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Multipliers of Improper Similitudes

R. Preeti1 and J.-P. Tignol2

Abstract. For a central simple algebra with an orthogonal involu-
tion (A, σ) over a field k of characteristic different from 2, we relate the
multipliers of similitudes of (A, σ) with the Clifford algebra C(A, σ).
We also give a complete description of the group of multipliers of simil-
itudes when deg A ≤ 6 or when the virtual cohomological dimension
of k is at most 2.
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Introduction

A. Weil has shown in [22] how to obtain all the simple linear algebraic groups
of adjoint type Dn over an arbitrary field k of characteristic different from 2:
every such group is the connected component of the identity in the group
of automorphisms of a pair (A, σ) where A is a central simple k-algebra of
degree 2n and σ : A → A is an involution of orthogonal type, i.e., a map which
over a splitting field of A is the adjoint involution of a symmetric bilinear form.
(See [7] for background material on involutions on central simple algebras and
classical groups.) Every automorphism of (A, σ) is inner, and induced by an
element g ∈ A× which satisfies σ(g)g ∈ k×. The group of similitudes of (A, σ)
is defined by that condition,

GO(A, σ) = {g ∈ A× | σ(g)g ∈ k×}.

The map which carries g ∈ GO(A, σ) to σ(g)g ∈ k× is a homomorphism

µ : GO(A, σ) → k×

1The first author gratefully acknowledges the generous support of the Université
catholique de Louvain, Belgium and the ETH-Z, Switzerland.

2Work supported in part by the European Community’s Human Potential Programme
under contract HPRN-CT-2002-00287, KTAGS. The second author is supported in part by
the National Fund for Scientific Research (Belgium).



2 R. Preeti and J.-P. Tignol

called the multiplier map. Taking the reduced norm of each side of the equation
σ(g)g = µ(g), we obtain

NrdA(g)2 = µ(g)2n,

hence NrdA(g) = ±µ(g)n. The similitude g is called proper if NrdA(g) = µ(g)n,
and improper if NrdA(g) = −µ(g)n. The proper similitudes form a subgroup
GO+(A, σ) ⊂ GO(A, σ). (As an algebraic group, GO+(A, σ) is the connected
component of the identity in GO(A, σ).)
Our purpose in this work is to study the multipliers of similitudes of a cen-
tral simple k-algebra with orthogonal involution (A, σ). We denote by G(A, σ)
(resp. G+(A, σ), resp. G−(A, σ)) the group of multipliers of similitudes of (A, σ)
(resp. the group of multipliers of proper similitudes, resp. the coset of multi-
pliers of improper similitudes),

G(A, σ) = {µ(g) | g ∈ GO(A, σ)},
G+(A, σ) = {µ(g) | g ∈ GO+(A, σ)},
G−(A, σ) = {µ(g) | g ∈ GO(A, σ) \ GO+(A, σ)}.

When A is split (A = Endk V for some k-vector space V ), hyperplane reflections
are improper similitudes with multiplier 1, hence

G(A, σ) = G+(A, σ) = G−(A, σ).

When A is not split however, we may have G(A, σ) 6= G+(A, σ).
Multipliers of similitudes were investigated in relation with the discriminant
discσ by Merkurjev–Tignol [14]. Our goal is to obtain similar results relating
multipliers of similitudes to the next invariant of σ, which is the Clifford algebra
C(A, σ) (see [7, §8]). As an application, we obtain a complete description of
G(A, σ) when deg A ≤ 6 or when the virtual cohomological dimension of k is
at most 2.

To give a more precise description of our results, we introduce some more
notation. Throughout the paper, k denotes a field of characteristic different
from 2. For any integers n, d ≥ 1, let µ2n be the group of 2n-th roots of unity in

a separable closure of k and let Hd(k, µ
⊗(d−1)
2n ) be the d-th cohomology group

of the absolute Galois group with coefficients in µ
⊗(d−1)
2n (= Z/2n

Z if d = 1).
Denote simply

Hdk = lim−→
n

Hd(k, µ
⊗(d−1)
2n ),

so H1k and H2k may be identified with the 2-primary part of the character
group of the absolute Galois group and with the 2-primary part of the Brauer
group of k, respectively,

H1k = X2(k), H2k = Br2(k).

