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Abstract. Let X be a scheme which is not of equicharacteristic 2 and let

Un

X
⊂ An

X
be the punctured affine n-space over X. If n ≡ ±1 modulo 4,

we show that there exists a ±1-symmetric bilinear space (E
(n)

X
, ϕ

(n)

X
) over Un

X

which can not be extended to the whole affine space An

X
and which is locally

metabolic for n ≥ 2. If X is regular, contains 1

2
and is of finite Krull dimension,

we show that the total Witt ring Wtot(Un

X
) of Un

X
is a free Wtot(X)-module

with two generators : the Witt classes of < 1 > and of the above (E
(n)

X
, ϕ

(n)

X
).

We describe Wtot(Un

X
) similarly when n is even.

Introduction

Let X be scheme. We are studying the (total) graded Witt ring

Wtot(X) :=
⊕

i∈Z

Wi(X)

where the groups Wi are the derived Witt groups of Balmer [2, 3] and where the
multiplicative structure is the one of Gille-Nenashev [10]. See more in Section 2.

We fix an integer n ≥ 1 for the entire article. Consider the following open subset
Un

Z
⊂ An

Z
of the affine space An

Z
= Spec(Z[T1, . . . , Tn]) :

Un
Z :=

n⋃

j=1

Spec
(
Z

[
T1, . . . , Tn, T−1

j

])
⊂ An

Z .

For any scheme X, define by base-change the open subscheme Un
X ⊂ An

X , called the
punctured affine space over X, i.e. define Un

X by the following pull-back square :

Un
X

σX //

υX

²²

X

²²
Un

Z
// Spec(Z) .

(1)

Our main result is Theorem 7.14 below, which says in particular :

Theorem. If the scheme X is regular, contains 1
2 and has finite Krull dimension,

there is a decomposition Wtot(Un
X) = Wtot(X) ⊕ Wtot(X) · ε for some Witt class

ε = ε(n)

X in Wn−1(Un
X). If n=1, we have ε2 = 1. If n ≥ 2, we have ε2 = 0 and an

isomorphism

Wtot(Un
X) ∼=

Wtot(X) [ε]

ε2

of graded rings, with the generator ε in degree n − 1.
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Our second goal is a “classical” description of the generator ε(n)

X ∈ Wn−1(Un
X).

Recall a few facts. First, the derived Witt groups are 4-periodic : Wi = Wi+4.
Secondly, W0 and W2 are naturally isomorphic to the usual Witt groups W+

us

and W−
us of symmetric and skew-symmetric vector bundles respectively, as defined

by Knebusch [12]. Thirdly, W1 and W3 = W−1 are groups of formations, see
Walter [15]. Therefore, if we want to describe in classical terms our generator ε(n)

X

in Wn−1, we are bound to produce an explicit element of the above nature, i.e. a
±1-symmetric form or formation, depending on the congruence of n modulo 4.

In this introduction, we focus on the case where n is odd and we write n−1 = 2`.
In this case, we have to describe a (−1)`- symmetric bundle

(
E (n)

X , ϕ(n)

X

)

over Un
X whose class in W±

us will be our generator ε(n)

X . Let us stress that this will be
a (skew-) symmetric space of classical nature, which does not involve triangulated
categories. By the very naturality of the original problem, it suffices to construct
this (skew-) symmetric bundle when X = Spec(Z) and then to pull it back over an
arbitrary scheme X. Therefore, we start with a description of (E (n)

Z
, ϕ(n)

Z
).

Let us denote by A := Z[T1, . . . , Tn] the polynomial ring in n variables and by

K• = K•(A, T )

the (homological) Koszul complex over A for the A-sequence T := (T1, . . . , Tn).

There is a well-known isomorphism of complexes Θ• : K•

'
−→ HomA(K•, A)[n], see

[7, Chap. 1.6] for instance. Since K•|Un
Z

is locally split, the OUn
Z
-module

E (n)

Z
:= Coker

(
K`+2

d`+2
−−−→ K`+1

)
|Un

Z
' Ker d`|Un

Z

is locally free. From n = 2`+1, one easily sees that Θ`◦d`+1 induces an isomorphism

ϕ(n)

Z
: E (n)

Z

'
−→ HomOUn

Z

(E (n)

Z
,OUn

Z
)

which is (−1)`-symmetric. For a scheme X, with the base-change morphism υX :
Un

X −→ Un
Z

as in diagram (1), we define (E (n)

X , ϕ(n)

X ) := υ∗
X(E (n)

Z
, ϕ(n)

Z
).

If n is even, we can construct similarly a complex of length 1, with a suitable
(skew-) symmetric form, i.e. a formation, whose class in the Witt group Wn−1(X)
is our wanted ε(n)

X . This complex is also obtained by chopping off some parts of the
above Koszul complex.

Putting things together, if we define the integer −1 ≤ r ≤ 2 by the equation
n−1 ≡ r mod 4, we produce “short symmetric r-spaces” (F (n)

X , φ(n)

X ) (if n is odd this
complex is concentrated in one degree and corresponds to (E (n)

X , ϕ(n)

X ) above via the
natural embedding VBX ↪→ Db(VBX)), having the following properties (Theorems
7.13 and 8.2):

Theorem. Let X be a scheme, not of equicharacteristic 2 (in particular 2 6= 0).

(i) The symmetric r-space (F (n)

X , φ(n)

X ) can not be extended to An
X , i.e. there does

not exist a symmetric r-space (P, φ) over An
X whose restriction (P, φ)

∣∣
Un

X

is isometric (nor Witt equivalent) to (F (n)

X , φ(n)

X ). In particular, (F (n)

X , φ(n)

X ) is
not extended from X either. Hence, if n is odd, the same is true for the
classical (skew-)symmetric space (E (n)

X , ϕ(n)

X ).
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(ii) Assume moreover that 2 is invertible in X and that n ≥ 2. Then the space
(F (n)

X , φ(n)

X ) is locally hyperbolic, i.e. for any x ∈ Un
X we have [(F (n)

X , φ(n)

X )x] = 0
in Wr(OUn

X ,x), and moreover its square is Witt trivial, i.e. [F (n)

X , φ(n)

X ]2 is zero

in W2r(Un
X).

This theorem says that the spaces (F (n)

X , φ(n)

X ) are quite specific to Un
X . They can

not be extended to An
X , not even up to Witt equivalence. In particular, these spaces

are not metabolic on Un
X . On the other hand, they do become metabolic as soon

as we localize them to some principal open given by Ti 6= 0, see 7.11.

There are two appendices. In the first one, for the sake of completeness, we show
that when n ≥ 3 our locally free OUn

X
-module E (n)

X can not be extended to a locally

free OAn
X

-module and in particular E (n)

X is not free. The second appendix contains
the compatibility between product and 4-periodicity, a fact which we use several
times in this work.

Acknowledgment. We would like to thank Manuel Ojanguren for useful refer-
ences. The first author is supported by the Swiss National Science Foundation,
grant 620-066065.01. The second author would like to thank the FIM and the
ETH-Zürich for hospitality and financial support.
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1. Conventions and notations

We collect here the notations which are kept unchanged in all sections.

First of all, recall that we have fixed an integer n ≥ 1. We decompose it as

n = 4 q + r + 1 (2)

where q ∈ N and r ∈ {−1, 0, 1, 2}. Note that n − 1 ≡ r mod 4. We also baptize
[n

2

]
=: ` . (3)

Convention 1.1. Unless mentioned, a ring means a commutative ring with unit.
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Convention 1.2. As always, when using a notation defined for schemes X in the
affine case, X = Spec(R), we shall drop “Spec” as for instance : VBR, Db(VBR),
Wi(R) instead of VBSpec(R), Db(VBSpec(R)), Wi(Spec(R)), and so on. See 2.11.

Convention 1.3. We shall say that a scheme is regular if it is noetherian and
separated and if all its local rings are regular.

Notation 1.4. Let X be a scheme. We denote by An
X the affine n-space and by

Un
X the punctured affine n-space over X. The obvious structure morphisms and

base-change morphisms will be denoted as follows :

Un
Y

σY

''
ιY

//

υf

²²

An
Y πY

//

αf

²²

Y

f

²²
Un

X ιX

//

υX

²²

An
X πX

//

αX

²²

X

²²
Un

Z ιZ

// An
Z πZ

// Spec(Z)

(4)

for any morphism of schemes f : Y → X.

2. Recalling derived Witt groups

This section is a quick course on triangular Witt groups over schemes, included
only for the reader’s convenience. Here, X is a scheme with structure bundle OX .

2.1. Categories and dualities.

We denote by the symbol VBX the exact category of locally free OX -modules of
finite rank, i.e. vector bundles. The usual duality on VBX is abbreviated

(−)∨ := HomOX
(−,OX) .

Db(VBX) stands for the bounded derived category of VBX . We use homological
notations for complexes. The translation functor Σ : Db(VBX) −→ Db(VBX), also
written P• 7−→ P•[1], is given by (P•[1])j = Pj−1; as usual, Σ changes the sign of

all differentials : d
P [1]
j = −dP

j−1.

Let P• = (P•, d
P
•

) be a complex in Db(VBX). Its dual DX(P•) is the complex

DX(P•) := . . . // P−j
∨

dP
−j+1

∨

// P−(j−1)
∨ // . . .

deg j deg (j − 1)

and similarly for morphisms of complexes. In other words, DX is the derived functor
of (−)∨ = HomOX

(− ,OX). This defines a duality on Db(VBX) turning it into a
triangulated category with duality in the sense of [2]. The isomorphism between

the identity and the double dual, $ : idDb(VBX)
'
−→ DXDX , is given in each degree j

by the canonical (evaluation) isomorphism canPj
: Pj −→ Pj

∨∨. We consider VBX
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as a subcategory of Db(VBX) via the natural embedding c0 : VBX −→ Db(VBX),
which maps a vector bundle P ∈ VBX to the complex

. . . // 0 // 0 // P // 0 // 0 // . . .

deg 0

and does the same on morphisms. The restriction of the duality DX to this sub-
category is the original duality of VBX and the restriction of $ is the above can .

Definition 2.2. Let P• be a complex in Db(VBX). Let i ∈ Z, and φ : P• −→
DX(P•)[i] be a morphism in Db(VBX). We say that φ is an symmetric i-form on
the complex P• if

DX(φ)[i] · $P•
= (−1)

i(i+1)
2 φ .

