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Abstract. The Hasse principle for similarity is established for restricted

classes of skew-hermitian forms over quaternion division algebras with canon-

ical involution and for hermitian forms over cyclic algebras with involution of

the second kind. A counterexample is produced to show that the principle can-

not hold for skew-hermitian forms over quaternion division algebras in general.

This settles the two final cases of Hasse principles for similarity of forms that

were missing in the literature.

1. Introduction

Let K be a global field, i.e. either a number field or a function field in one

variable over a finite field. In the function field case we assume that char(K) 6= 2.

The classification of symmetric bilinear forms, and more generally all kinds of

skew-symmetric, hermitian and skew-hermitian forms defined over global fields

(and non-commutative extensions of global fields) relies heavily on local-global

principles for certain equivalence classes of the respective kinds of forms. For

instance to classify forms up to isometry over K one first determines all isometry

classes of forms over all completions Kp, p a prime of K (this is simpler and it

turns out to give in each case a finite list of forms of a given dimension). Then

one establishes if possible a (weak) Hasse principle, i.e. the fact that forms are

globally equivalent if and only if they are locally equivalent.

The standard example, to which the several other classification problems are

reduced, are the “Hasse principles” for quadratic forms over global fields. These

originate in seminal theorems like Hilbert’s reciprocity law and the Hasse–Minkowski

theorem, and can be stated as follows:
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• (Weak Hasse principle.) A quadratic form q over a global field K is

hyperbolic if and only if q ⊗ Kp is hyperbolic for all (finite and infinite)

primes p of K.

• (Strong Hasse principle.) A quadratic form q over a global field K is

isotropic if and only if q ⊗ Kp is isotropic for all (finite and infinite)

primes p of K.

An element a in a global field K is represented by a quadratic form q

over K if and only if a is represented by q⊗Kp for all (finite and infinite)

primes p of K.

Note that the two statements in the “strong Hasse principle” are equivalent

since they are formulated for all quadratic forms. Instead of saying that qp :=

q ⊗ Kp is hyperbolic (isotropic, . . . ) for all primes p of K, we also say that q is

locally hyperbolic (locally isotropic, . . . ).

In this paper we are interested in classifying forms up to similarity, i.e. isometry

up to multiplying by a scalar factor. For the above mentioned forms such a

classification is possible in many cases since a Hasse principle for similarity has

been proven. Two cases seem to be missing in the literature: skew-hermitian

forms over (D, ), where D is a quaternion division algebra over K equipped

with the canonical involution, and hermitian forms over (D, ), where D is a

cyclic algebra with an involution of the second kind. We deal with both these

remaining cases in this paper. We use the following terminology throughout the

paper:

Definition 1.1. Let K be a global field and let D be a finite-dimensional K-

division algebra with involution . We consider ε-hermitian forms (ε = ±1)

over (D, ), where we allow the possibility that D = K and is the identity map

(e.g. symmetric bilinear, skew-symmetric bilinear, hermitian, and skew-hermitian

forms). All forms considered in this paper are assumed to be nonsingular. We say

that the weak Hasse principle holds for such forms whenever a form is globally

hyperbolic if and only if it is locally hyperbolic.

Let ϕ be an ε-hermitian form over (D, ). We say that the Hasse principle

for isometry (resp. similarity) holds for ϕ if all forms ϕ′ over (D, ) that are

locally isometric (resp. locally similar) to ϕ are globally isometric (resp. globally

similar) to ϕ. For short, we say that HPI (resp. HPS) holds for ϕ.
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We say that the (strong) Hasse principle for isometry (resp. similarity) holds

for ε-hermitian forms over (D, ) if HPI (resp. HPS) holds for all such forms ϕ

over (D, ).

Let us summarize the known results for all the different kinds of forms. (Ref-

erence [5] is a survey of the isometry classification problem in general.)

(a) Symmetric bilinear forms over K (or quadratic forms over K if char(K) 6= 2):

the HPS holds by work of Ono [7]. The HPS for bilinear forms in general

has also been studied by Cortella [2].

(b) Skew-symmetric bilinear forms over K: the HPS holds since any two such

forms are isometric if and only if they have the same dimension (which is

necessarily even).

(c) Hermitian forms over (K(
√

α), ), where x + y
√

α = x − y
√

α for x, y ∈ K:

the HPS holds by a theorem of Jacobson (which says that such a form is

completely determined by its trace form, which is a quadratic form over K)

and Ono’s theorem. See also [2].

(d) Skew-hermitian forms over (K(
√

α), ): such forms h may be treated as her-

mitian forms via the equivalence h 7→ √
αh. So the HPS holds by case (c).

(e) Hermitian forms over (D, ), where D is a quaternion division algebra over

K and is quaternion conjugation: Jacobson’s theorem applies here as well,

so the HPS holds by Ono’s theorem.

(f) Skew-hermitian forms over (D, ): the HPI fails in this case; two skew-

hermitian forms can be isometric at all primes without being globally isomet-

ric. On the other hand, we will show in Theorem 2.26 that the HPS holds

for restricted classes of skew-hermitian forms. This is our main result. We

also mention that Thomas [9] proved a Hasse principle for simple isometry

(i.e. isometry of reduced norm 1) of skew-hermitian forms over (D, ) which

is useful in the context of Algebraic L-Theory.

(g) Hermitian forms over (D, ), where D is a cyclic division algebra and the

involution is of the second kind: the HPS always holds, as we will show in

Theorem 3.3. Note that as in case (d), there is no distinction here between

hermitian and skew-hermitian forms. Also note that the HPI was proved by

Landherr in 1938. This is well documented in [8, 10.6].

(h) In cases (e)–(g) when D is split the problem can be reduced by Morita theory

to forms over K.
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Our main reference for the theory of division algebras with involution and the

local-global theory of hermitian forms is [8]. Here one can also find a detailed

treatment of the Hasse principle for isometry of ε-hermitian forms (ε = ±1) over

global fields. The main results in this area are due to Kneser and Springer.