In particular, the isomorphism k×/k×2 ≃ H1(k,Z/2Z) derived from the Kum-
mer sequence (see for instance [7, (30.1)]) yields a canonical embedding

k×/k×2 →֒ H1k. (1)
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The Brauer class (or the corresponding element in H2k) of a central simple
k-algebra E of 2-primary exponent is denoted by [E].
If K/k is a finite separable field extension, we denote by NK/k : HdK → Hdk
the norm (or corestriction) map. We extend the notation above to the case
where K ≃ k × k by letting Hd(k × k) = Hdk × Hdk and

N(k×k)/k(ξ1, ξ2) = ξ1 + ξ2 for (ξ1, ξ2) ∈ Hd(k × k).

Our results use the product

· : k× × Hdk → Hd+1k for d = 1 or 2

induced as follows by the cup-product: for x ∈ k× and ξ ∈ Hdk, choose

n such that ξ ∈ Hd(k, µ
⊗(d−1)
2n ) and consider the cohomology class (x)n ∈

H1(k, µ2n) corresponding to the 2n-th power class of x under the isomorphism
H1(k, µ2n) = k×/k×2n

induced by the Kummer sequence; let then

x · ξ = (x)n ∪ ξ ∈ Hd+1(k, µ⊗d
2n ) ⊂ Hd+1k.

In particular, if d = 1 and ξ is the square class of y ∈ k× under the embed-
ding (1), then x · ξ is the Brauer class of the quaternion algebra (x, y)k.
Throughout the paper, we denote by A a central simple k-algebra of even
degree 2n, and by σ an orthogonal involution of A. Recall from [7, (7.2)] that
discσ ∈ k×/k×2 ⊂ H1k is the square class of (−1)n NrdA(a) where a ∈ A×

is an arbitrary skew-symmetric element. Let Z be the center of the Clifford
algebra C(A, σ); thus, Z is a quadratic étale k-algebra, Z = k[

√
discσ], see

[7, (8.10)]. The following relation between similitudes and the discriminant is
proved in [14, Theorem A] (see also [7, (13.38)]):

Theorem 1. Let (A, σ) be a central simple k-algebra with orthogonal involution
of even degree. For λ ∈ G(A, σ),

λ · disc σ =

{

0 if λ ∈ G+(A, σ),

[A] if λ ∈ G−(A, σ).

For d = 2 (resp. 3), let (Hdk)/A be the factor group of Hdk by the subgroup
{0, [A]} (resp. by the subgroup k× · [A]). Theorem 1 thus shows that for λ ∈
G(A, σ)

λ · discσ = 0 in (H2k)/A.

Our main results are Theorems 2, 3, 4, and 5 below.

Theorem 2. Suppose A is split by Z. There exists an element γ(σ) ∈ H2k
such that γ(σ)Z = [C(A, σ)] in H2Z. For λ ∈ G(A, σ),

λ · γ(σ) = 0 in (H3k)/A.
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Remark 1. In the conditions of the theorem, the element γ(σ) ∈ H2k is not
uniquely determined if Z 6≃ k × k. Nevertheless, if λ · disc σ = 0 in (H2k)/A,
then λ · γ(σ) ∈ (H3k)/A is uniquely determined. Indeed, if γ, γ′ ∈ H2k are
such that γZ = γ′

Z , then there exists u ∈ k× such that γ′ = γ +u ·disc σ, hence

λ · γ′ = λ · γ + λ · u · disc σ.

The last term vanishes in (H3k)/A since λ · disc σ = 0 in (H2k)/A.

The proof of Theorem 2 is given in Section 1. It shows that in the split case,
where A = Endk V and σ is adjoint to some quadratic form q on V , we may
take for γ(σ) the Brauer class of the full Clifford algebra C(V, q). Note that the
statement of Theorem 2 does not discriminate between multipliers of proper
and improper similitudes, but Theorem 1 may be used to distinguish between
them. Slight variations of the arguments in the proof of Theorem 2 also yield
the following result on multipliers of proper similitudes:

Theorem 3. Suppose the Schur index of A is at most 4. If λ ∈ G+(A, σ), then
there exists z ∈ Z× such that λ = NZ/k(z) and

NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A.