We then say that (P•, φ) is an symmetric i-pair. If φ is moreover an isomorphism
we say that (P•, φ) is a symmetric i-space over X. Two symmetric i-pairs (P•, φ)
and (Q•, ψ) are called isometric if there exists in Db(VBX) an isometry between

them, that is, an isomorphism h : P•

'
−→ Q• such that φ = DX(h)[i] · ψ · h.

Remark 2.3. Note that if (P•, φ) is a symmetric i-pair then (P•[2], φ[2]) is a
symmetric (i + 4)-pair because DX(P•)[1] = DX(P•[−1] ) for all P• ∈ Db(VBX).

Let f : Y −→ X be a morphism of schemes. There is a natural isomorphism

of functors ηf : f∗DX
'
−→ DY f∗ which is induced by the natural isomorphism of

locally free OY -modules f∗HomOX
(P,OX)

'
−→ HomOY

(f∗P,OY ). If now (P•, φ)
is a symmetric i-space over X then the isomorphism

f∗(P•)
f∗φ
−−→ f∗(DX(P•)[i]) = f∗(DX(P•))[i]

ηf,P [i]
−−−−→ DY (f∗P•)[i]

is a symmetric i-form and so f∗(P•, φ) := (f∗(P•) , ηf,P [i] · f∗(φ)) a symmetric
i-space over Y .

2.4. “Short” i-forms : Forms and formations.

We present examples of symmetric i-pairs (P•, φ) in four cases i = −1, 0, 1, 2.

i = 0 deg 0

· · · 0 // P0
//

φ0=φ∨

0

²²

0 · · ·

· · · 0 // P0
∨ // 0 · · ·

i = 1 deg 1 deg 0

· · · 0 // P1
d //

φ1

²²

P0
//

−φ∨

1

²²

0 · · ·

· · · 0 // P0
∨

−d∨

// P1
∨ // 0 · · ·

i = 2 deg 1

· · · 0 // P1
//

φ1=−φ∨

1

²²

0 · · ·

· · · 0 // P1
∨ // 0 · · ·

i = −1 deg 0 deg -1

· · · 0 // P0
d //

φ0

²²

P−1
//

φ∨

0

²²

0 · · ·

· · · 0 // P−1
∨

−d∨

// P0
∨ // 0 · · ·

In each case, the complexes P• and P•

∨ are depicted horizontally and the symmetric
i-form φ : P• −→ DX(P•)[i] vertically. The symmetric pairs of the left-hand column
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are classical symmetric and skew-symmetric forms embedded in Db(VBX) via the
functor c0 (slightly pushed to the left for i = 2). These symmetric i-pairs are i-
spaces exactly when φ0 and φ1 is an isomorphism. The symmetric i-pairs of the
right-hand column are i-spaces when φ is a quasi-isomorphism, i.e. when its cone
is an exact complex; these are formations; we call them symmetric if i = −1 and
skew-symmetric if i = 1. The four types of i-form presented above will be called
short, for the obvious reasons.

2.5. Product of symmetric spaces.

The precise definition of this product is given in [10], where the reader will also
find an explanation for the existence of two different products – the left and the
right one – which differ by signs. To fix the ideas, we will use here the left product.
Let (P•, φ) be a symmetric i-form and (Q•, ψ) a symmetric j-form. The product

(P•, φ) ? (Q•, ψ)

is then a symmetric (i + j)-form on the tensor product (of complexes) P• ⊗OX
Q•

and we denote it by (P• ⊗OX
Q• , φ ? ψ). Up to signs and identifications like for

instance P• ⊗OX
(Q∨

•
[j]) ' (P• ⊗OX

Q∨
•
)[j], the morphism of complexes φ ? ψ is

equal to the tensor product φ⊗ψ. Via c0, this product coincides on short 0-spaces
with the usual tensor product of symmetric spaces as defined in Knebusch [12].

2.6. Symmetric cones.

We now recall the important cone construction. Let φ : P• −→ DX(P•)[i] be a
symmetric i-form (maybe not an isomorphism). Let Q• be the mapping cone of φ.
Then, there exists an isomorphism ψ such that the following diagram commutes :

P•

φ //

(−1)
i(i+1)

2 ·$P∼=

²²

DX(P•)[i]
u //

=

²²

Q•

v //

'ψ
²²

P•[1]

(−1)
i(i+1)

2 ·$P [1] ∼=

²²
DXDX(P•)

DX(φ)[i]

// DX(P•)[i]
−DX(v)[i+1]

// DX(Q•)[i + 1]
(−1)iDX(u)[i+1]

// DXDX(P•)[1]

If the isomorphism ψ is moreover a symmetric (i + 1)-form, we call such a diagram
a cone diagram (over φ) and we say that (Q•, ψ) is a symmetric cone of the pair
(P•, φ).

Note that both rows of the diagram are exact triangles in Db(VBX) : The upper
one by definition and the lower one is the dual of the upper row, shifted i times.
Assume for a moment that 2 is invertible over our scheme X. Then we can always
choose the isomorphism ψ to be a symmetric (i + 1)-form, see [2]. Moreover, if
(Q′

•
, ψ′) is another symmetric cone of φ, then there exists an isometry (Q•, ψ) '

(Q′
•
, ψ′). We say then that (Q•, ψ) is the symmetric cone of φ, in symbols :

(Q•, ψ) = cone φ = cone(P•, φ) .

2.7. Witt groups.

The usual Witt group of symmetric (respectively skew-symmetric) spaces Wus(X)
(respectively W−

us(X)) classifies these spaces up to isometry and modulo metabolic
ones. More information about these Witt groups can be found in the fundamental
paper of Knebusch [12]. The i-th derived Witt group Wi(X) classifies symmetric
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i-spaces up to isometry and modulo neutral spaces, i.e. spaces with Lagrangian (cf.
[2], Sect. 2). In fact, a symmetric i-space is neutral exactly if it is a symmetric cone
of some symmetric (i − 1)-form, as described above. Observe that this definition
does not require 2 to be invertible in X. We denote by [P•, φ] the Witt class of
(P•, φ).

The Witt groups are contravariant functors. If f : Y −→ X is a morphism
of schemes then the assignment [P•, φ] 7−→ [f∗(P•, φ)] defines a homomorphism
f∗ : Wi(X) −→ Wi(Y ) for all i ∈ Z.

2.8. Periodicity.

The derived Witt groups are 4-periodic. The shift by two: P• 7−→ P•[2] induces

an isomorphism τ : Wi(X)
'
−→ Wi+4(X) for all i ∈ Z and all schemes X. The same

periodicity applies to the Witt groups with support defined below.

2.9. Agreement and localization (with 1
2 ).

We assume now that “X contains 1
2”, i.e. that X is a Z[1/2]-scheme, i.e. 2 is

invertible in the ring Γ(X,OX). The main result of [3] is that the functor c0 :
VBX −→ Db(VBX) induces isomorphisms :

W(X) = Wus(X)
'
−→ W0(X) [P, φ] 7−→ [c0(P ), c0(φ)]

and
W−(X) = W−

us(X)
'
−→ W2(X) [Q,ψ] 7−→ [c0(Q)[1] , c0(ψ)[1] ] .

Other Witt groups appearing in this work are the Witt groups with support. For
a complex P• ∈ Db(VBX) let

suppP• := {x ∈ X | Hj(P•)x 6= 0 for at least one j } ,

be its (homological) support. Let Z be a closed subscheme of X with open comple-
ment U . The full triangulated subcategory of Db(VBX) which consists of complexes
with support contained in Z is denoted Db

Z(VBX). The restriction of the duality
DX to Db

Z(VBX) is again a duality, turning Db
Z(VBX) into a triangulated category

with duality. The corresponding triangular Witt groups Wi
Z(X) (i ∈ Z) are called

the derived Witt groups of X with support in Z. They appear in the localization
sequence of Balmer [2]. If X is a regular scheme then there is an exact sequence

· · · // Wi(X) // Wi(U)
∂ // Wi+1

Z (X) // Wi+1(X) // · · · .

The connecting morphism ∂ comes from the cone construction 2.6 as follows. Let
w ∈ Wi(U). Then ∂(w) = [cone(P•, φ)], where (P•, φ) is any symmetric i-pair over
X with [(P•, φ)|U ] = w (the existence of (P•, φ) is guaranteed by regularity of X).
The Witt groups with support are natural and so is the localization sequence.

2.10. The graded Witt ring.

The (left) product of symmetric spaces of 2.5 yields a product structure

? : Wi(X) × Wj
Z(X) −→ Wi+j

Z (X) ( [P•, φ] , [Q•, ψ] ) 7−→
[
(P•, φ) ? (Q•, ψ)

]

for any i, j ∈ Z, any scheme X and closed subset Z ⊆ X. Via this pairing,
Wtot(X) :=

⊕
i∈Z

Wi(X) is a graded skew-commutative associative W0(X)-algebra,

the graded Witt ring of X and Wtot
Z (X) :=

⊕
i∈Z

Wi
Z(X) is a graded Wtot(X)-module.
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This product is compatible with the connecting homomorphism ∂ in the localization
sequence by [10, Thm. 2.11], i.e. we have a commutative diagram

Wi(X) × Wj(U)
? //

id×∂
²²

Wi+j(U)

∂
²²

Wi(X) × Wj+1
Z (X)

? // Wi+j+1
Z (X) .

(5)

In words, the connecting homomorphism is a left Wtot(X)-linear map. But note
that it is not right Wtot(X)-linear:

∂(y ? x) = (−1)ij∂(x ? y)
(5)
= (−1)ijx ? ∂(y) = (−1)i∂(y) ? x (6)

(the first and last equation by skew-commutativity), where x ∈ Wi(X) and y ∈
Wj(U).

Remark 2.11. Of course, Convention 1.2 applies here as well. For instance, if
X = Spec(R) is affine and Z ⊂ X is defined by the ideal I we might say that a
complex “has support in the ideal I” and we shall write Wi

I(R) instead of Wi
Z(X).

3. Basic facts about Koszul complexes

In this section, A is a ring and T = (T1, . . . , Tn) is any sequence in A. As before,
we write the dual as M∨ := HomA(M,A), for any A-module M .

We first recall the definition of the Koszul complex

K•(A, T ) =: (K• , d•) .

Let e1, e2, . . . , en be a basis of the free A-module An =
⊕n

i=1 A · ei. The A-module

Ki = Ki(A, T ) :=
i∧

An is by definition the i-th exterior power of An. As is well-
known, the module Ki is free with basis {ej1 ∧ · · · ∧ eji

∣∣ 1 ≤ j1 < . . . < ji ≤ n}.
The differential di = di(A, T ) : Ki −→ Ki−1 is given by

ej1 ∧ . . . ∧ eji
7−→

i∑

k=1

(−1)k−1 Tjk
· ej1 ∧ . . . êjk

. . . ∧ eji
,

where the symbol êjk
indicates that ejk

has been omitted. We consider this (ho-
mological) Koszul complex K•(A, T ) :

· · · 0 // Kn(A, T )
dn(A,T ) // Kn−1(A, T ) // . . .

d1(A,T ) // K0(A, T ) // 0 · · ·

as an element of Db(VBA) with Kj(A, T ) in degree j.