2. Skew-hermitian forms over a quaternion division algebra

Throughout this section K is a global field of characteristic not 2 and D is

a quaternion division algebra with center K. We endow D with the canonical

involution (quaternion conjugation), cf. [8, p.314, 11.2].

We are interested in the local-global behaviour of isometry classes and similar-

ity classes of skew-hermitian forms over (D, ). So we also need to consider such

forms over (Dp, ), where Dp := D⊗K Kp and Kp is some completion of K (which

can be archimedean or non-archimedean in the number field case). Therefore we

recall first some facts on skew-hermitian forms over a quaternion algebra (D, )

with center a (general) field F and the canonical involution.

Let ϕ be a nonsingular skew-hermitian form over (D, ). Then ϕ admits a

diagonalization

ϕ ≃ 〈α1, . . . , αn〉,

with αi ∈ D×
0 , where D0 is the set of pure quaternions in D (i.e. the set of

skew-symmetric elements in D), and D×
0 the units in D0. The discriminant of ϕ

is defined to be

disc ϕ := (−1)n det ϕ mod F×2,

where the determinant of ϕ is given by

det ϕ := N(Hϕ) mod F×2

with Hϕ any matrix representing ϕ and N the reduced norm from D to F .

One defines hyperbolic forms and Witt classes in the usual way, so one also has

a Witt group of skew-hermitian forms, denoted by W−1(D, ). This Witt group

is related to various other Witt groups by an exact sequence. We recall how this

is done. Let i ∈ D×
0 . Consider L = F (i) and choose j ∈ D×

0 such that ij = −ji.

Then D = L ⊕ Lj and D corresponds to the symbol (a, b)F with i2 = a, j2 = b,

which is the quaternion algebra corresponding to the norm form 〈1,−a,−b, ab〉.
Furthermore, L carries a non-trivial automorphism determined by i 7→ −i, which

we also denote by .
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Let V be some finite-dimensional right D-vector space. Every ε-hermitian form

h : V × V → D, ε = ±1, can be written as

h(x, y) = f(x, y) + g(x, y)j

with f := π1h, g := π2h where π1(α + βj) = α and π2(α + βj) = β. Since the

nonsingularity of h implies the nonsingularity of f and g, isometries of h yield

isometries of f and of g and since if h is hyperbolic so are f and g, we get induced

maps

π1 : W (D, ) −→ W (L, )

and

π2 : W−1(D, ) −→ W (L, ).

(Here W ( · , ) is the Witt group of hermitian forms with respect to , and

W−1( · , ) is the Witt group of skew-hermitian forms with respect to .)

This yields the following exact sequence (cf. [8, p. 359, Theorem 3.2]),

(1) 0 // W (D, )
π1

// W (L, )
β

// W−1(D, )
π2

// W (L).

The map β is induced by 〈u〉 7→ 〈ui〉, u ∈ L×. Note that such a sequence exists

for every L = F (λ), with λ ∈ D×
0 . Also, the sequence extends to a larger exact

sequence as in [6] but we do not need it for this paper.

In case D is split, i.e. D ∼= M2(F ), the classification of skew-hermitian forms

over (D, ) reduces by Morita theory to the classification of quadratic forms

over F . Indeed, with any skew-hermitian form h over (D, ) one can associate

an even-dimensional quadratic form qh (cf. [8, p. 352]) which has the following

properties:

• dim qh = 2 dim h,

• disc qh = disc h,

• if λ ∈ F× then qλh ≃ λqh.

Next we recall the classification of skew-hermitian forms over a quaternion

algebra (D, ) with center a local field Kp, p a finite or infinite prime of a global

field K.

2.1. Classification over local fields: the split case.

Theorem 2.1 (cf. [8, p. 361 ff.]). In the split case, D ∼= M2(Kp), we have:

(i) For Kp
∼= C, the skew-hermitian forms are up to isometry completely clas-

sified by their dimension since the same holds for quadratic forms.
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(ii) For Kp
∼= R, the skew-hermitian forms are up to isometry completely clas-

sified by their dimension and signature of the Morita equivalent quadratic

form.

(iii) For Kp, where p is a finite prime (Kp is complete with respect to a discrete

valuation and has finite residue field), the skew-hermitian forms h are up

to isometry completely classified by their dimension, their discriminant and

by the Clifford invariant of qh.

Corollary 2.2. Let ϕ be a skew-hermitian form over a split quaternion algebra

over Kp, and let δ = disc ϕ.

(i) If Kp = C, then ϕ ≃ αϕ for all α ∈ C.

(ii) If Kp = R, then ϕ ≃ αϕ for all positive α ∈ R×.

(iii) If p is a finite prime, then ϕ ≃ αϕ for all α ∈ Kp such that (α, δ)Kp
is

trivial in 2Br(Kp), the 2-part of the Brauer group Br(Kp).

2.2. Classification over local fields: the nonsplit case. In the nonsplit case,

i.e. D = (a, b)Kp
, a quaternion division algebra over Kp, one has the following

theorems:

Theorem 2.3 (Real Case [8, p. 364, 3.7]). Let K be a real closed field and

D the unique nonsplit quaternion algebra over K. Every skew-hermitian form of

dimension > 1 is isotropic, and forms of equal dimension are isometric.

Theorem 2.4 (p-adic Case – Tsukamoto [8, p. 363, 3.6], [10]). Let Kp be

a local field and D the unique nonsplit quaternion algebra over K. For skew-

hermitian forms over (D, ) the following statements hold:

(i) Two nonsingular forms are isometric if and only if they have the same

dimension and discriminant.

(ii) Every form of dimension > 3 is isotropic.

(iii) In dimension 1 all nonsingular forms are anisotropic; there are forms of

any discriminant 6= −1.