The proof is given in Section 1. Note however that the theorem holds without
the hypothesis that indA ≤ 4, as follows from Corollaries 1.20 and 1.21 in [12].
Using the Rost invariant of Spin groups, these corollaries actually yield an
explicit element z as in Theorem 3 from any proper similitude with multiplier
λ.

Remark 2. The element NZ/k

(
z · [C(A, σ)]

)
∈ (H3k)/A depends only on

NZ/k(z) and not on the specific choice of z ∈ Z. Indeed, if z, z′ ∈ Z× are
such that NZ/k(z) = NZ/k(z′), then Hilbert’s Theorem 90 yields an element
u ∈ Z× such that, denoting by ι the nontrivial automorphism of Z/k,

z′ = zuι(u)−1,

hence

NZ/k

(
z′ · [C(A, σ)]

)
=

NZ/k

(
z · [C(A, σ)]

)
+ NZ/k

(
u · [C(A, σ)]

)
− NZ/k

(
ι(u) · [C(A, σ)]

)
.

Since NZ/k ◦ ι = NZ/k and since the properties of the Clifford algebra (see [7,
(9.12)]) yield

[C(A, σ)] − ι[C(A, σ)] = [A]Z ,

it follows that

NZ/k

(
u · [C(A, σ)]

)
− NZ/k

(
ι(u) · [C(A, σ)]

)
= NZ/k

(
u · [A]Z

)
.

By the projection formula, the right side is equal to NZ/k(u) · [A]. The claim
follows.
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Remark 3. Theorems 2 and 3 coincide when they both apply, i.e., if A is split
by Z (hence indA = 1 or 2), and λ ∈ G+(A, σ). Indeed, if λ = NZ/k(z) and
γ(σ)Z = [C(A, σ)] then the projection formula yields

NZ/k

(
z · [C(A, σ)]

)
= λ · γ(σ).

Remarkably, the conditions in Theorems 1 and 2 turn out to be sufficient for
λ to be the multiplier of a similitude when deg A ≤ 6 or when the virtual
cohomological 2-dimension3 of k is at most 2.

Theorem 4. Suppose n ≤ 3, i.e., deg A ≤ 6.

• If A is not split by Z , then every similitude is proper,

G(A, σ) = G+(A, σ), G−(A, σ) = ∅.

Moreover, for λ ∈ k×, we have λ ∈ G(A, σ) if and only if there exists
z ∈ Z× such that λ = NZ/k(z) and

NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A.

• If A is split by Z, let γ(σ) ∈ H2k be as in Theorem 2. For λ ∈ k×, we
have λ ∈ G(A, σ) if and only if

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A.

The proof is given in Section 2.

Note that if deg A = 2, then A is necessarily split by Z and we may choose
γ(σ) = 0, hence Theorem 4 simplifies to

λ ∈ G(A, σ) if and only if λ · disc σ = 0 in (H2k)/A,

a statement which is easily proved directly. (See [14, p. 15] or [7, (12.25)].)

If deg A = 4, multipliers of similitudes can also be described up to squares as
reduced norms from a central simple algebra E of degree 4 such that [E] = γ(σ)
if A is split by Z (see Corollary 4.5) or as norms of reduced norms of C(A, σ)
if A is not split by Z (see Corollary 2.1).

For the next statement, recall that the virtual cohomological 2-dimension of
k (denoted vcd2 k) is the cohomological 2-dimension of k(

√
−1). If v is an

ordering of k, we let kv be a real closure of k for v and denote simply by
(A, σ)v the algebra with involution (A ⊗k kv, σ ⊗ Idkv

).

Theorem 5. Suppose vcd2 k ≤ 2, and A is split by Z. For λ ∈ k×, we have
λ ∈ G(A, σ) if and only if

λ > 0 at every ordering v of k such that (A, σ)v is not hyperbolic,

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A.

The proof is given in Section 3.