There is a structure of symmetric n-space on K•(A, T ), that we now give in
an economic way; see more details in Remark 3.3. For each i = 1, . . . , n, let
K•(A, Ti) ∈ Db(VBA) be the short Koszul complex for the one-element sequence
(Ti), i.e.

K•(A, Ti) = . . . // 0 // A
·Ti // A // 0 // . . .

deg 1 deg 0 .
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This complex can be equipped with the following symmetric 1-form (see 2.2) :

K•(A, Ti) =

:=Θ(A,Ti)
²²

· · · 0 // A
·Ti //

id

²²

A //

− id

²²

0 · · ·

DA(K•(A, Ti))[1] = · · · 0 // A
·(−Ti) // A // 0 · · ·

deg 1 deg 0 ,

where we identify A = HomA(A,A) as usual. This is of course a symmetric 1-space
since Θ(A, Ti) is an isomorphism of complexes, hence a quasi-isomorphism. It is
easily checked that the tensor product of complexes K•(A, T1)⊗A . . . ⊗A K•(A, Tn)
is equal to the Koszul complex K•(A, T ) of the sequence T = (T1, . . . , Tn) and
therefore we can give the following :

Definition 3.1. With the above notations, we define a symmetric n-form

Θ(A, T ) : K•(A, T ) −→ DA(K•(A, T ))[n]

as the product (see 2.5)
(
K•(A, T ) , Θ(A, T )

)
:=

(
K•(A, T1),Θ(A, T1)

)
? . . . ?

(
K•(A, Tn),Θ(A, Tn)

)
.

This defines a symmetric n-space
(
K•(A, T ) , Θ(A, T )

)
which we call the canonical

space on the Koszul complex K•(A, T ).

We have the following functorial property.

Lemma 3.2. Let f : A −→ B be a morphism of rings. Then, there is a natural
isometry

f∗
(
K•(A, T ),Θ(A, T )

) '
−→

(
K•(B, f(T )),Θ(B, f(T ))

)
.

Proof. The natural isomorphism K•(A, T )⊗AB
'
−→ K•(B, f(T )) is an isometry. ¤

Remark 3.3. To define this canonical space on K•(A, T ), it is not necessary to use
the product structure of the derived Witt groups. The advantage of this approach
is that we see at once that the canonical n-space is a symmetric n-space, but for
calculations in the sequel it might be useful to have a good description of the
symmetric n-form Θ(A, T ). We define an isomorphism

ρ : K•(A, T )
'
−→ DA(K•(A, T ))[n]

following [7], Sect. 1.6. We fix for this an isomorphism ω :
∧n

(An)
'
−→ A, and

define an A-bilinear pairing

bi : Ki(A, T ) × Kn−i(A, T ) −→ A

by (x, y) 7−→ ω(x ∧ y) for all 0 ≤ i ≤ n. This bi induces a homomorphism %i :
Ki(A, T ) −→ HomA(Kn−i(A, T ), A) = Kn−i(A, T )∨ which is an isomorphism for
all 0 ≤ i ≤ n. It is straightforward (although a little cumbersome) to check that

dn−(i−1)(A, T )∨ · %i = (−1)i−1%i−1 · di(A, T ) .

Consider the family of morphisms (ρi)i∈Z defined by ρi := (−1)
i(i+1)

2 +
n(n−1)

2 · %i for
0 ≤ i ≤ n and by ρi = 0 otherwise. This defines an isomorphism of complexes
ρ = ρ• : K•(A, T ) −→ DA(K•(A, T ))[n], which coincides with the morphism of
complexes Θ(A, T ) as a thrilling calculation using [10, Ex. 1.4, Rem. 1.9] shows.
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By the following lemma this is easier to see if T is a regular sequence, which is
the only interesting case for us here.

Lemma 3.4. Assume that T is a regular sequence, i.e. I :=
n∑

i=1

ATi 6= A and Ti is

not a zero divisor in A/
i−1∑
j=1

ATj for all i = 1, . . . , n. Identify A ∼= HomA(A,A) as

usual. Then the following properties hold :

(i) The Koszul complex K•(A, T ) and its n-dual DA(K•(A, T ))[n] are A-free
resolutions of A/I.

(ii) We have H0(Θ(A, T )) = (−1)
n(n−1)

2 idA/I .

(iii) For any morphism in Db(VBA) between the Koszul complex and its n-dual

ς : K•(A, T ) −→ DA(K•(A, T ))[n] ,

there exists an s ∈ A such that ς = s · Θ(A, T ) in Db(VBA).
(iv) In (iii), ς is an isomorphism in Db(VBA) if and only if s + I is a unit in

the quotient ring A/I.

Proof. For (i), T = (T1, . . . , Tn) is a regular sequence by assumption and so the
complex K•(A, T ) is an A-free resolution of A/I by [7, Cor. 1.6.14]. For (ii), see
Remark 3.3 above. Point (iii) follows from (i) and (ii). Point (iv) is immediate
from (iii). ¤

Remark 3.5. It is clear that the restriction of K•(A, T ) becomes zero in the derived
category Db(VBA[T−1

j ]) for all 1 ≤ j ≤ n. Hence the complex K•(A, T ) has support

in the closed subset of Spec(A) defined by the ideal I :=
∑n

j=1 ATj . Therefore the

symmetric n-space
(
K•(A, T ) , Θ(A, T )

)
defines an element in

[
K•(A, T ) , Θ(A, T )

]
∈ Wn

I (A) .

Proposition 3.6. Let 1 ≤ i ≤ n. Define the ideal Ii :=
∑
k 6=i

ATk of A. Then

[
K•(A, T ) , Θ(A, T )

]
= 0 in Wn

Ii
(A).

Proof. The group Wn−1
Ii

(A) obviously contains the element

y := [K•(A, T1),Θ(A, T1)] ? . . . ? [K•(A, Ti−1),Θ(A, Ti−1)]

? [K•(A, Ti+1),Θ(A, Ti+1)] ? . . . ? [K•(A, Tn),Θ(A, Tn)] .

Recall from 2.10 that the product also gives

? : W1(A) × Wn−1
Ii

(A) −→ Wn
Ii

(A) .

Since the product is skew-commutative, we have

[K•(A, Ti),Θ(A, Ti)] ? y = (−1)i−1
[
K•(A, T ) , Θ(A, T )

]
,

where we consider [K•(A, Ti),Θ(A, Ti)] as an element of W1(A). Therefore the
result follows from the observation that this element is indeed zero in W1(A).
In fact, the complex c0(A) ∈ Db(VBA) is a Lagrangian (cf. [2], Sect. 2) of the
symmetric 1-space (K•(A, Ti),Θ(A, Ti)) :

c0(A) =

²²

. . . // 0 //

²²

0 //

²²

A //

id

²²

0 //

²²

. . .

K•(A, Ti) = . . . // 0 // A
·Ti // A // 0 // . . .
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and so [K•(A, Ti),Θ(A, Ti)] = 0 in W1(A). ¤

In the above proof, note that the class y ∈ Wn−1
Ii

(A) does not belong to Wn−1
I (A)

and thus the argument can not be used to deduce that [K•(A, T ) , Θ(A, T ) ] = 0 in
Wn

I (A). On the contrary, see Theorem 7.2.

Corollary 3.7.
[
K•(A, T ) , Θ(A, T )

]
= 0 in Wn(A).

Proof. Clear since Wn
I (A) −→ Wn(A) factors via Wn

I1
(A) for instance. ¤

4. Koszul cut in two

We want to “split” the Koszul complex of Section 3 into two pieces, dual to each
other. This is easy to understand but a little tricky to write. Recall our running
conventions of Section 1 that r + 4 q = n − 1, see (2), and that ` := [n

2 ], see (3).

Now, more precisely, we want to define a symmetric r-pair
(
C•(A, T ) , Ξ(A, T )

)
,

such that there is an isometry

cone(C•(A, T ),Ξ(A, T )) '
(
K•(A, T ),Θ(A, T )

)
[−2q] .

We abbreviate the canonical form on K•(A, T ) =: K• by

Θ := Θ(A, T ) ,

and set

E = E(A, T ) := Coker
(
K`+2(A, T )

d`+2(A,T )
−−−−−−→ K`+1(A, T )

)
. (7)

Let prE = prE(A,T ) : K`+1 −→ E = Coker d`+2 be the projection. Since

d`+1d`+2 = 0 there exists a unique morphism d̄`+1 = d̄`+1(A, T ) : E −→ K`,
such that

d`+1(A, T ) = d̄`+1(A, T ) · prE . (8)

For each j = 0, . . . , n, we have rankA(Kj) =
(
n
j

)
. In particular, if n = 2` + 1 is

odd, we have rankA K` = rankA K`+1 and life will be easy. When n = 2` is even,

K` has maximal (even) rank
(
2`
`

)
and we need some preparatory considerations. In

this case, the symmetric n-form Θ• : K•

'
−→ DA(K•)[n] gives an isomorphism

Θ` : K` −→ K∨
` = HomA(K`, A)

which is symmetric if ` is even and skew-symmetric otherwise.

Lemma 4.1. If n = 2` is even, there exists two totally isotropic subspaces L and
M of (K`,Θ`), of same rank 1

2

(
2`
`

)
, such that K` = L⊕M and such that Θ` becomes

Θ` =

(
0 (−1)`λ∨ canM

λ 0

)
: K` = L ⊕ M −→ L∨ ⊕ M∨ = K∨

` ,

where λ : L
'
−→ M∨ is an isomorphism. Moreover, we have

(−1)`d∨`+1 · (prL)∨ · λ∨ · canM ·prM ·d`+1 + d∨`+1 · (prM )∨ · λ · prL ·d`+1 = 0 , (9)

where prL : K` −→ L and prM : K` −→ M denote the projections.
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Proof. Let e1, . . . , en be a basis of An. The complementary subspaces of K` =
∧̀

An

L :=
⊕

2 ≤ i2 < i3 < . . . < i` ≤ n

A · e1 ∧ ei2 ∧ ei3 ∧ . . . ∧ ei`

and

M :=
⊕

2 ≤ i1 < i2 < . . . < i` ≤ n

A · ei1 ∧ ei2 ∧ . . . ∧ ei`

both have rank
(
2`−1
`−1

)
=

(
2`−1

`

)
= 1

2

(
2`
`

)
. Now use the description of Θ` given in

Remark 3.3. Let ω :
n∧

An '
−→ A be the isomorphism which sends e1 ∧ . . . ∧ en to

1 ∈ A. Then Θ`(x)(y) = ±ω(x ∧ y). From this we easily get that both subspaces
are totally isotropic : for L it is because e1 ∧ e1 = 0 and for M it is because two
subsets with ` elements in {2, . . . , n} must intersect. Since Θ` is a (−1)`-symmetric
isomorphism, its decomposition in L ⊕ M must be as claimed in the lemma.