(iv) For any dimension > 1 there are forms of any discriminant. In dimension

2 exactly the forms of determinant 1 are isotropic. In dimension 3 exactly

the forms of discriminant 1 are anisotropic.

Remark 2.5. The theorem is stated incorrectly in [8]. There it is formulated with

the determinant instead of the discriminant.
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Note that for both archimedean and non-archimedean complete fields these

facts yield immediately

Corollary 2.6. Let ϕ be a skew-hermitian form over a quaternion division alge-

bra over a local field Kp then ϕ ≃ αϕ for all α ∈ K×
p .

2.3. Classification over global fields. Finally, let K be a global field and

D = (a, b)K a quaternion division algebra with center K, equipped with the

canonical involution . In case K is a global function field we fix a prime p∞

such that D ⊗K Kp∞ 6= 1 in 2Br(Kp∞). This is possible since D is a division

algebra so it has to be a division algebra in at least one prime. Let A be the ring

of functions regular outside p∞. In this case the primes associated to elements of

Spec(A) are called the finite primes and p∞ is the infinite prime. In case K is a

number field we take A to be the ring of integers of K, the finite primes are the

ones associated to Spec(A) and the infinite primes correspond to the archimedean

absolute values on K.

We introduce some notation:

ΩK = {primes of K},
Ω∞

K = {infinite primes of K},
Ωf

K = {finite primes of K},
Ωreal

K = {p ∈ Ω∞
K |Kp = R},

ΩD = {p ∈ ΩK |Dp 6= 1 in 2Br(Kp)}.

The classification of skew-hermitian forms over (D, ) up to isometry is due to

Kneser and Springer.

Theorem 2.7 (Kneser–Springer, cf. [8, 10.4.1, 10.4.3]). Let ϕ be a nonsingular

skew-hermitian form over (D, ).

(i) If dim ϕ ≥ 3 and ϕ is locally isotropic, then ϕ is isotropic.

(ii) If dim ϕ ≥ 2 and if λ ∈ D×
0 is represented locally by ϕ, then λ is repre-

sented by ϕ.

(ii′) If ϕ represents λ ∈ D×
0 locally, then ϕ represents a suitable multiple αλ,

α ∈ K×.

This result constitutes a “strong Hasse principle” for skew-hermitian forms of

dimension ≥ 3. The hypotheses dim ϕ ≥ 3 for isotropy and dimϕ ≥ 2 for the
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representation of elements are related to the fact that the local-global principle

for hyperbolicity (the weak Hasse principle) does not hold. One has the following

Theorem 2.8 ([8, 10.4.5]). Let s be the (even) number of primes at which D

does not split, s = |ΩD|. For every λ ∈ D×
0 , there exist exactly 2s−2 isometry

classes of one-dimensional skew-hermitian forms which are locally isometric to

〈λ〉. All these forms can be written as 〈λα〉, α ∈ K×.

Remark 2.9. Recall from the proof of [8, 10.4.5] that the two one-dimensional

skew-hermitian forms 〈λ〉 and 〈λα〉 are locally isometric if and only if (a, α)p = 1

or (a, α)p = (a, b)p for all p 6∈ ΩD.

This leads to the following local-global classification of skew-hermitian forms

up to isometry.

Theorem 2.10 ([8, 10.4.6]). For every positive even dimension there exist exactly

2s−2 isometry classes of locally hyperbolic forms. Every class of locally isometric

forms consists of 2s−2 isometry classes.

So in order to classify the isometry classes of even-dimensional forms one needs

an invariant to distinguish the 2s−2 different isometry classes of locally hyperbolic

forms. Such an invariant was introduced by Bartels in [1] using Galois cohomo-

logical methods and by Lewis in [4]. We describe a globalized version of this

invariant.

2.4. The ϑ-invariant. The invariant takes values in a quotient of a subgroup of

2Br(K).

By taking the 2-part of the exact sequence of [8, 10.2.3(v)] we have the following

reciprocity exact sequence:

(2) 0 //
2Br(K)

ι
//
⊕

p∈ΩK

2Br(Kp)

∑

invp
// {1,−1} // 0

where invp is the isomorphism 2Br(Kp) ∼= {1,−1}, invp(H) is 1 if the quaternion

algebra H is split and −1 otherwise. (Hilbert’s reciprocity law says that the

composite
∑

invp ◦ι is the zero map.)

Let T be a finite set of primes in ΩK . Denote

2BrT (K) := {H ∈ 2Br(K) | invp(Hp) = 1 for all p ∈ ΩK \ T}.

Sometimes it is more suitable to identify 2BrT (K) with its image in
⊕

p∈ΩK
2Br(Kp).

Note that this image lies in the finite direct summand
⊕

p∈T 2Br(Kp). It is not
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equal to this direct summand, it is equal to the subgroup generated by the classes

of quaternion algebras over K ramified at a fixed prime p0 and exactly one other

prime. So it has order 2t−1 with t = |T |. Let T = ΩD, then the invariant we need

takes values in 2BrΩD(K)/〈D〉, which is a group of order 2s−2, s = |ΩD| ∈ 2Z.

Let ϕ be a skew-hermitian form over (D, ) which is locally hyperbolic ev-

erywhere, so the class of ϕ in W−1(Dp, ) is trivial for all p ∈ ΩK . The exact

sequence (1) yields the following commutative diagram (we refer to [4] for the

full details),

(3)

0 // W (D, )
π1

//

p

²²

W (L, )
β

//

q

²²

W−1(D, )
π2

//

r

²²

W (L)

s

²²

0 //
∏

p∈ΩK

W (Dp, )
δ

//
∏

p∈ΩK

W (Lp, )
µ

//
∏

p∈ΩK

W−1(Dp, )
ν

//
∏

p∈ΩK

W (Lp)

In this diagram the maps p, q and s are injective since the Hasse principle for

isometry holds in these cases.