3The authors are grateful to Parimala for her suggestion to investigate the case of low
cohomological dimension.
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1 Proofs of Theorems 2 and 3

Theorems 2 and 3 are proved by reduction to the split case, which we consider
first. We thus assume A = Endk V for some k-vector space V of dimension 2n,
and σ is adjoint to a quadratic form q on V . Then disc σ = disc q and C(A, σ)
is the even Clifford algebra C(A, σ) = C0(V, q). We denote by C(V, q) the full
Clifford algebra of q, which is a central simple k-algebra, and by Imk the m-th
power of the fundamental ideal Ik of the Witt ring Wk.

Lemma 1.1. For λ ∈ k×, the following conditions are equivalent:

(a) λ · disc q = 0 in H2k and λ · [C(V, q)] = 0 in H3k;

(b) 〈λ〉 · q ≡ q mod I4k.

Proof. For α1, . . . , αm ∈ k×, let

〈〈α1, . . . , αm〉〉 = 〈1,−α1〉 ⊗ · · · ⊗ 〈1,−αm〉.

Let e2 : I2k → H2k be the Witt invariant and e3 : I3k → H3k be the Arason
invariant. By a theorem of Merkurjev [9] (resp. of Merkurjev–Suslin [13] and
Rost [17]), we have ker e2 = I3k and ker e3 = I4k. Therefore, the lemma follows
if we prove

λ · disc q = 0 if and only if 〈〈λ〉〉 · q ∈ I3k, (2)

and that, assuming that condition holds,

e3(〈〈λ〉〉 · q) = λ · [C(V, q)]. (3)

Let δ ∈ k× be such that disc q = (δ)1 ∈ H1(k,Z/2Z) ⊂ H1k. Then

q ≡ 〈〈δ〉〉 mod I2k, (4)

hence
e2(〈〈λ〉〉 · q) = e2(〈〈λ, δ〉〉) = λ · disc q,

proving (2). Now, assuming λ · disc q = 0, we have 〈〈λ, δ〉〉 = 0 in Wk, hence

〈〈λ〉〉 · q = 〈〈λ〉〉 · (q ⊥ 〈〈δ〉〉).

By (4), we have q ⊥ 〈〈δ〉〉 ∈ I2k, hence

e3(〈〈λ〉〉 · q) = λ · e2(q ⊥ 〈〈δ〉〉). (5)

The computation of Witt invariants in [8, Chapter 5] yields

e2(q ⊥ 〈〈δ〉〉) = [C(V, q)] + (−1) · disc q. (6)

Since λ · disc q = 0 by hypothesis, (3) follows from (5) and (6).
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Proof of Theorem 2. If A is split, then using the same notation as in Lemma 1.1
we may take γ(σ) = [C(V, q)], and Theorem 2 readily follows from Lemma 1.1.
For the rest of the proof, we may thus assume A is not split, hence disc σ 6= 0
since Z is assumed to split A. Let G = {Id, ι} be the Galois group of Z/k. The
properties of the Clifford algebra (see for instance [7, (9.12)]) yield

[C(A, σ)] − ι[C(A, σ)] = [A]Z = 0.

Therefore, [C(A, σ)] lies in the subgroup (BrZ)G of BrZ fixed under the action
of G. The “Teichmüller cocycle” theory [6] (or the spectral sequence of group
extensions, see [19, Remarque, p. 126]) yields an exact sequence

Br k → (Br Z)G → H3(G,Z×).

Since G is cyclic, H3(G,Z×) = H1(G,Z×). By Hilbert’s Theorem 90,
H1(G,Z×) = 1, hence (Br Z)G is the image of the scalar extension map
Br k → Br Z, and there exists γ(σ) ∈ Br k such that γ(σ)Z = [C(A, σ)]. Then,
by [7, (9.12)],

2γ(σ) = NZ/k

(
[C(A, σ)]

)
=

{

0 if n is odd,

[A] if n is even,
(7)

hence 4γ(σ) = 0. Therefore, γ(σ) ∈ Br2(k) = H2k.
Note that indA = 2, since A is split by the quadratic extension Z/k, hence A
is Brauer-equivalent to a quaternion algebra Q. Let X be the conic associated
with Q; the function field k(X) splits A. Since Theorem 2 holds in the split
case, we have

λ · γ(σ) ∈ ker
(
H3k → H3k(X)

)
.

