observed in the proof

of Lemma 1, the elements of J may be assumed to be upper triangular. Now,

let L be the subring of all elements x ∈ Mn(D) such that xJ ⊂ J . It is clear

that A ⊂ L. For any d ∈ D∗ we see that the matrix Dn(d) belongs to L. If

M contains all Dn(d) for d ∈ D∗, then D∗/F ∗ is torsion and by Kaplansky’s

Theorem, we conclude that D = F which is a contradiction. Otherwise, by

maximality of M , we obtain L = Mn(D), i. e., J is a left ideal of Mn(D). A

similar argument applied to the subring of all elements x in Mn(D) such that

Jx ⊂ J , we conclude that J is a right ideal and thus J = 0. This means that

A is semisimple. A similar argument as used in the proof of Lemma 1, one can

show that Z(A) is a field and thus A is simple, i. e., A ∼= Mr(∆), for some

positive integer r and some division ring ∆. As in the Case 1, we conclude

13



that ∆ is commutative by Kaplansky’s Theorem since M/F ∗ is torsion. So,

M ∼= GLr(K) for some field K. If r > 1, then D1(k) = I + (k − 1)e11, k ∈ K∗

must be torsion modulo F ∗. This implies, as before, that D is algebraic over

its prime subfield and so D = F which is a contradiction. Thus, we must have

r = 1 and so M ∼= K∗ is commutative and this completes the proof of the

theorem.

We are now in a position to prove our main result as

Theorem 6. Let D be a noncommutative division algebra of finite dimen-

sion over its centre F . Assume that M is a maximal subgroup of GLn(D),

n ≥ 1. Then either M contains a noncyclic free subgroup or there exists

a finite family {Ki}
r
1 of fields properly containing F with K∗

i ⊂ M for all

1 ≤ i ≤ r such that M/A is finite if CharF = 0 and M/A is locally finite if

CharF = p > 0, where A = K∗

1 × . . . × K∗

r .

Proof. If M is commutative, the result follows from (iii) of Proposition

2. Thus, we may suppose that M is noncommutative. Now, the case n = 1

follows from Theorem 8 of [12]. So, we may assume that n > 1. Suppose M is

a noncommutative maximal subgroup of GLn(D). We know, by Proposition

2, that either SLn(D) ⊂ M or F ∗ ⊂ M . If SLn(D) ⊂ M , then M contain a

noncyclic free subgroup by Theorem C. Thus, we may assume that F ∗ ⊂ M

but SLn(D) 6⊂ M . Since [D : F ] < ∞ we may view M as a linear group over

F . Now, consider the F -algebra F [M ] generated by M over F . Since M is

maximal we have either F [M ]∗ = M or F [M ] = Mn(D), i.e., M is absolutely

irreducible. We consider these cases separately and assume that M does not

contain a noncyclic free subgroup.

Case 1. Assume that M is absolutely irreducible. If Char F = 0 and M

does not contain a noncyclic free subgroup we conclude, by Theorem 1 of [19],

that M contains a soluble normal subgroup T of finite index, i.e., [M : T ] < ∞.

If T ⊂ F ∗, then by Lemma 1 we obtain a contradiction. Now, by 1.1.7 of [16],

T is completely reducible, and hence it contains an abelian normal subgroup

A, say, of finite index. Set K = F [A]. Then, we have K∗ = F [A]∗ 6= GLn(D)

since n > 1. If K∗ ⊂ F ∗, then [M : F ∗] < ∞ and we arrive at a contradiction
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by Lemma 1. So, assume that F ∗ ⊂ K∗ ⊂ M . Now, by 1.2.5 of [16, p. 11], we

conclude that K is semiprime. Since we are in the finite dimensional case K

is semiprime Artinian, i.e., K is semisimple. Therefore, there exist fields Ki,

such that K ∼= K1 × K2 × · · · × Kr and we clearly have [M : K∗] < ∞ and so

the result follows.

Now let Char F = p > 0. If M does not contain a noncyclic free sub-

group, then every finitely generated subgroup of M does not contain a non-

cyclic free subgroup. By Tit’s Theorem (cf. [19]), we conclude that every

finitely generated subgroup of M contains a soluble normal subgroup of finite

index. Therefore, by a result of Wehrfritz (cf. [20]), M/R(M) is a torsion

linear group, where R(M) is the unique maximal soluble normal subgroup ob-

tained by Zassenhaus-Maltsev Theorem (cf. [21]). Thus, by Schur’s Theorem,

M/R(M) is locally finite. Set S = R(M). If S = F ∗, then M/F ∗ is torsion.

Thus, by Theorem 5, the result follows. So, we may assume that F ∗ ⊂ S ⊂ M .

Since S is completely reducible it has an abelian normal subgroup V of finite

index. We can assume in fact that it is the unique maximal abelian normal

subgroup and because of this it is normal in M . If V ⊂ F ∗, as above we obtain

a contradiction. Now, the quotient group M/V is locally finite. By a similar

argument used above, we see that the linear envelope F [V ] is a direct sum of

fields. This completes the proof of the case F [M ] = Mn(D).

Case 2. Assume that F [M ]∗ = M and M does not contain a noncyclic

free subgroup. We claim that A := F [M ] is simple Artinian. Since the proof

is more or less similar to the proof of Theorem 5, we only give the outlines.

We first observe that J(A) = J is nilpotent and we may take the elements of

J to be upper triangular. Denote by L the subring of all elements x ∈ Mn(D)

such that xJ ⊂ J . If for all d ∈ D∗ the matrices Dn(d) = I + (d− 1)enn ∈ M ,

then M contains a copy of D∗ and this contradicts the assumption that M

does not contain a noncyclic free subgroup by Goncalves’ Theorem as above.

Thus, there is an element d ∈ D∗ such that Dn(d) ∈ L∗ \M . By maximality of

M , this implies that J is a left ideal of A. A similar argument, as used above,

shows that J is also a right ideal and so J = 0. Therefore, A is semisimple

Artinian since [D : F ] < ∞. One may easily check as in the proof of Lemma 1
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that Z(A) is a field and so A ∼= Mr(∆) for some division ring ∆ and positive

integer r. Since, by our assumption M = A∗ ∼= GLr(∆) does not contain a

noncyclic free subgroup we obtain r = 1 and ∆ = K for some field K. Thus,

M = K∗ which contradicts our assumption that M is noncommutative and so

the proof is complete.

The author thanks the referee for his constructive comments. He is also in-

debted to the Research Council of Sharif University of Technology for support.
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