The diagram (3) yields a hermitian form ψ over (L, ), where L = K(i) with

i ∈ D×
0 , such that β(ψ) = ϕ. Let d = disc ψ, the discriminant of ψ, which is

defined by

disc ψ := (−1)n(n−1)/2 det ψ mod K×2,

where n = dim ψ. (Note that the definition of discriminant depends on the

type of form considered, cf. Section 2.) Put i2 = a and consider the symbol

(d, a)K ∈ 2Br(K). Define

Θ(ϕ) := (d, a)K ∈ 2BrΩD(K).

We need to check that Θ(ϕ) actually is an element of 2BrΩD(K). Note that

for p ∈ ΩK \ ΩD, if Kp contains i, then clearly (d, a)K is trivial. If Kp(i) = Lp is

of degree 2, then the p-part of the lower sequence in (3) is

0 −→ W (Lp, ) −→ W (Kp) −→ W (Lp)

since W (Dp, ) is trivial in this case and W−1(Dp, ) = W (Kp) by Morita theory

(cf. [4, p. 234] and our earlier observations). But the form ϕ is locally hyperbolic

so its class in W−1(Dp, ) = W (Kp) is trivial. Therefore the class of ψ is also

trivial in W (Lp, ), so d = disc ψ must be trivial in Kp.

The element Θ(ϕ) only depends on the isometry class of ϕ (even only on the

class of ϕ in W−1(D, )). Also, the form ψ is only determined up to elements in
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Ker β = Im π1
∼= W (D, ). In [4] it is mentioned that Ker β is the ideal generated

by the two-dimensional form 〈1,−b〉. As a consequence any form χ in Ker β will

have det χ = (−b)dim χ/2. Hence disc ψ is determined only up to multiples of b.

Therefore Θ(ϕ) is uniquely defined only up to elements in the subgroup 〈D〉 of

2BrΩD(K) generated by D = (a, b)K . Furthermore, in [4] it is shown that the

commutative diagram yields that the locally hyperbolic skew-hermitian form ϕ is

globally hyperbolic if and only if Θ(ϕ) is trivial in the quotient 2BrΩD(K)/〈D〉.
So the invariant

ϑ(ϕ) := Θ(ϕ) mod 〈D〉

determines the different isometry classes over K of locally hyperbolic forms ϕ.

Note that ϑ takes all values in an elementary 2-group of order 2s−2. (In [4]

this group is identified with (Z/2Z)s−1/ ∼ using the maps invp. Here ∼ is the

equivalence relation defined by letting (εi)i ∼ (ε′i)i if and only if εi = ε′i for all i,

or εi = −ε′i for all i.)

Remark 2.11. The definition of Θ(ϕ) and ϑ(ϕ) required a choice of the quadratic

subfield L of D, i.e. a choice of the pure quaternion i. However, one can show

that Θ(ϕ) and ϑ(ϕ) do not depend on this choice (cf. [4]).

Example 2.12. Let K = Q and D the quaternion division algebra (−5,−13)Q.

Then ΩD = {2, 5, 13,∞}.
Consider the skew-hermitian form 〈βi,−i〉 with β ∈ Q×/Q×2 and i2 = −5.

We have 〈βi〉 ≃Qp
〈i〉 for all p ∈ ΩD by Corollary 2.6. Assume β ∈ Z is such

that (−5, β)Qp
is trivial for all p 6∈ ΩD, then we also have for all p 6∈ ΩD that

〈βi〉 ≃Qp
〈i〉. This follows from Corollary 2.2(iii) since (−5,−13)Qp

is split in

this case and disc〈i〉 = −5.

So the form 〈βi,−i〉 is locally hyperbolic. We obtain

Θ(〈βi,−i〉) = (β,−5)Q.

We consider the symbols (−5,−5)Qp
(which is ramified at p = ∞ and p = 2),

(−2,−5)Qp
(which is ramified at p = ∞ and p = 5) and (−39,−5)Qp

(which

is ramified at p = ∞ and p = 13). Now we see that all possible values of the

ϑ-invariant can occur since we find a suitable β by just taking products of the

above three symbols. They generate the group of invariants as we mentioned

already at the beginning of Subsection 2.4.
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Remark 2.13. In [1] Bartels defines, for a pair of skew-hermitian forms ϕ1, ϕ2 of

the same dimension and discriminant over (D, ), a relative invariant

c(ϕ1, ϕ2) ∈ H2(K, Z/2Z)/〈(a, b)〉,

where (a, b) is the symbol correspondig to the quaternion algebra D under the

identification of H2(K, Z/2Z) with 2Br(K).

Satz 4 of [1] provides some properties of this relative invariant:

Theorem 2.14.

(i) c(ϕ1, ϕ2)
2 = 1,

(ii) c(ϕ1, ϕ2) = c(ϕ2, ϕ1),

(iii) c(ϕ1, ϕ2)c(ϕ2, ϕ3) = c(ϕ1, ϕ3),

(iv) c(ϕ1 ⊥ ϕ3, ϕ2 ⊥ ϕ3) = c(ϕ1, ϕ2),

(v) c(ϕ, αϕ) = (α, d) mod (a, b) with α ∈ K× and d = disc ϕ.

In [4] the first author shows that for a locally hyperbolic skew-hermitian form

ψ over (D, ) one has (identifying the 2-component of the Brauer group with the

second Galois cohomology group, taking coefficients in Z/2Z),

ϑ(ψ) = c(ψ, H2n),

where H2n is a global hyperbolic form of dimension 2n = dim ψ (both forms

have trivial invariant). The proof is based on decomposing the form ψ in an

orthogonal sum of 2-dimensional skew-hermitian forms of discriminant 1, and

applying Theorem 2.14.

2.5. The Hasse principle for similarity. Let K be a global field and let

D = (a, b)K be a quaternion division algebra over K.