By a theorem of (Arason–) Peyre [16, Proposition 4.4], the kernel on the right
side is the subgroup k× · [A] ⊂ H3k, hence

λ · γ(σ) = 0 in (H3k)/A.

Proof of Theorem 3. Suppose first A is split, and use the same notation as in
Lemma 1.1. If λ ∈ G(A, σ), then 〈λ〉 · q ≃ q and Lemma 1.1 yields

λ · disc q = 0 in H2k and λ · [C(V, q)] = 0 in H3k.

The first equation implies that λ = NZ/k(z) for some z ∈ Z×. Since

[C(A, σ)] = [C0(V, q)] = [C(V, q)]Z ,

the projection formula yields

NZ/k

(
z · [C(A, σ)]

)
= NZ/k(z) · [C(V, q)] = λ · [C(V, q)] = 0,
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proving the theorem if A is split.
If A is not split, we extend scalars to the function field k(X) of the Severi–
Brauer variety of A. For λ ∈ G+(A, σ), there still exists z ∈ Z× such that
λ = NZ/k(z), by Theorem 1. Since Theorem 3 holds in the split case, we have

NZ/k

(
z · [C(A, σ)]

)
∈ ker

(
H3k → H3k(X)

)
,

and Peyre’s theorem concludes the proof. (Note that applying Peyre’s theorem
requires the hypothesis that indA ≤ 4.)

2 Algebras of low degree

We prove Theorem 4 by considering separately the cases ind A = 1, 2, and 4.

2.1 Case 1: A is split

Let A = Endk V , dim V ≤ 6, and let σ be adjoint to a quadratic form q on V .
Since C(A, σ) = C0(V, q), we may choose γ(σ) = [C(V, q)]. The equations

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A

are then equivalent to

λ · disc q = 0 in H2k and λ · [C(V, q)] = 0 in H3k,

hence, by Lemma 1.1, to 〈〈λ〉〉 · q ∈ I4k. Since dim q = 6, the Arason–Pfister
Hauptsatz [8, Chapter 10, Theorem 3.1] shows that this relation holds if and
only if 〈〈λ〉〉 · q = 0, i.e., λ ∈ G(V, q) = G(A, σ), and the proof is complete.

2.2 Case 2: indA = 2

Let Q be a quaternion (division) algebra Brauer-equivalent to A. We repre-
sent A as A = EndQ U for some 3-dimensional (right) Q-vector space. The
involution σ is then adjoint to a skew-hermitian form h on U (with respect to
the conjugation involution on Q), which defines an element in the Witt group
W−1(Q). Let X be the conic associated with Q. The function field k(X) splits
Q, hence Morita-equivalence yields an isomorphism

W−1
(
Q ⊗ k(X)

)
≃ Wk(X).

Moreover, Dejaiffe [4] and Parimala–Sridharan–Suresh [15] have shown that
the scalar extension map

W−1(Q) → W−1
(
Q ⊗ k(X)

)
≃ Wk(X) (8)

is injective. Let (V, q) be a quadratic space over k(X) representing the image
of (U, h) under (8). We may assume dimV = deg A ≤ 6 and σ is adjoint to q
after scalar extension to k(X). An element λ ∈ k× lies in G(V, q) if and only
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if 〈〈λ〉〉 · q = 0; by the injectivity of (8), this condition is also equivalent to
〈〈λ〉〉 · h = 0 in W−1(Q), i.e., to λ ∈ G(A, σ). Therefore,

G(V, q) ∩ k× = G(A, σ). (9)

Suppose first A is not split by Z. Theorem 1 then shows that every similitude
of (A, σ) is proper, and it only remains to show that if λ = NZ/k(z) for some
z ∈ Z× such that

NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A,

then λ ∈ G(A, σ). Extending scalars to k(X), we derive from the last equation
by the projection formula

NZ(X)/k(X)(z) · [C(V, q)] = 0 in H3k(X).