Note that Θ : K• −→ DA(K•)[n] is a morphism of complexes and we have

d∨`+1 · Θ` · d`+1 = 0 : K`+1

d`+1 // K`
Θ` // K∨

`

d∨`+1 // K∨
`+1 .

In the decomposition K` = L ⊕ M , the morphism d`+1 : K`+1 −→ K` becomes(
prL ·d`+1

prM ·d`+1

)
. Replacing this in d∨`+1 · Θ` · d`+1 = 0 gives equation (9) by a direct

matrix multiplication. ¤

Definition 4.2. As the above discussion shows, we will have to distinguish the
cases where n is odd from those where n is even and the definition extends over
4.3 - 4.6 below. We shall consider a sign

εn ∈ {−1, 1}

which will be fixed later on, see 6.3.

We start with n = 2` + 1 odd.

4.3. Case r = 0.

Then ` = 2q is even and
(
C•(A, T ) , Ξ(A, T )

)
is defined to be the following sym-

metric 0-pair :

0 // Kn
dn //

²²

· · · // K`+2
d`+2 //

²²

K`+1
//

εnΘ`·d`+1

²²

0 //

²²

· · · // 0 //

²²

0

0 // 0 // · · · // 0 // K∨
`+1

d∨

`+2 // K∨
`+2

// · · ·
d∨

n // K∨
n

// 0

deg ` deg 0.
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If T is a regular sequence then the Koszul complex K• is exact and so we have the
following quasi-isomorphism

C•(A, T ) =

p=p(A,T ) :=

²²

0 // Kn
dn //

²²

· · · // K`+2
d`+2 //

²²

K`+1
//

prE

²²

0 //

²²
c0(E) = 0 // 0 // · · · // 0 // E // 0 //

deg ` deg 0.

4.4. Case r = 2.

Then ` = 2q + 1 is odd and
(
C•(A, T ) , Ξ(A, T )

)
is defined to be the following

symmetric 2-pair :

0 // Kn
dn //

²²

· · · // K`+2
d`+2 //

²²

K`+1
//

εnΘ`·d`+1

²²

0 //

²²

· · · // 0 //

²²

0

0 // 0 // · · · // 0 // K∨
`+1

d∨

`+2 // K∨
`+2

// · · ·
d∨

n // K∨
n

// 0

deg ` + 1 deg 1.

As above if T is a regular sequence the projection prE : K`+1 −→ E induces a
quasi-isomorphism of complexes p = p(A, T ) : C•(A, T ) −→ c0(E)[1].

Now let n = 2` be even.

We fix two totally isotropic subspaces L and M of K` and an isomorphism
λ : L −→ M∨ as in Lemma 4.1 and keep notations as there. We set

h := λ∨ · canM ·prM ·d`+1 : K`+1 −→ L∨ .

We now define the space
(
C•(A, T ) , Ξ(A, T )

)
for n even. It follows from equa-

tion (9) in Lemma 4.1 that both squares in the middle of the two diagrams below
commute and so the morphism Ξ(A, T ) is really a morphism of complexes.

4.5. Case r = −1.

Then ` = 2q is even and
(
C•(A, T ) , Ξ(A, T )

)
is defined to be the following sym-

metric (−1)-pair :

0 // Kn
dn //

²²

· · · // K`+2
d`+2 //

²²

K`+1
prL d`+1 //

εnh

²²

L //

εnh∨ canL

²²

0 · · · // // 0 //

²²

0

0 // 0 // · · · // 0 // L∨

−(prL d`+1)
∨

// K∨
`+1

−d∨

`+2

// · · ·
−d∨

n

// K∨
n

// 0

deg ` − 1 deg 0 deg −1

If the sequence T is regular the homology of C•(A, T ) is not concentrated in one
degree (as in the case n odd) but there exists a “short” complex F•(A, T ) defined
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as follows and which is quasi-isomorphic to C•(A, T ) :

C•(A, T ) =

p=p(A,T ) :=

²²

· · · // K`+2
d`+2 //

²²

K`+1
prL ·d`+1 //

prE

²²

L //

=

²²

0 //

²²

· · ·

F•(A, T ) := · · · // 0 // E
prL ·d̄`+1

// L // 0 // · · ·

deg 0 deg −1.

4.6. Case r = 1.

Then ` = 2q + 1 is odd and
(
C•(A, T ) , Ξ(A, T )

)
is defined to be the following

symmetric 1-pair :

0 // Kn
dn //

²²

· · · // K`+2
d`+2 //

²²

K`+1
prL d`+1 //

εnh

²²

L //

−εnh∨ canL

²²

0 · · · // 0 //

²²

0

0 // 0 // · · · // 0 // L∨

−(prL d`+1)
∨

// K∨
`+1

−d∨

`+2

// · · ·
−d∨

n

// K∨
n

// 0

deg ` deg 1 deg 0

As in the case r = −1, when T is a regular sequence, we have a quasi-isomorphism
p = p(A, T ) : C•(A, T ) −→ F•(A, T ), where F•(A, T ) is now the complex

· · · // 0 // E
prL ·d̄`+1 // L // 0 // · · ·

deg 1 deg 0.

Lemma 4.7. Let f : A −→ B be a morphism of rings. There is a natural isometry

f∗
(
C•(A, T ) , Ξ(A, T )

) '
−→

(
C•(B, f(T )) , Ξ(B, f(T ))

)
.

Proof. Straightforward, cf. Lemma 3.2. ¤

Lemma 4.8. The mapping cone of the morphism Ξ(A, T ) is isomorphic (as a
complex) to K•(A, T )[−2q].

Proof. This is an easy direct computation, which we leave to the reader. It is clear
in the cases where n is odd and it requires Lemma 4.1 for n even. In all four cases,
we use the isomorphism Θ to replace the K∨

j by Kn−j for j ≥ ` + 1. ¤

Remark 4.9. Note that we do not claim that the symmetric cone of the symmetric
r-form Ξ(A, T ) is the Koszul complex with its canonical form Θ(A, T ). This would
be true, however, with a suitable choice of the sign εn. Instead of going into these
computations, we shall use a simplifying trick : see 6.3.
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5. The Koszul symmetric space K
(n)

X over An
X

Let R be a ring. We apply the constructions of Section 3 to A := R[T1, . . . , Tn],
the polynomial ring in n variables over R, and to the sequence T := (T1, . . . , Tn).
The reader can think of R = Z or R = Z[1/2], since these are the important cases,
from which the rest will be deduced.

Definition 5.1. The Koszul symmetric n-space K
(n)

R =
(
K(n)

R , Θ(n)

R

)
over An

R is the

symmetric n-space where K(n)

R := K•(A, T ) will be called the Koszul complex over
An

R and where the symmetric n-form Θ(n)

R := Θ(A, T ) is the one of Definition 3.1.

Remark 5.2. Pay attention : K
(n)

R is a symmetric n-space defined over the ring
A = R [T1, . . . , Tn] and not over the ring R, as the notation might suggest.

It is clear that the Koszul symmetric n-space behaves well with respect to base-
change. More precise, let f : R −→ S be a morphism of rings and let

αf : R [T1, . . . , Tn] −→ S [T1, . . . , Tn]

be the obvious induced morphism. Then, by Lemma 3.2 there is a natural isometry

α∗
f (K(n)

R )
'
−→ K

(n)

S .

In particular, K
(n)

R is extended from K
(n)

Z
. This justifies the following extension of

Definition 5.1.

Definition 5.3. Let X be a scheme. We define the symmetric n-space

K
(n)

X := α∗
X(K(n)

Z
)

where αX : An
X −→ An

Z
is the base-change morphism, see 1.4. We call K

(n)

X the
Koszul symmetric n-space over An

X . Like before, we denote the underlying complex
of free OAn

X
-modules and its symmetric n-form by

K(n)

X = α∗
X

(
K(n)

Z

)
and Θ(n)

X = α∗
X

(
Θ(n)

Z

)
.

Remark 5.4. It is obvious from the definition that for any morphism of schemes
f : Y −→ X we have an isometry α∗

f

(
K

(n)

X

)
' K

(n)

Y over An
Y

Definition 5.5. By Remark 3.5, the complex K(n)

X has support in the closed subset
An

X r Un
X of An

X . Therefore, the symmetric n-space K
(n)

X represents a Witt class

κ(n)

X := [K(n)

X ] ∈ Wn
An

XrUn
X

(An
X) .

Remark 5.6. Note that there are several choices of signs in the definition of the
symmetric n-space K

(n)

X . Other sign conventions give the same space or its negative,
but the results of this work are clearly independent of such choices.
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6. The half-Koszul symmetric space B
(n)

X over Un
X

Definition 6.1. Let R be a ring. We now apply the splitting of Section 4 to the
space K

(n)

R of Section 5. As above, we put A := R [T1, . . . , Tn] and T := (T1, . . . , Tn).
We define

C(n)

R := C•(A, T ) and Ξ(n)

R := Ξ(A, T )

as defined in 4.3 to 4.6. For any scheme X we define

C(n)

X := α∗
X(C(n)

Z
) and Ξ(n)

X := α∗
X(Ξ(n)

Z
)

where αX : An
X −→ An

Z
is the base-change morphism. This coincides with the above

in the affine case by Lemma 4.7. For all n ∈ N, the symmetric r-pair (C(n)

X ,Ξ(n)

X ) on
An

X will be denoted by C
(n)

X .

Remark 6.2. We have the following facts:

(1) The pair C
(n)

X is a symmetric r-pair (see Definition 2.2) indeed.
(2) If f : Y −→ X is a morphism of schemes then there is a natural isometry

α∗
f (C(n)

X )
'
−→ C

(n)

Y .

6.3. The symmetric cone of C
(n)

X .