Lemma 2.15. Let ϕ and ϕ′ be skew-hermitian forms over (D, ) which are locally

isometric. Let δ = disc ϕ. Then

(i) δ = disc ϕ = disc ϕ′.

(ii) For (αp)p∈ΩK
the following statements are equivalent:

(a) for all p ∈ Ωreal
K \ΩD, αp > 0 and for all p ∈ Ωf

K\ΩD such that
√

δ 6∈ Kp,

αp ∈ NKp(
√

δ)/K

(

Kp(
√

δ)
)

⊂ K×
p ,

(b) ϕ ≃Kp
αpϕ

′, ∀p ∈ ΩK.

(iii) For α ∈ K the following statements are equivalent:
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(a) α ∈





⋂

p∈Ωreal
K

\ΩD

Kp,+



 ∩











⋂

p∈Ω
f
K

\ΩD√
δ 6∈Kp

NKp(
√

δ)/K

(

Kp(
√

δ)
)











⊂ K×,

(b) ϕ ≃Kp
αϕ′, ∀p ∈ ΩK,

(c) for all p ∈ ΩK \ ΩD, (α, δ)Kp
= 1 in 2Br(Kp).

(Kp,+ denotes the positive elements of Kp when p is a real prime.)

Proof. (i) Since the forms are locally isometric their discriminants (as field ele-

ments) differ locally by a square, and therefore also globally by the global squares

theorem (cf. [8]).

(ii) ϕ ≃Kp
αpϕ

′ is by Morita theory equivalent to qϕ ≃Kp
qαpϕ′ for all p ∈

ΩK \ ΩD (here qψ denotes the quadratic form which is Morita equivalent to ψ).

Since qαpϕ′ = αpqϕ′ , this is equivalent to

αp > 0 for all p ∈ Ωreal
K \ ΩD,

and

c(qϕ) ≃Kp
c(qαpϕ′) =Kp

c(qϕ′)(αp, δ)Kp
for all p ∈ Ωf

K \ ΩD

(where c(q) is the Clifford invariant of q). Since ϕ and ϕ′ are locally isometric,

c(qϕ) ≃Kp
c(qϕ′). So the latter conditions are equivalent to (αp, δ)Kp

being trivial

in 2Br(Kp) for all p ∈ Ωf
K \ΩD. It remains to show that these last local conditions

are equivalent to αp being in the appropriate norm groups.

Since (αp, δ)Kp
is trivial in 2Br(Kp) for all p such that

√
δ ∈ Kp, statement (ii)

follows from the general fact that (x, y)F , with y 6∈ F×2, is trivial if and only if

x ∈ NF (
√

y)/F

(

F (
√

y)
)

.

The first two equivalences in (iii) follow from (ii) viewing α as an element of

all the completions of K. The third equivalence follows from the proof of (ii).

Lemma 2.16. Let ϕ, ϕ′ and δ be as in Lemma 2.15. Assume α ∈ Kp,+ for all

p ∈ Ωreal
K \ ΩD and α ∈ ⋂

p∈ΩK\ΩD√
δ 6∈Kp

NKp(
√

δ)/K

(

Kp(
√

δ)
)

. Then

ϑ(ϕ ⊥ −αϕ′) = ϑ(ϕ ⊥ −ϕ′)(α, δ)K in 2Br(K)/〈D〉.

(Here (α, δ)K denotes the image of (α, δ)K in 2Br(K)/〈D〉.)



THE HASSE PRINCIPLE FOR SIMILARITY OF HERMITIAN FORMS 13

Proof. We have (cf. Remark 2.13) ϑ(ϕ ⊥ −ϕ′) = c(ϕ ⊥ −ϕ′, H2n), c being the

Bartels invariant in H2(K, Z/2Z). So, using Theorem 2.14,

ϑ(ϕ ⊥ −ϕ′)ϑ(ϕ ⊥ −αϕ′) = c(ϕ ⊥ −ϕ′, H2n)c(ϕ ⊥ −αϕ′, H2n)

= c(ϕ ⊥ −ϕ′, ϕ ⊥ −αϕ′)

= (−ϕ′, αϕ′)

= (α, δ).

Interpreting the last symbol as an element of 2Br(K)/〈D〉 proves the lemma.

Remark 2.17. It follows from [4, Prop. 5] that two skew-hermitian forms ϕ and

ϕ′ over (D, ) are isometric if and only if

(1) ϕ and ϕ′ are locally isometric, and

(2) ϑ(ϕ ⊥ −ϕ′)p is trivial for all p ∈ ΩD.

Counterexample 2.18. This is adapted from the example in [3, p. 174], and indeed

is a counterexample to Hijikata’s own “result” in which he claims that the HPS

is true in dimension three.

Just as in Example 2.12, we let K = Q and consider the quaternion division

algebra (−5,−13)Q, generated by i and j with i2 = −5, j2 = −13 and ij = k.

We have ΩD = {2, 5, 13,∞}.
The forms 〈−3i〉 and 〈−i〉 are locally isometric since (−3,−5)Qp

= 1 for all

p 6∈ ΩD (this follows from Corollary 2.2(iii)). These forms are not globally

isometric however, since ϑ(〈−3i,−i〉) = Θ(〈−3i,−i〉) mod 〈D〉 = (−3,−5)Q is

not trivial: upon identifying Θ(〈−3i,−i〉) with its image in
⊕

p∈ΩD
2Br(Qp) we

see that (−3,−5)Q5
= −1, but (−3,−5)Q13

= 1 (note that −1 is a square in Qp

for both p = 5 and 13).

Now let ϕ1 = 〈−3i, j, k〉 and ϕ2 = 〈i, j, k〉, then ϕ1 and ϕ2 are locally isometric.