Therefore, by Lemma 1.1, 〈λ〉 · q ≡ q mod I4k(X), i.e.,

〈〈λ〉〉 · q ∈ I4k(X).

Since dim q ≤ 6, the Arason–Pfister Hauptsatz implies 〈〈λ〉〉 · q = 0, hence
λ ∈ G(V, q) and therefore λ ∈ G(A, σ) by (9). Theorem 4 is thus proved when
indA = 2 and A is not split by Z.
Suppose next A is split by Z. In view of Theorems 1 and 2, it suffices to show
that if λ ∈ k× satisfies

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A,

then λ ∈ G(A, σ). Again, extending scalars to k(X), the conditions become

λ · disc q = 0 in H2k(X) and λ · [C(V, q)] = 0 in H3k(X).

By Lemma 1.1, these equations imply 〈〈λ〉〉 · q ∈ I4k(X), hence 〈〈λ〉〉 · q = 0
by the Arason–Pfister Hauptsatz since dim q ≤ 6. It follows that λ ∈ G(V, q),
hence λ ∈ G(A, σ) by (9).

2.3 Case 3: indA = 4

Since deg A ≤ 6, this case arises only if deg A = 4, i.e., A is a division algebra.
This division algebra cannot be split by the quadratic k-algebra Z, hence all the
similitudes are proper, by Theorem 1. Theorem 3 shows that if λ ∈ G(A, σ),
then there exists z ∈ Z× such that λ = NZ/k(z) and NZ/k

(
z · [C(A, σ)]

)
= 0

in (H3k)/A, and it only remains to prove the converse.
Let z ∈ Z× be such that NZ/k

(
z · [C(A, σ)]

)
= u · [A] for some u ∈ k×. Since

by [7, (9.12)], NZ/k

(
[C(A, σ)]

)
= [A], it follows that

NZ/k

(
u−1z · [C(A, σ)]

)
= 0 in H3k. (10)
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Since deg A = 4, the Clifford algebra C(A, σ) is a quaternion algebra over Z.
Let

C(A, σ) = (z1, z2)Z .

Suppose first discσ 6= 0, i.e., Z is a field. Let s : Z → k be a k-linear map
such that s(1) = 0, and let s∗ : WZ → Wk be the corresponding (Scharlau)
transfer map. By [2, Satz 3.3, Satz 4.18], Equation (10) yields

s∗
(
〈〈u−1z, z1, z2〉〉

)
∈ I4k.

However, the form s∗
(
〈〈u−1z, z1, z2〉〉

)
is isotropic since 〈〈u−1z, z1, z2〉〉 repre-

sents 1 and s(1) = 0. Moreover, its dimension is 24, hence the Arason–Pfister
Hauptsatz implies

s∗
(
〈〈u−1z, z1, z2〉〉

)
= 0 in Wk.

It follows that
s∗

(
〈u−1z〉 · 〈〈z1, z2〉〉

)
= s∗

(
〈〈z1, z2〉〉

)
,

hence the form on the left side is isotropic. Therefore, the form 〈u−1z〉·〈〈z1, z2〉〉
represents an element v ∈ k×. Then v−1u−1z is represented by 〈〈z1, z2〉〉, which
is the reduced norm form of C(A, σ), hence z ∈ k× Nrd(C(A, σ)×), and

NZ/k(z) ∈ k×2NZ/k

(
Nrd(C(A, σ)×)

)
.

By [7, (15.11)], the group on the right is G+(A, σ). We have thus proved
NZ/k(z) ∈ G(A, σ), and the proof is complete when Z is a field.
Suppose finally discσ = 0, i.e., Z ≃ k × k. Then C(A, σ) ≃ C ′ × C ′′ for some
quaternion k-algebras C ′ = (z′1, z

′
2)k and C ′′ = (z′′1 , z′′2 )k, and [7, (15.13)] shows

G(A, σ) = Nrd(C ′×)Nrd(C ′′×).

We also have z = (z′, z′′) for some z′, z′′ ∈ k×, and (10) becomes

u−1z′ · [C ′] + u−1z′′ · [C ′′] = 0 in H3k.