Instead of calculating cone(C(n)

X ) directly (which is possible, but cumbersome)
we take full advantage of Lemma 3.4. More precisely, we use the fact that any
quasi-isomorphism K•(Z, T ) −→ DZ[T1,...,Tn](K•(Z, T ))[n] is equal to the symmetric

n-form ±Θ(n)

Z
in Db(VBZ[T1,...,Tn]).

So let for a moment R = Z and A = Z[T1, . . . , Tn]. We abbreviate K• :=
K•(A, T ) and Θ = Θ(A, T ) . We get from Lemma 4.8 the following commutative
diagram (where D = DA)

C(n)

Z

Ξ
(n)
Z //

(−1)
r(r+1)

2 $
C

(n)
Z²²

D(C(n)

Z
)[r]

u //

=

²²

K•[−2q]
v // C(n)

Z
[1]

(−1)
r(r+1)

2 $
C

(n)
Z

[1]

²²
DD(C(n)

Z
)

D(Ξ
(n)
Z

)[r]

// D(C(n)

Z
)[r]

−D(v)[r+1]
// D(K•[−2q])[r + 1]

(−1)rD(u)[r+1]
// DD(C(n)

Z
)[1]

(10)
whose rows are exact triangles for all n ∈ N (the bottom row is the dual of the
upper one, shifted r times). By the very basic properties of triangulated categories
there exists an isomorphism

ς : K•[−2q] −→ D(K•[−2q])[r + 1] =
(
D(K•)[n]

)
[−2q] ,

in Db(VBA) such that diagram (10) commutes. By Lemma 3.4 the isomorphism
ς is equal to ±Θ[−2q]. Replacing if necessary Ξ(n)

Z
by −Ξ(n)

Z
, i.e. replacing εn by

−εn in the definition of C
(n)

R , we can assume that ς = Θ[−2q] for all n ∈ N, i.e.

(K•[−2q], ς) = K
(n)

Z
[−2q] for all n ∈ N.

We fix εn as explained above.
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We can now calculate cone(C(n)

X ) for any scheme X and any n ∈ N. The pull-back
via the base-change morphism αX : An

X −→ An
Z

of diagram (10) above is a cone
diagram for the symmetric r-form α∗

X(C(n)

Z
). By Lemma 4.7 we have an isometry

C
(n)

X ' α∗
X(C(n)

Z
) and so we get cone(C(n)

X ) ' α∗
X(K(n)

Z
[−2q]) ' α∗

X(K(n)

Z
)[−2q] (cf.

Lemma B.1 for the later isometry). We have proven :

Theorem 6.4. With this choice of εn, the cone of the symmetric pair C
(n)

X is the
Koszul symmetric space shifted as follows :

cone(C(n)

X ) = K
(n)

X [−2q] .

¤

In particular, Ξ(n)

X |Un
X

is an isomorphism because the homology of K•|Un
X

vanishes.

Definition 6.5. Let X be a scheme. The symmetric r-space

B
(n)

X := C
(n)

X |Un
X

will be called the half-Koszul space over the scheme X. Its Witt class is denoted by

ε(n)

X := [B(n)

X ] ∈ Wr(Un
X) .

The following is obvious (cf. Remark 6.2).

Lemma 6.6. Let f : Y −→ X be a morphism of schemes. Then there is a natural
isometry

υ∗
f (ε(n)

X )
'
−→ ε(n)

Y .

¤

By the main result of [3] we know that B
(n)

X is Witt equivalent to a space living
on a short complex (see 2.4). In fact, B

(n)

X is not only Witt equivalent, but isometric
to such a space on a “short complex”.

We use the notation of 4.3–4.6 with R = Z, i.e. A = Z[T1, . . . , Tn] is the polyno-
mial ring in n variables over Z, T = (T1, . . . , Tn), and K• = K•(A, T ) is the Koszul
complex of the sequence T over A. As in 4.3–4.6 we denote the differential of this
Koszul complex by d• and set

E = E(A, T ) = Coker
(
K`+2

d`+2
−−−→ K`+1

)
.

Note that T is a regular sequence and so K• is a finite free resolution of Z ' A/I,
where I is the ideal generated by T . It follows that K•(A, T )|Spec A[T−1

i ] is a split

exact sequence and so

E (n)

Z
:= Coker

(
K`+2

d`+2
−−−→ K`+1

)∣∣∣
Un

Z

= E
∣∣
Un

Z

' Ker d`

∣∣
Un

Z

(11)

is a locally free OUn
Z
-module of rank

∑̀
i=0

(−1)i
(

n
`−i

)
=

(
n−1

n−`−1

)
. Clearly the same

is true for the pull-back
E (n)

X := υ∗
X(E (n)

Z
) , (12)

where υX : Un
X −→ Un

Z
is induced by base change, see (4). Note that we have

E (n)

X = Coker
(
K(n)

X,`+2 −→ K(n)

X,`+1

)∣∣∣
Un

X

' Ker
(
K(n)

X,` −→ K(n)

X,`−1

)∣∣∣
Un

X

,

where K(n)

X = K(n)

X,• = α∗
X(K(n)

Z
) (see Definition 5.3).

We consider now the case n odd and n even separately.
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6.7. The space B
(n)

X if n = 2` + 1 is odd, i.e. r = 0 or r = 2.

Since the functor (−)∨ = HomA(− , A) is left exact we have E∨ = Ker
(
K∨

`+1

d∨

`+2
−−−→

K∨
`+2

)
and hence a well defined homomorphism

ϕ(n)

Z
:= εn · θ` · d̄`+1

∣∣
Un

Z

: E (n)

Z
−→ HomOUn

Z

(E (n)

Z
,OUn

Z
) = E∨

∣∣
Un

Z

which is (−1)`-symmetric, where d̄`+1 is the unique morphism K`+1 −→ E, such
that d`+1 = d̄`+1 · prE (cf. (8)). We set

(F (n)

Z
, φ(n)

Z
) :=

{
c0(E

(n)

Z
, ϕ(n)

Z
) if ` is even

c0(E
(n)

Z
, ϕ(n)

Z
)[1] if ` is odd.

This is a symmetric r-pair. Recall now from 4.3–4.6 that the projection prE :
K`+1 −→ E induces a quasi-isomorphism (hence an isomorphism in Db(VBA))

p|Un
Z

= p(Z, T )|Un
Z

: C(n)

Z

'
−→ c0(E

(n)

Z
) (respectively C(n)

Z

'
−→ c0(E

(n)

Z
)[1]),

which is easily seen to be an isometry B(n)

Z

'
−→ (F (n)

Z
, φ(n)

Z
). It follows that φ(n)

Z
is an

isomorphism and so (F (n)

Z
, φ(n)

Z
) a symmetric r-space. In particular (E (n)

Z
, ϕ(n)

Z
) is a

(−1)`-symmetric space over Un
Z
. Applying the pull-back υ∗

X we get :

(i) The pair

(E (n)

X , ϕ(n)

X ) := υ∗
X(E (n)

Z
, ϕ(n)

Z
)

is a (−1)`-symmetric space over Un
X .

(ii) The half Koszul space B
(n)

X is isometric to the short symmetric r-space:

E
(n)

X := (F (n)

X , φ(n)

X ) := υ∗
X(F (n)

Z
, φ(n)

Z
) =

{
c0(E

(n)

X , ϕ(n)

X ) if ` is even

c0(E
(n)

X , ϕ(n)

X )[1] if ` is odd.

Example 6.8. If n = 1 then (E (n)

X , ϕ(n)

X ) is the symmetric space

OUn
X

·T
−→ OUn

X
= HomOUn

X
(OUn

X
,OUn

X
) .

6.9. The space B
(n)

X if n = 2` is even, i.e. r = −1 or r = 1.

We fix L,M ⊂ K` and λ : L
'
−→ M∨ as in Lemma 4.1 (with R = Z), and let

prL : K` −→ L and prM : K` −→ M be the respective projections. We denote
L := L|Un

Z
and prL := prL |Un

Z
: K`|Un

Z
−→ L.

On the complex F (n)

Z
:= F•(A, T )

∣∣
Un

Z

we have the following symmetric r-form:

F (n)

Z
=

φ
(n)
Z

:=

²²

· · · // 0 //

²²

E (n)

Z

prL ·d̄`+1|Un
Z //

εnh̄|Un
Z

²²

L //

(−1)`εn(h̄|Un
Z

)∨ canL

²²
DUn

Z
(F (n)

Z
)[(−1)`+1] = · · · // 0 // L∨

(prL ·d̄`+1|Un
Z

)∨
// (E (n)

Z
)∨ //

if r = −1 deg 0 deg −1

if r = 1 deg 1 deg 0
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where h̄ = λ · canM ·prM ·d̄`+1. Since d`+1|Un
Z

= (d̄`+1 · prE)|Un
Z

we see that the

quasi-isomorphism p|Un
Z

: F (n)

Z

'
−→ C(n)

Z
is an isometry B

(n)

Z

'
−→ (F (n)

Z
, φ(n)

Z
), and so φ(n)

Z

is an isomorphism in Db(VBZ). Therefore (F (n)

Z
, φ(n)

Z
) is a symmetric r-space over

Un
Z
. Applying the pull-back υ∗

X we get :

The half Koszul space B
(n)

X is isometric to the short symmetric r-space:

E
(n)

X := (F (n)

X , φ(n)

X ) := υ∗
X(F (n)

Z
, φ(n)

Z
) .

Remark 6.10. We give in Appendix A a proof of the following fact. If n ≥ 3 then
the locally free OUn

X
-module E (n)

X can not be extended to a locally free OAn
X

-module,
and hence in particular is not extended from X. Of course this is wrong for n = 1, 2,
since then ` = 0 and therefore E (n)

Z
' Kn(Z, T )

∣∣
Un

Z

which is free.

It follows already from this that it is impossible to extend the symmetric r-space
E

(n)

X to An
X as long as n ≥ 3. We will see in Theorem 8.2 that even more is true. It

is impossible to extend E
(n)

X up to Witt equivalence to An
X , i.e. [E(n)

X ] is not in the

image of Wr(An
X)

ι∗X−−→ Wr(Un
X), and this for any n ≥ 1.

7. Witt groups of the punctured affine space

Recall the notations of Section 1, like formula (4), defining r ∈ {−1, 0, 1, 2} by
n = 4 q + r + 1. We begin with an easy application of triangular Witt theory :

Theorem 7.1. Let X be a regular scheme containing 1
2 . There exists a split short

exact sequence

0 // Wi(X)
σ∗

X // Wi(Un
X)

∂ // Wi+1
An

XrUn
X

(An
X) // 0 ,

for all i ∈ Z, where ∂ is the connecting homomorphism of the localization Un
X ⊂ An

X .
This sequence is natural in X in the obvious way. Moreover, a left inverse to σ∗

X is

given by γ∗ : Wi(Un
X) −→ Wi(X) for any X-point γ : X → Un

X , i.e. any morphism
γ : X → Un

X such that σX ◦ γ = idX .