Since ϑ is only determined up to Witt equivalence we have

ϑ(ϕ1 ⊥ −ϕ2) = ϑ(〈−3i,−i〉) = (−3,−5)Q,

which is not trivial by our earlier observation. Since disc(ϕ1)p = disc(ϕ2)p = 1

for both p = 5 and 13, there is no way we can choose an α to make ϑ(ϕ1 ⊥ −αϕ2)

trivial. In other words, ϕ1 and ϕ2 are not globally similar.

Definition 2.19. For δ ∈ K× we define

Gδ := Br
(

K(
√

δ)/K
)

∩ 2BrΩD(K).
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(Br
(

K(
√

δ)/K
)

is the kernel of the natural map Br(K) → Br
(

K(
√

δ)
)

). Since

K(
√

δ) is equal to K or to a quadratic extension of K, it follows that Br
(

K(
√

δ)/K
)

is a subgroup of 2Br(K).)

We denote the image of Gδ in the quotient 2BrΩD(K)/〈D〉 by Gδ.

Lemma 2.20. Let ϕ and ψ be two locally isometric skew-hermitian form over

(D, ). Let δ = disc ϕ (= disc ψ). Then there exists an α ∈ K× such that

ϕ ≃K αψ (i.e. ϕ and ψ are globally similar) if and only if ϑ(ϕ ⊥ −ψ) ∈ Gδ.

Proof. If ϕ ≃K αψ, then ϑ(ϕ ⊥ −αψ) is defined and trivial. Lemma 2.16 implies

that

1 = ϑ(ϕ ⊥ −αψ) = ϑ(ϕ ⊥ −ψ)(α, δ)K .

Since (α, δ)K ∈ Gδ, so does ϑ(ϕ ⊥ −ψ).

Conversely, assume that ϑ(ϕ ⊥ −ψ) ∈ Gδ. Let ϑ(ϕ ⊥ −ψ) =: E mod 〈D〉,
then either E⊗KK(

√
δ) or (E⊗KD)⊗KK(

√
δ) is trivial in Br

(

K(
√

δ)
)

. So either

E = (α, δ)K , or E ⊗K D = (α, δ)K , with α ∈ K×. In both cases it follows that

(α, δ)K ⊗Kp is trivial in Br(Kp) for all p 6∈ ΩD (E and D are both in 2BrΩD(K)).

Then, using Lemma 2.15, we obtain ϕ ≃Kp
αψ for all p ∈ ΩK . This implies that

ϕ ⊥ −αψ is locally hyperbolic and so ϑ(ϕ ⊥ −αψ) is defined. Lemma 2.16 then

gives

ϑ(ϕ ⊥ −αψ) = ϑ(ϕ ⊥ −ψ)(α, δ)K = (α, δ)
2

K = 1.

This yields ϕ ≃K αψ.

Corollary 2.21. The number of global similarity classes in a local isometry class

of a form ϕ is equal to
2s−2

|Gδ|
, with δ = disc ϕ.

Proof. Follows directly from the lemma.

Proposition 2.22. Let (D, ) be a quaternion division algebra with canonical

involution over K. Let ϕ and ψ be n-dimensional skew-hermitian forms over

(D, ). Assume that ϕ and ψ are locally similar, i.e. for all p ∈ ΩK there is an

αp ∈ K×
p such that ϕ ≃Kp

αpψ. Then there exists an α ∈ K× such that for all

p ∈ ΩK, ϕ ≃Kp
αψ.

Proof. Let δ = disc ϕ. Since ϕ and ψ are locally similar, it is clear that also

δ = disc(γψ) for any scalar γ. We are looking for an α ∈ K× such that the

forms ϕ and αψ are locally isometric. By the classification results stated at the
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beginning of this section this means that we are looking for an α ∈ K× such that

ϕ and αψ have the same local invariants for the various primes of K.

In the nonsplit case there is no problem: all forms of equal dimension are

isometric at the real primes (cf. Theorem 2.3) and all forms of equal dimension

and equal discriminant are isometric at the finite primes and at the prime p∞ in

the function field case (cf. Theorem 2.4).

In the split case (cf. Theorem 2.1) we need conditions on the sign of α at

the real primes and on the Clifford invariants of the forms qϕ and qαψ, Morita

equivalent to ϕ and αψ respectively, at the finite primes. By our assumption we

have

c(qϕ) = c(qαpψ) = c(qψ)(αp, δ)Kp
in 2Br(Kp)

(c denotes the Clifford invariant) in this case, and thus α also has to satisfy

(α, δ)Kp
= (αp, δ)Kp

at these primes.

Upon closer inspection we see that everything will work, except at the following

sets of primes:

S0 := {p ∈ Ωf
K \ ΩD | p non-dyadic and (αp, δ)Kp

6= 1 in 2Br(Kp)},

and

S1 := {p ∈ ΩK \ ΩD | p dyadic or infinite and (αp, δ)Kp
6= 1 in 2Br(Kp)}.

Let S := S0 ∪ S1. We claim that S is a finite set of primes. Clearly it suffices

to show that S0 is a finite set. To see this, let Λ be a maximal A-order in D,

where A is the ring of integers in K in case K is a number field, and the ring

of functions that are regular outside p∞ in case K is a global function field.

Then ϕ and ψ have diagonalizations 〈u1, . . . , un〉, respectively 〈v1, . . . , vn〉 with

ui, vi ∈ D×
0 ∩Λ. (Since Λ contains a K-basis for D, D is the skewfield of fractions

of Λ and every element of D is a fraction λ/d with λ ∈ Λ and d ∈ K×. If λ/d is

a pure quaternion, then so is λ. So up to multiplying by squares in K we may

assume that every entry of the diagonalization of ϕ and ψ is in Λ.)

Note that for almost all p ∈ Ωf
K the entries u1, . . . , un, v1, . . . , vn are in Λp =

Λ⊗Ap, where Ap is the complete discrete valuation ring in Kp. Let p ∈ S0, then

D ⊗ Kp
∼= M2(Kp) and this isomorphism can be chosen so that the image of Λp

is equal to M2(Ap).