It follows that
〈〈u−1z′, z′1, z

′

2〉〉 ≃ 〈〈u−1z′′, z′′1 , z′′2 〉〉.
By [2, Lemma 1.7], there exists v ∈ k× such that

〈〈u−1z′, z′1, z
′

2〉〉 ≃ 〈〈v, z′1, z
′

2〉〉 ≃ 〈〈v, z′′1 , z′′2 〉〉 ≃ 〈〈u−1z′′, z′′1 , z′′2 〉〉,

hence v−1u−1z′ ∈ Nrd(C ′) and v−1u−1z′′ ∈ Nrd(C ′′). Therefore,

NZ/k(z) = z′z′′ ∈ Nrd(C ′×)Nrd(C ′′×),

and the proof of Theorem 4 is complete.
To finish this section, we compare the descriptions of G+(A, σ) for deg A = 4
or 6 in [7] with those which follow from Theorem 4 (and Remark 3).



Multipliers of Improper Similitudes 11

Corollary 2.1. Suppose deg A = 4. If disc σ 6= 0, then

G+(A, σ) = k×2NZ/k

(
Nrd(C(A, σ)×)

)

= {NZ/k(z) | NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A}.

If disc σ = 0, then C(A, σ) ≃ C ′ × C ′′ for some quaternion k-algebras C ′, C ′′,
and

G+(A, σ) = Nrd(C ′×)Nrd(C ′′×)

= {z′z′′ | z′ · [C ′] + z′′ · [C ′′] = 0 in (H3k)/A}.

Proof. See [7, (15.11)] for the case disc σ 6= 0 and [7, (15.13)] for the case
discσ = 0.

Corollary 2.2. Suppose deg A = 6. If discσ 6= 0, let ι be the nontrivial
automorphism of the field extension Z/k and let σ be the canonical (unitary)
involution of C(A, σ). Let also

GU(C(A, σ), σ) = {g ∈ C(A, σ) | σ(g)g ∈ k×}.

Then

G+(A, σ) =

{NZ/k(z) | zι(z)−1 = (σ(g)g)−2 Nrd(g) for some g ∈ GU(C(A, σ), σ)}
= {NZ/k(z) | NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A}.

If disc σ = 0, then C(A, σ) ≃ C × Cop for some central simple k-algebra C of
degree 4, and

G+(A, σ) = k×2 Nrd(C×)

= {z ∈ k× | z · [C] = 0 in (H3k)/A}.

Proof. See [7, (15.31)] for the case disc σ 6= 0 and [7, (15.34)] for the case
discσ = 0. In the latter case, Theorem 3 shows that G+(A, σ) consists of
products z′z′′ where z′, z′′ ∈ k× are such that

z′ · [C] + z′′ · [Cop] = 0 in (H3k)/A.

However, [Cop] = −[C], and 2[C] = [A] by [7, (9.15)], hence

z′ · [C] + z′′ · [Cop] = z′z′′ · [C] in (H3k)/A.

Note that the equation

k×2 Nrd(C×) = {z ∈ k× | z · [C] = 0 in (H3k)/A}

can also be proved directly by a theorem of Merkurjev [11, Proposition 1.15].
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3 Fields of low virtual cohomological dimension

Our goal in this section is to prove Theorem 5. Together with Theorem 2, the
following lemma completes the proof of the “only if” part:

Lemma 3.1. If λ ∈ G(A, σ), then λ > 0 at every ordering v such that (A, σ)v

is not hyperbolic.

Proof. If (A, σ)v is not hyperbolic, then Av is split, by [18, Chapter 10, The-
orem 3.7]. We may thus represent Av = Endkv

V for some kv-vector space V ,
and σ ⊗ Idkv

is adjoint to a non-hyperbolic quadratic form q. If λ ∈ G(A, σ),
then λ ∈ G(V, q), hence

〈λ〉 · q ≃ q.

Comparing the signatures of each side, we obtain λ > 0.

For the “if” part, we use the following lemma:

Lemma 3.2. Let F be an arbitrary field of characteristic different from 2. If
vcd2 F ≤ 3, then the torsion part of the 4-th power of IF is trivial,

I4
t F = 0.