Proof. Consider the commutative (plain) diagram :

. . . ∂ // Wi
An

XrUn
X

(An
X) // Wi(An

X)
ι∗X // Wi(Un

X)
∂ //

γ∗

qq

»

´

©

{
o

h

Wi+1
An

XrUn
X

(An
X) // . . .

Wi(X)

π∗

X '

OO
σ∗

X

==
{

{
{

{
{

{
{

{
{

{
{

{

The long sequence is exact by localization, see 2.9, and the homomorphism π∗
X

is an isomorphism by homotopy invariance [4, Thm. 3.1]. Now, for any X-point
γ : X → Un

X , for instance (1, . . . , 1), since σX ◦ γ = idX , the homomorphism σ∗
X

is split injective with the wanted left inverse. Hence the homomorphism ι∗X is also
split injective and the unlabeled morphism in the above diagram must be equal to
zero, for all i ∈ Z, in particular for i + 1. This, in turn, gives the surjectivity of ∂
and the result follows easily. ¤
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We want to apply “dévissage” to the relative groups Wi+1
An

XrUn
X

(An
X) and we will

need

Theorem 7.2. Let X be a regular Z[1/2]-scheme of finite Krull dimension. Con-
sider the structure morphism πX : An

X −→ SpecX. Then, the homomorphism

ϑ(n)

X : Wi−n(X) −→ Wi
An

XrUn
X

(An
X) , w 7−→ πX

∗(w) ? κ(n)

X

is an isomorphism for all i ∈ Z.

Proof. The affine case X = Spec(R) is [9, Thm. 9.3].
Since the homomorphism ϑ(n)

X is given by the product with a “universal” Witt
class κ(n)

X := [K(n)

X ], we can deduce the global statement from the affine case by
Mayer-Vietoris as follows. If a regular scheme

V0 = V1 ∪ V2

is covered by two open subschemes V1 and V2, we also have a covering of the
corresponding affine spaces An, in a compatible way with the closed subsets AnrUn.
So, we get a Mayer-Vietoris long exact sequence [4] with supports, given in the first
row of the diagram below, where we use the abbreviations Yn(X) := An

X r Un
X for

all schemes X and V3 := V1 ∩ V2 :

. . . // Wi
Yn(V1)(A

n
V1

) ⊕ Wi
Yn(V2)(A

n
V2

) // Wi
Yn(V3)(A

n
V3

)
∂ //

‡

Wi+1
Yn(V0)

(An
V0

) // . . .

. . . // Wi−n(V1) ⊕ Wi−n(V2) //

ϑ
(n)
V1

⊕ϑ
(n)
V2

OO

Wi−n(V3)
(−1)n∂

//

ϑ
(n)
V3

OO

Wi−n+1(V0) //

ϑ
(n)
V0

OO

. . .

The second line is exact by the Mayer-Vietoris exact sequence for V0 = V1 ∪ V2.
We claim that the diagram commutes. This is easy to check for the unmarked
squares. For the square marked (‡) this follows from the following calculation. Let
w ∈ Wi−n(V3), then

∂
(
π∗

V3
(w) ? [K(n)

V3
]
)

= ∂
(
π∗

V3
(w) ? [K(n)

V0
]
)

= (−1)n∂
(
π∗

V3
(w)

)
? [K(n)

V0
]

The first equality holds without ∂ and uses the following fact : before computing
the product of the class [K(n)

V0
] ∈ Wn

Yn(V0)(A
n
V0

) with π∗
V3

(w) ∈ Wi−n(An
V3

), we can

as well restrict [K(n)

V0
] to An

V3
and then multiply; this restriction of [K(n)

V0
] is precisely

[K(n)

V3
] by Remark 5.4. The second equality is a consequence of (6). It then suffices

to apply naturality of the localization sequence to replace ∂
(
π∗

V3
(w)

)
by π∗

V0

(
∂(w)

)

and we have the claimed commutativity of (‡). The usual Five-Lemma gives the
statement by induction on the number of open subschemes in an affine covering of
the regular scheme X (recall Convention 1.3). ¤

Remark 7.3. We do not now whether ϑ(n)

X is an isomorphism for more general
schemes X, like e.g. regular (affine) schemes of infinite Krull dimension. The proof
of [9, Thm. 9.3] uses coherent Witt groups and therefore only applies to regular
rings of finite Krull dimension.

Theorem 7.4. Let X be a Z[1/2]-scheme. Let 1 ≤ i ≤ n be an integer and consider
the X-point γi : X → Un

X ⊂ An
X corresponding to Ti = 1 and Tj = 0 for all j 6= i.
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If n ≥ 2, then the evaluation at this point of the Witt class ε(n)

X ∈ Wr(Un
X) of the

half-Koszul space is zero

γ∗
i (ε(n)

X ) = 0 in Wr(X) .

Proof. Also denote by γi : Spec(Z[1/2]) −→ Un
Z[1/2] the “same” point. We have a

commutative diagram

Wr(Un
Z[1/2])

γ∗

i //

υ∗

X

²²

Wr(Z[1/2])

²²
Wr(Un

X)
γ∗

i

// Wr(X)

with the obvious morphisms and we know from 6.6 that υ∗
X(ε(n)

Z[1/2]) = ε(n)

X . There-

fore, it suffices to prove the result for Z[1/2].
If r 6= 0 this is trivially true because in this case Wr(Z[1/2]) = 0. In fact,

since Z[1/2] is a Dedekind domain, we have by [6, Thm. 10.1] that W−1(Z[1/2]) =

W2(Z[1/2]) = 0 and W1(Z[1/2]) ' Coker
(
W(Z[1/2])

∑
∂p

−−−→
⊕
p6=2

W(Z/Zp)
)
, where

∂p is a second residue homomorphism associated with the prime number p. But
this cokernel is also zero by the classical calculation of the Witt group of Q, cf. e.g.

[14, Thm. VI.6.11].
If r = 0, i.e. n = 2`+1 with ` 6= 0 even this follows from the following lemma. ¤

Lemma 7.5. Let R be a ring and n = 2` + 1 with ` ≥ 2 even. Then γ∗
i (B(n)

R ) '

γ∗
i (E (n)

R , ϕ(n)

R ) is trivial in W(R) ' W0(R).

Proof. After renumbering we may assume i = 1. Let K• = K•(A, T ) be the Koszul
complex of the regular sequence T = (T1, . . . , Tn) over A = R[T1, . . . , Tn], and

Θ = Θ(A, T ) : K•

'
−→ DA(K•)[n] the canonical symmetric n-form. Recall that the

differential ds : Ks −→ Ks−1 is then given by

ei1 ∧ . . . ∧ eis
7−→

s∑

j=1

(−1)j−1Tij
· ei1 ∧ . . . ∧ eij−1

∧ eij+1
∧ . . . ∧ eis

,

where e1, . . . , en constitute a basis of An. We denote (cf. 1.4) ιR the open immersion
Un

R ↪→ An
R. Then we have

(C ′,Ξ′) := γ∗
1 (B(n)

R ) = γ∗
1 ι∗R(C(n)

R )

and K ′
•

= γ∗
1 ι∗R(K•) is the Koszul complex K•(R, (1, 0, . . . , 0)) for the sequence

(1, 0, . . . , 0) ⊂ R. We denote the differential of this Koszul complex by d′. Note
that this complex is split exact. The isomorphism of complexes Θ′ := γ∗

1 ι∗R(Θ) is a
symmetric n-form on K ′

•
and (C ′,Ξ′) is the following symmetric 0-space:

0 // K ′
n

d′

n //

²²

K ′
n−1

//

²²

. . . // K ′
`+2

d′

`+2 //

²²

K ′
`+1

//

εnΘ′

`·d
′

`+1

²²

0 //

²²

. . . // 0 //

²²

0

0 // 0 // 0 // . . . // 0 // K ′∨
`+1

d′∨

`+2

// K ′∨
`+2

// . . .
d′∨

n

// K ′∨
n

// 0

deg ` deg 0
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over R, where we have set K ′∨
i = HomR(K ′

i, R). We give now a direct summand
E′ of K ′

`+1, such that the projection K ′
`+1 −→ E′ induces a quasi-isomorphism

C ′
•

'
−→ c0(E

′) (c0 : VBR −→ Db(VBR) the natural embedding).
The elements vi = 1 ⊗ ei (i = 1, . . . , n) are a basis of R ⊗A An = γ∗

1 ι∗(An), and
so the exterior products vi1 ∧ . . . ∧ vis

(1 ≤ i1 < . . . < is ≤ n) are free generators
of K ′

s ' ∧sRn. The differential d′s acts on them as follows :

d′s(vi1 ∧ . . . ∧ vis
) =

{
0 2 ≤ i1 < . . . < is ≤ n

vi2 ∧ . . . ∧ vis
1 = i1 < i2 < . . . < is ≤ n ,

therefore the R-module E′ := v1 ∧
( ∧̀

Rn
)
⊂ K ′

`+1 is isomorphic to Coker d′`+2.
Hence c0(E

′) ' C ′
•

because C ′
•

has non vanishing homology only in degree 0, and
we have an isometry c0(E

′, ϕ′) ' (C ′,Ξ′), where ϕ′ := εn(Θ′
l · d

′
`+1)|E′ .

Consider now the following free submodule of E′:

M ′ := (v1 ∧ v2) ∧
( `−1∧

Rn
)
.

We claim that M ′ is a totally isotropic subspace of (E′, ϕ′). From this the lemma
follows because rankM ′ = 1

2 rankE′ and so (E′, ϕ′) is hyperbolic by [1, I Thm.
4.6].

To see this we use the description of Θ given in Remark 3.3. Let ω : ∧nAn '
−→ A

be as in this remark and ω′ := idR ⊗ω. Then ω′(v1 ∧ . . . ∧ vn) = 1 and Θ′
`(x)(y) =

±ω′(x∧ y) for all x ∈ K ′
` and y ∈ K ′

`+1. If now x, y ∈ M ′ then y = v1 ∧ v2 ∧ y′ and

d′`+1(x) = v2 ∧x′ for some x′, y′ ∈ ∧`−1Rn, and so ±ϕ′(x)(y) = ω′(d′`+1(x)∧y) = 0
since v2 ∧ v2 = 0. ¤

Theorem 7.6. Let X be a regular Z[1/2]-scheme. The composition of the connect-
ing homomorphism with the 4-periodicity isomorphism :

Wr(Un
X)

∂ // Wr+1
An

XrUn
X

(An
X) τq

'
// Wn

An
XrUn

X
(An

X) ,

maps the Witt class ε(n)

X ∈ Wr(Un
X) of the half-Koszul space to the Witt class κ(n)

X ∈
Wn

An
XrUn

X
(An

X) of the Koszul space over An
X .