For the forms qϕ and qψ, Morita equivalent to ϕ⊗Kp and ψ⊗Kp respectively,

we can consider first and second residue forms (since p is non-dyadic). By the



16 DAVID W. LEWIS, THOMAS UNGER, AND JAN VAN GEEL

above observation the forms qϕ and qψ have entries which are units for almost all

p ∈ S0 (for 〈a〉 with a = ( u v
w −u ), u, v, w ∈ M2(Ap) the form q〈a〉 is represented

by the matrix ( w −u
−u v ), cf. [8, pp. 361–362].) It follows that for all such p the

second residue form of qϕ and of qψ is trivial. Assume that αp is in the square

class of πp (a uniformizing element in Ap). Then the second residue form of αpqψ

is not trivial, contradicting αpqψ ≃Kp
qϕ. This implies that for almost all p ∈ S0

the element αp is a unit times a square in almost all Ap. Since δ is a unit for

almost all p, it follows that for almost all p ∈ S0 the quaternion algebra (αp, δ)Kp

is trivial in 2Br(Kp). By definition of S0 this can only be if |S0| is finite, thereby

proving the claim.

Fix a prime q ∈ ΩD (note that q 6∈ S). Consider the following element (ωp) ∈
⊕

p∈ΩK
2Br(Kp),



















ωp := (αp, δ)Kp
if p ∈ S,

ωq := D ⊗ Kq if |S| is odd,

ωq := 1 if |S| is even,

ωr := 1 if r 6∈ S ∪ {q}.

Note that
∑

p∈ΩK
invp(ωp) = 1. The reciprocity exact sequence (2) in 2.4 implies

the existence of an element ω ∈ 2Br(K) such that ω ⊗ Kp = ωp for all p ∈ ΩK .

Using weak approximation we can find an element β ∈ K such that β ∈ K×2
p for

all p ∈ S, βδ 6∈ K×2
q , and—in case K is a number field—βδ is positive for all real

primes. With this choice of β we have that ω ⊗K K
(√

βδ
)

⊗
K
(√

βδ
) K

(√
βδ

)

P
is

trivial in 2Br
(

K
(√

βδ
)

P

)

for all P ∈ Ω
K
(√

βδ
) (to see this note that if ωp is non-

trivial in 2Br(Kp), Kp

(√
βδ

)

is a quadratic extension of Kp, and therefore there

is a unique prime P in K
(√

βδ
)

lying over p in K and Kp

(√
βδ

)

= K
(√

βδ
)

P
).

The first part of the reciprocity sequence then implies that ω ⊗K K
(√

βδ
)

is

trivial in 2Br
(

K
(√

βδ
)

)

. So ω = (α, βδ)K for some α ∈ K×.

Since in the case where K is a number field, βδ is positive for all real primes

of K, we can, using [7, Lemma 5], multiply α by a norm ν of K
(√

βδ
)

such that

signp να = signp αp for all real primes p of K. Then (να, βδ)K = (α, βδ)K . This

means that without loss of generality we may assume that signp α = signp αp for

all real primes p of K.

Thus we have found an α ∈ K× that satisfies the conditions outlined at the

start of the proof. We conclude that ϕ ≃Kp
αψ for all p ∈ ΩK .
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Corollary 2.23. The Hasse principle for similarity holds for all skew-hermitian

forms of discriminant δ over (D, ) if and only if Gδ = 2BrΩD(K)/〈D〉.

Proof. The Hasse principle for similarity holds for a form ϕ over K if and only if

all forms locally similar to ϕ are globally similar to ϕ. Proposition 2.22 implies

that the forms locally similar to ϕ are locally isometric to the form αϕ with

α ∈ K. So the Hasse principle for similarity holds for ϕ if and only if there is

only one global similarity class in the local isometry class of ϕ. The statement

then follows from Corollary 2.21.

Corollary 2.24. Let µ ∈ K× be such that D⊗K K(
√

µ) is trivial in Br(K(
√

µ)).

Then the Hasse principle for similarity holds for all skew-hermitian forms of

discriminant µ.

Proof. The hypothesis implies that Gδ = 2BrΩD(K)/〈D〉.

Corollary 2.25. If |ΩD| = 2 then the Hasse principle for similarity holds for all

skew-hermitian forms over (D, ).

Proof. The hypothesis implies 2BrΩD(K)/〈D〉 = 1.

Finally we obtain the following theorem:

Theorem 2.26.

(i) Let δ ∈ K× such that δ 6∈ K×2
p for all p ∈ ΩD. Then the Hasse principle

for similarity holds for skew-hermitian forms ϕ over (D, ) with disc ϕ =

δ mod K×2.

(ii) Let ϕ be a skew-hermitian form over (D, ) of odd dimension and such that

ϕ ⊗ Kp has maximal Witt index for all p ∈ ΩD. Then the Hasse principle

for similarity holds for ϕ.

Proof. The first statement follows directly from Corollary 2.24.

For the second statement it is enough to show that the hypotheses on ϕ imply

that disc ϕ 6∈ K×2
p for all p ∈ ΩD.

To do this we examine two cases.

Case 1. If p ∈ ΩD ∩ Ωreal
K (in case K is a global function field this case is

empty), then D ⊗K Kp = (−1,−1)Kp
. Since Kp is real closed it is well-known

that all one-dimensional skew-hermitian forms over D⊗K Kp are isometric to 〈i〉,
so ϕ⊗Kp = 〈i, i, . . . , i〉 and disc ϕ = (−1)nN(i)n = −N(i) = i2 = −1. (Here N is

the reduced norm so that N(λ) = −λ2 for λ ∈ D×
0 .) It follows that disc ϕ 6∈ K×2

p .
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Case 2. For p the prime at infinity if K is a function field, and for p ∈ ΩD ∩Ωf
K

if K is a number field, D⊗K Kp is the unique quaternion division algebra over Kp

(up to isomorphism). By Tsukamoto’s results (cf. [10]) either ϕ⊗Kp
∼= 〈λ〉 ⊥ H

where λ is a pure quaternion and H a hyperbolic form or else ϕ⊗Kp
∼= 〈µ〉 ⊥ H,

with µ the unique 3-dimensional anisotropic form over D⊗K Kp (up to isometry)

and H hyperbolic. If ϕ ⊗ Kp
∼= 〈λ〉 ⊥ H we see that disc ϕ = (−1)nN(λ) = λ2

which can take any value except 1 in K×
p /K×2

p . The second possibility is ruled

out by the hypothesis on the Witt index.

The result now follows.

3. Hermitian forms over a cyclic algebra

Let k be a global field of characteristic not two, K = k(
√

a) a quadratic ex-

tension field with nontrivial automorphism and D a finite-dimensional division

algebra with center K, equipped with a K/k-involution, also denoted by . It is

well-known that D has to be a cyclic algebra.

If p is a prime of k, we denote the completion of k at p by kp. Then Kp :=

K⊗kkp will either be a field or a double-field and Dp := D⊗kkp will be an algebra

with center Kp. The involution of D extends in a unique way to an involution of

Dp, again denoted by .

Let ϕ : V × V −→ D be a nonsingular hermitian form over (D, ), where V is

a finite-dimensional right D-vector space. Then Vp := V ⊗k kp is a free right Dp-

module of rank dimD V and ϕ extends to a hermitian form ϕp : Vp × Vp −→ Dp.

We use the notation of [8, 10.6].

Recall [8, p. 375] that the determinant of ϕ is defined by

det ϕ := N(H) · NK/k(K
×) ∈ k×/NK/k(K

×),

where H is a matrix of ϕ with respect to a basis of V and N : D −→ K denotes

the reduced norm (we have in fact N(H) ∈ k).

If p is a real nondecomposed prime of k, the extension Kp/kp can be identified

with C/R , the algebra Dp splits and the hermitian form ϕp is completely deter-

mined by a quadratic form qϕp
via Morita theory. In this case, the signature of

ϕ at p is defined by

sgnp(ϕ) = sgn(ϕp) := sgn(qϕp
),

see [8, p. 376 ff.].

In 1938, Landherr proved the following Hasse principle for isometry of hermit-

ian forms:
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Theorem 3.1. Two hermitian forms ϕ and ψ over (D, ) are isometric if and

only if ϕp and ψp are isometric for all primes p of k.

Corollary 3.2. In the situation of Theorem 3.1, we have ϕ ≃ ψ if and only if

dim ϕ = dim ψ, det ϕ = det ψ and sgnp ϕ = sgnp ψ for all real nondecomposed

primes p of k.

The following theorem is an easy consequence of Landherr’s Theorem:

Theorem 3.3. Two hermitian forms ϕ and ψ over (D, ) are similar if and only

if ϕp and ψp are similar for all primes p of k.

Proof. One direction is trivial. For the other direction we assume that there exist

αp ∈ kp such that ϕp ≃ αpψp for all primes p of k. We immediately have that

dim ϕ = dim ψ =: n. We also let m = deg D. Two cases need to be considered:

Case 1: nm odd. Let α = det ϕ ·det ψ (modulo norms). Then α ≡ αp (modulo

norms). Thus,

ϕp ≃ αpψp ≃ αψp = (αψ)p,

for all primes p of k. Hence ϕ ≃ αψ, by Theorem 3.1. (Note that det(αpψp) =

N(αp)
n det ψp = αnm

p det ψp = αp det ψp.)

Case 2: nm even. Let εp ∈ {+1,−1} be the sign of αp for all real nondecom-

posed primes p of k. By weak approximation we may choose an element α ∈ k

such that α is of sign εp for all real nondecomposed p. Then

sgnp ϕ = sgn ϕp = εp sgn ψp = sgn(αψp) = sgnp(αψ)

for all real nondecomposed primes p of k. Furthermore, det ϕ = det(αψ) = det ψ

(since nm is even) follows directly from the fact that detϕp = det ψp for all primes

p of k. We conclude that ϕ ≃ αψ.
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20 DAVID W. LEWIS, THOMAS UNGER, AND JAN VAN GEEL

[3] H. Hijikata, Hasse’s principle on quaternionic anti-hermitian forms, J. Math. Soc. Japan

15 (1963), 165–175.

[4] D.W. Lewis, Quaternionic skew-Hermitian forms over a number field, J. Algebra 74 (1982),

no. 1, 232–240.

[5] D.W. Lewis, The isometry classification of Hermitian forms over division algebras, Linear

Algebra Appl. 43 (1982), 245–272.

[6] D.W. Lewis, New improved exact sequences of Witt groups, J. Algebra 74 (1982), no. 1,

206–210.

[7] T. Ono, Arithmetic of orthogonal groups, J. Math. Soc. Japan 7 (1955), 79–91.

[8] W. Scharlau, Quadratic and Hermitian Forms, Grundlehren Math. Wiss. 270, Springer-

Verlag, Berlin (1985).

[9] O. Thomas, A local-global theorem for skew-Hermitian forms over quaternion algebras,

Comm. Algebra 23 (1995), no. 5, 1679–1708.

[10] T. Tsukamoto, On the local theory of quaternionic anti-hermitian forms, J. Math. Soc.

Japan 13 (1961), 387–400.

Department of Mathematics, University College Dublin, Belfield, Dublin 4,

IRELAND

E-mail address: david.lewis@ucd.ie

Department of Mathematics, University College Dublin, Belfield, Dublin 4,

IRELAND

E-mail address: thomas.unger@ucd.ie

Department of Pure Mathematics and Computer Algebra, Ghent University,

Galglaan 2, 9000 Gent, BELGIUM

E-mail address: jvg@cage.ugent.be