Proof. Recall that we always have n = 4 q + r + 1. The statement is a direct
consequence of Theorem 6.4, using the definition of the connecting homomorphism
∂ via the symmetric cone 2.9 and the fact that ε(n)

X =
[
C

(n)

X |Un
X

]
by Definition 6.5. ¤

Theorem 7.7. Let X be a regular Z[1/2]-scheme. For all i ∈ Z, define the following
homomorphism :

ρ(n)

X : Wi−r(X) −→ Wi(Un
X) , w 7−→ σX

∗(w) ? ε(n)

X .

Then the following diagram commutes :

Wi−r(X)

ρ
(n)
X

²²

Wi+1−n(X)

ϑ
(n)
X

'

²²

τq

'
oo

Wi(Un
X)

∂ // Wi+1
An

XrUn
X

(An
X)

for all i ∈ Z, where the isomorphism ϑ(n)

X is the one of Theorem 7.2 and where τ is
the 4-periodicity isomorphism.
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Proof. Recall of course that 1 − n + 4 q = r by (2). We have to show that

∂ρ(n)

X ([x]) = ϑ(n)

X ([x[−2q] ]) (13)

for all [x] ∈ Wi−r(X). Using the fact that σX : Un
X −→ Spec X composes

Un
X

ιX−−→ An
X

πX−−→ SpecX ,

we get:
∂ρ(n)

X ([x]) = π∗
X([x]) ? ∂(ε(n)

X ) by equation (5)

= π∗
X([x]) ? τ−q(κ(n)

X ) by Theorem 6.4.

But this is equal to the right hand side of (13) because:

ϑ(n)

X ([x[−2q] ]) = π∗
X([x])[−2q] ? κ(n)

X by Lemma B.1

= π∗
X([x]) ? τ−q(κ(n)

X ) by Lemma B.3.

¤

Corollary 7.8. Let X be a regular Z[1/2]-scheme. We have an isomorphism

(σ∗
X , ρ(n)

X ) : Wi(X) ⊕ Wi−r(X)
'
−→ Wi(Un

X) .

for all i ∈ Z.

Proof. From Theorem 7.1, it suffices to show that the homomorphism

ρ(n)

X : Wi−r(X) −→ Wi(Un
X)

has the two following properties : first ∂ · ρ(n)

X is an isomorphism; secondly that
γ∗ · ρ(n)

X is zero. The first one follows from Theorem 7.7 and the second one from
the definition of ρ(n)

X and Theorem 7.4, since γ∗ is a morphism of graded rings by
[10, Thm. 3.2]. ¤

Remark 7.9. Note that this result generalizes the well-known calculation of the
Witt group of a Laurent ring (cf. e.g. [13]).

As for the Laurent ring it is likely that the result is true for a bigger class of
rings, e.g. all regular rings. But already in the Laurent ring case it fails to be true
for all (commutative) rings as loc. cit. Examples 8.1 and 8.2 show.

To understand the ring structure on Wtot(Un
X), we need some properties of the

symmetric spaces K
(n)

X and B
(n)

X , which can be proven for non necessarily regular
schemes as well. The case n = 1, i.e. the “Laurent scheme” case, is well-known, so
we have to deal with n ≥ 2.

Theorem 7.10. Let X be a Z[1/2]-scheme. If n ≥ 2 then the symmetric r-space
B

(n)

X is locally trivial, i.e. for any x ∈ Un
X we have [(B(n)

X )x] = 0 in Wr(OUn
X ,x).

Proof. Define for all i ∈ {1, . . . , n} the principal open Vn
X(i) of An

X given by the
equation Ti 6= 0. Let J ⊆ {1, . . . , n} ⊂ N. We define

Vn
X(J) :=

⋃

j∈J

Vn
X(j) ⊆ Un

X = Vn
X({1, . . . , n})

and denote ιJ : Vn
X(J) −→ Un

X the corresponding open immersion. Since n ≥ 2, we
can cover Un

X with the open subschemes Vn
X(J) with |J | ≤ n − 1. So it suffices to

prove the following stronger result. ¤
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Theorem 7.11. With the above notations, if |J | ≤ (n− 1) then [B(n)

X |Vn
X(J)] = 0 in

Wr(Vn
X(J)).

Proof. We easily reduce to the case X = Spec Z[1/2]. In this case we argue as
follows. For brevity we set R := Z[1/2].

For J empty, the result is trivial since Vn
R(J) = ∅ and its Witt group is zero. So

we assume that J 6= ∅. Consider the closed complement YR(J) := An
R r Vn

R(J) of
Vn

R(J) ⊂ Un
R. Note that An

R rUn
R ⊂ YR(J). By Theorem 7.1, we have the following

commutative diagram with exact rows :

0 // Wr(R)
σ∗

R //

=

²²

Wr(Un
R)

∂ //

ι∗J

²²

Wr+1
An

RrUn
R
(An

R) //

²²

0

0 // Wr(R)
ι∗J σ∗

R // Wr(Vn
R(J))

∂ // Wr+1
YR(J)(A

n
R) // 0 .

We get from the right-hand commutative square, from Theorem 7.6, and from
Proposition 3.6 that ∂

(
ι∗J (ε(n)

R )
)

= 0. Therefore, by exactness of the above second

row, there exists a unique class w ∈ Wr(R) such that ι∗J (B(n)

R ) = ι∗J (σ∗
R(w)). In fact,

w = γ∗(ι∗J (B(n)

R )) for any R-point γ : Spec(R) → Vn
R(J), which exists by assumption

J 6= ∅. Choose j ∈ J and define the R-point γ : Spec(R) → Vn
R(J) to be given

by Tj = 1 and Ti = 0 for i 6= j. Since w = γ∗(ι∗J (B(n)

R )) = (ιJ · γ)∗(B(n)

R )) and since
ιJ · γ : Spec(R) → Un

R is simply the R-point γj of Theorem 7.4, we conclude from
it that w = 0. Hence ι∗J (B(n)

R ) = 0 as wanted. ¤

Remark 7.12. The statement of Theorem 7.10 is obviously not true for n = 1. The
proof fails for n = 1 because then Vn

X(J) = ∅ for any J such that |J | ≤ n − 1 = 0
and hence we can not cover Un

X with these.

It follows from this theorem above and [5, Thm. 4.2] that if n ≥ 2 the space ε(n)

X

is nilpotent in Wtot(Un
X). We prove a more precise result.

Theorem 7.13. Let X be a Z[ 12 ]-scheme. Assume that n ≥ 2 then

(ε(n)

X )2 = ε(n)

X ? ε(n)

X = 0

in Wtot(Un
X). If n = 1 then (ε(n)

X )2 = 1 in Wtot(Un
X).

Proof. If n = 1 this is an obvious consequence of Example 6.8.
So let n ≥ 2. Since α∗

X : Wtot(Z[1/2]) −→ Wtot(X) is a morphism of graded rings
(cf. [10, Thm. 3.2]) it is enough to prove this for the affine scheme X = Spec Z[1/2].

Because we assume n ≥ 2 there exists non-empty subsets J1, J2 ⊂ { 1, . . . , n }
with J1 6= J2 and J1 ∪ J2 = {1, . . . , n}. We define Vn

Z[1/2](Ji) ⊆ Un
Z[1/2] as in

the proof of Theorem 7.10 above and let Yn
Z[1/2](Ji) := Un

Z[1/2] \ Vn
Z[1/2](Ji) be

the complement (i = 1, 2). Note that J1 ∪ J2 = {1, . . . , n} implies Yn
Z[1/2](J1) ∩

Yn
Z[1/2](J2) = ∅.

By Theorem 7.11 we know that [B(n)

Z[1/2]|Vn
Z[1/2]

(Ji)] = 0 for i = 1, 2. Therefore

by the localization sequence there exists xi ∈ Wr
Yn

Z[1/2]
(Ji)(U

n
Z[1/2]) with xi = ε(n)

Z[1/2]

in Wr(Un
Z[1/2]) for i = 1, 2, and so x1 ? x2 = (ε(n)

Z[1/2])
2 in W2r(Un

Z[1/2]). But the

space x1 ? x2 lives on a complex with support in Yn
Z[1/2](J1) ∩ Yn

Z[1/2](J2) = ∅ and

so (ε(n)

Z[1/2])
2 = 0. ¤



KOSZUL COMPLEXES AND THE PUNCTURED AFFINE SPACE 25

Denote Wtot(X)[ε] the graded skew polynomial ring in one variable ε of degree
r over the graded ring Wtot(X). Recall that this means that c · ε = (−1)r deg c(ε · c)
for a homogeneous element c ∈ Wtot(X). We have a homogeneous homomorphism
of graded rings given by

Wtot(X)[ε] −→ Wtot(Un
X)

m∑

i=0

ciε
i 7−→

m∑

i=0

σ∗
X(ci) ? (ε(n)

X )i .

Using this morphism we can restate Corollary 7.8 and Theorem 7.13 as follows

Theorem 7.14. Let X be a regular scheme of finite Krull dimension over Z[1/2].
Then we have an isomorphism of graded rings

if n ≥ 2 : Wtot(X)[ε]
/

(ε2)

if n = 1 : Wtot(X)[ε]
/

(ε2 − 1)





'
−→ Wtot(Un

X) .

8. Witt non-triviality of the (half) Koszul spaces

Theorem 8.1. Let X be a scheme which is not of equicharacteristic 2. Then
the Witt class of the symmetric n-space K

(n)

X is non-trivial in the Witt group with
support Wn

An
XrUn

X
(An

X).

Proof. By assumption, there is a point x ∈ X whose residue field k(x) has charac-
teristic different from 2. By specialization at x (see Remark 5.4 for naturality), it
suffices to prove the result for the regular Z[1/2]-scheme X := Spec(k(x)). Here,
we apply Theorem 7.2 with i := n and w := 1 ∈ W0(X), the unit of the Witt
ring. ¤

Theorem 8.2. Let X be any scheme which is not of equicharacteristic 2. Then
the Witt class ε(n)

X of the symmetric r-space B
(n)

X is not in the image of the natural
homomorphism Wr(An

X) −→ Wr(Un
X). In particular, B

(n)

X can not be extended to
the whole affine space An

X .

Proof. Again, by specialization at a point x with char(k(x)) 6= 2, we are reduced to
prove the result for the Z[1/2]-regular scheme X := Spec(k(x)). In this case, the
following composition vanishes :

Wr(An
X)

ι∗X // Wr(Un
X)

∂ // Wr
An

XrUn
X

(An
X) .

Here, the connecting homomorphism ∂ is, for instance, as in Theorem 7.6, where
we proved that ∂(ε(n)

X ) coincides with [K(n)

X ], up to 4-periodicity. So, ε(n)

X can not be
extended to An

X since [K(n)

X ] 6= 0 ∈ Wn
An

XrUn
X

(An
X) by Theorem 8.1. Note that we

have to pass via the regular case otherwise the connecting homomorphism ∂ is not
defined. ¤
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Appendix A. The locally free module E (n)

X

We use the notation of the main part of the text. We want to prove:

Theorem A.1. Let X be a noetherian scheme and n ≥ 3. Then there does not
exist a locally free OAn

X
-module F , such that

F
∣∣∣
Un

X

' E (n)

X .

In particular E (n)

X is not a free OUn
X
-module.

Let x ∈ X and Spec k(x)
f
−→ X be the corresponding point. If there exists a

locally free OAn
X

-module F , such that F|Un
X
' E (n)

X , then

E (n)

k(x) ' υ∗
f (E (n)

X ) ' υ∗
f (F|Un

X
) ' α∗

f (F)|Un
k(x)

,

and so it is enough to show the theorem for X = SpecR with R a field. Similarly,
localizing R[T1, . . . , Tn] at the origin, we are reduced to the local case which follows
from the following result of commutative algebra.

Theorem A.2. Let (A,m) be a regular local ring, T = (T1, . . . , Tn) a regular

system of parameters (see [7, Def. 2.2.1]), and U =
n⋃

i=1

SpecATi
= SpecA \ {m} the

punctured spectrum of A. Assume that dimA = n ≥ 3. Then

Sj := Ker
(
Kj(A, T )

dj(A,T )
−−−−−→ Kj−1(A, T )

)∣∣∣
U

can not be extended to a free A-module if n > j ≥ 2.

Let in the following Ij = Ker dj(A, T ), i.e. Sj = Ij |U. Recall also that (−)∨ =
HomA(− , A). For the proof we need:

Proposition A.3. (i) Let j ≥ 2. Then the A-module Ij is reflexive, i.e. the
natural morphism can : Ij −→ I∨∨

j is an isomorphism.
(ii) If M and N are finitely generated A-modules, such that M |U ' N |U, and

both M |U and N |U are locally free, then M∨ ' N∨.

Proof. By assumption Ij is a second Syzygie and so (i) is a consequence of [8,
Thm. 3.6]. For (ii), by [11, Thm. 6.9.17] there exists c ≥ 0, such that the given

isomorphism M |U
'
−→ N |U is the restriction of a morphism m

cM −→ N . Therefore
we can assume that there exists g : M −→ N , such that g|U is an isomorphism, i.e.

Ker g and Coker g have finite length.
Now we use the following fact (see [7, Thm. 1.2.8]). Since dim A ≥ 2 and A

is regular (hence in particular Cohen-Macaulay) we have Exti
A(G,A) = 0 for any

finite length module G and i = 0, 1.
This and the exact sequences

0 // Ker g // M // Im g // 0

and

0 // Im g // N // Coker g // 0

give M∨ ' (Im g)∨ ' N∨. ¤
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Proof. (of Theorem A.2) Assume that P is a free A-module, such that P |U ' Sj .
We have Ij |U ' Sj , too, and so I∨

j ' P∨ by Proposition A.3 (ii). Part (i) of this
proposition tells us that Ij is reflexive and hence Ij ' I∨∨

j ' P∨∨ is free. But this
is impossible, because

TorA
n−j(Ij , A/m) ' TorA

n (A/m, A/m) ' A/m 6= 0

(note that we need here j < n = dim A). We are done. ¤

Appendix B. The product and 4-periodicity

We have used in this work the fact that the product commutes with the trans-
lation. This has not been established in [10]. For the sake of completeness we give
here a proof but refer to loc. cit. for unexplained notations and definitions.

To start with let A(0) = (A,DA, δA,$A) and B(0) = (B,DB, δB,$B) be trian-
gulated categories with δA- respectively δB-exact duality (like e.g. Db(VBX) with
the usual 1-exact duality as in the main part of this work). We denote the shift
functor in these triangulated categories by ΣA respectively ΣB (to distinguish we
do not use X 7→ X[1]). A symmetric i-space in A(0) is a pair (X,ψ) consisting of

an object X ∈ A and a symmetric i-form X
ψ
−→ Σi

ADAX which is an isomorphism,

the symmetry of an i-form reads Σi
ADA(ψ) · $A

X = (−1)
i(i+1)

2 δi
A · ψ. As in the

case of derived categories if (X,ψ) is a symmetric i-form then (Σ2
AX,Σ2

A(ψ)) is a
symmetric (i + 4)-form.

Let (F, ρ) : A(0) −→ B(0) be a duality preserving functor, i.e. ρ : FDA
'
−→ DBF is

an isomorphism of functors satisfying some compatibility axioms. We will only use
the following. Since F is a covariant exact functor between triangulated categories

there exists a family of isomorphisms of functors θ(i) : FΣi
A

'
−→ Σi

BF (i ∈ Z) which
are related by the following formulas :

θ(i+j) = Σi
B(θ(j)) · θ

(i)

Σj
A

(14)

(i, j ∈ Z). Then we have

DBΣ−1
B (θ

(1)

Σ−1
A

) · ρΣ−1
A

= (δAδB) · ΣB(ρ) · θ
(1)
DA

(15)

(cf. loc. cit. Definition 1.8). This axioms are made such that if (X,ψ) is a symmetric
i-space in A(0) then

(F, ρ)∗(X,ψ) :=
(
FX , (δAδB)i Σi

B(ρX) · θ
(i)
DAX · F (ψ)

)

is a symmetric i-space in B(0).

Lemma B.1. Let (X,ψ) be a symmetric i-space in A. Then there is an isometry

(F, ρ)∗(Σ
2
AX,Σ2

A(ψ))
'
−→ Σ2

B((F, ρ)∗(X,ψ)) .

Proof. We claim that θ
(2)
X : FΣ2

AX ' Σ2
BFX is an isometry, i.e. we have to show

(δAδB)i+4 Σi+4
B (ρΣ2

A
X) · θ

(i+4)

DAΣ2
A

X
· FΣ2

A(ψ)

= (δAδB)i Σi+4
B DB(θ

(2)
X ) · Σi+2

B (ρX) · Σ2
B(θ

(i)
DAX) · Σ2

BF (ψ) · θ
(2)
X

(16)
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We observe first that

Σ2
BF (ψ) · θ

(2)
X = θ

(2)

Σi
A
DAX

· FΣ2
A(ψ)

since θ(2) is a natural transformation. By using (14) three times we get (recall that
by definition ΣADA = DAΣ−1

A )

θ
(i+4)

DAΣ2
A

X
= Σi+3

B (θ
(1)

DAΣ2
A

X
) · Σi+2

B (θ
(1)
DAΣAX) · Σ2

B(θ
(i)
DAX) · θ

(2)

Σi
A
DAX

and so (16) is equivalent to

Σi+4
B (ρΣ2

A
X) · Σi+3

B (θ
(1)

DAΣ2
A

X
) · Σi+2

B (θ
(1)
DAΣAX) = Σi+4

B DB(θ
(2)
X ) · Σi+2

B (ρX) .

Hence the result follows from the following calculation:

Σi+3
B (ΣB(ρΣ2

A
X) · θ

(1)

DAΣ2
A

X
) · Σi+2

B (θ
(1)
DAΣAX)

= (δAδA) Σi+3
B (DBΣ−1

B (θ
(1)
ΣAX) · ρΣAX) · Σi+2

B (θ
(1)
DAΣAX) by Eq. (15)

= (δAδA) Σi+4
B (DBθ

(1)
ΣAX) · Σi+2

B (ΣB(ρΣAX) · θ
(1)
DAΣAX)

= Σi+4
B DB(ΣBθ

(1)
X · θ

(1)
ΣAX) · Σi+2

B (ρX) by Eq. (15)

= Σi+4
B DB(θ

(2)
X ) · Σi+2

B (ρX)

since θ
(2)
X = ΣBθ

(1)
X · θ

(1)
ΣAX by Eq. (14). ¤

Assume now we have a third triangulated category with duality, say C(0) =
(C,DC , δC ,$C), and a dualizing pairing (loc. cit. Definition 1.11)

£ : A(0) × B(0) −→ C(0) .

Example B.2. Let X be a scheme and Z ⊆ X a closed subset. Then the (derived)
tensor product

⊗OX
: Db(VBX) × Db

Z(VBX) −→ Db
Z(VBX)

is a dualizing pairing. Note that in this case δA = δB = δC = 1.

Let (X,ψ) be a symmetric i-space in A(0) and (Y, φ) a symmetric j-space in
B(0). The left product (X,ψ) ?l (Y, φ) is then defined by considering X £ − as
duality preserving functor with the aid of a duality transformation L(ψ) which
depends on ψ, i.e. the left product (X,ψ) ?l (Y, φ) of these spaces is by definition
(X £ − ,L(ψ))∗(Y, φ). The right product ?r is defined analogous by making the
functor − £ Y duality preserving using the symmetric j-form φ. Both products
are related by the following isometry:

(X,ψ) ?l (Y, φ) ' (δAδC)j · (δBδC)i · (−1)ij ·
(
(X,ψ) ?r (Y, φ)

)
. (17)

(loc. cit. Theorem 2.9). From this we easily deduce

Lemma B.3. There is an isometry

(Σ2
AX,Σ2

A(ψ)) ?l (Y, φ) ' (X,ψ) ?l (Σ2
BY,Σ2

B(φ)) ,

and the same is true for the right product.
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Proof. From Lemma B.1 we get isometries (X,ψ) ?l (Σ2
BY,Σ2

B(φ)) ' Σ2
C

(
(X,ψ) ?l

(Y, φ)
)

and (Σ2
AX,Σ2

A(ψ)) ?r (Y, φ) ' Σ2
C

(
(X,ψ) ?r (Y, φ)

)
. Hence the theorem

follows by applying (17) twice. ¤
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