Proof. Our proof uses the existence of the cohomological invariants en : InF →
Hn(F, µ2), and the fact that ker en = In+1F , proved for fields of virtual coho-
mological 2-dimension at most 3 by Arason–Elman–Jacob [3].
Suppose first −1 /∈ F×2. From vcd2 F ≤ 3, it follows that Hn(F (

√
−1), µ2) = 0

for n ≥ 4, hence the Arason exact sequence

Hn(F (
√
−1), µ2)

N−→ Hn(F, µ2)
(−1)1∪−−−−→ Hn+1(F, µ2) → Hn+1(F (

√
−1), µ2)

(see [2, Corollar 4.6] or [7, (30.12)]) shows that the cup-product with (−1)1 is
an isomorphism Hn(F, µ2) ≃ Hn+1(F, µ2) for n ≥ 4. If q ∈ I4

t F , there is an
integer ℓ such that 2ℓq = 0, hence the 4-th invariant e4(q) ∈ H4(F, µ2) satisfies

(−1)1 ∪ · · · ∪ (−1)1
︸ ︷︷ ︸

ℓ

∪e4(q) = 0 in Hℓ+4(F, µ2).

Since (−1)1∪ is an isomorphism, it follows that e4(q) = 0, hence q ∈ I5
t F .

Repeating the argument with e5, e6, . . . , we obtain q ∈ ⋂

n InF , hence q = 0
by the Arason–Pfister Hauptsatz [8, p. 290].
If −1 ∈ F×2, then the hypothesis implies that Hn(F, µ2) = 0 for n ≥ 4, hence
for q ∈ I4F we get successively e4(q) = 0, e5(q) = 0, etc., and we conclude as
before.

Proof of Theorem 5. As observed above, the “only if” part follows from Theo-
rem 2 and Lemma 3.1. The proof of the “if” part uses the same arguments as
the proof of Theorem 2 in the case where indA = 2.
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We first consider the split case. If A = Endk V and σ is adjoint to a quadratic
form q on V , then we may choose γ(σ) = C(V, q), and the conditions

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A

imply, by Lemma 1.1, that 〈〈λ〉〉 · q ∈ I4k. Moreover, for every ordering v on k,
the signature sgnv(〈〈λ〉〉 ·q) vanishes, since λ > 0 at every v such that sgnv(q) 6=
0. Therefore, by Pfister’s local-global principle [8, Chapter 8, Theorem 4.1],
〈〈λ〉〉 · q is torsion. Since the hypothesis on k implies, by Lemma 3.2, that
I4
t k = 0, we have 〈〈λ〉〉 · q = 0, hence λ ∈ G(V, q) = G(A, σ). Note that

Lemma 3.2 yields I4
t k = 0 under the weaker hypothesis vcd2 k ≤ 3. Therefore,

the split case of Theorem 5 holds when vcd2 k ≤ 3.
Now, suppose A is not split. Since A is split by Z, it is Brauer-equivalent to a
quaternion algebra Q. Let k(X) be the function field of the conic X associated
with Q. This field splits A, hence there is a quadratic space (V, q) over k(X)
such that A⊗ k(X) may be identified with Endk(X) V and σ ⊗ Idk(X) with the
adjoint involution with respect to q. As in Section 2 (see Equation (9)), we
have

G(V, q) ∩ k× = G(A, σ).

Therefore, it suffices to show that the conditions on λ imply λ ∈ G(V, q).
If v is an ordering of k such that (A, σ)v is hyperbolic, then qw is hyperbolic
for any ordering w of k(X) extending v, since hyperbolic involutions remain
hyperbolic over scalar extensions. Therefore, λ > 0 at every ordering w of k(X)
such that qw is not hyperbolic. Moreover, the conditions

λ · disc σ = 0 in (H2k)/A and λ · γ(σ) = 0 in (H3k)/A

imply

λ · disc q = 0 in H2k(X) and λ · [C(V, q)] = 0 in H3k(X).

Since X is a conic, Proposition 11, p. 93 of [20] implies

vcd2 k(X) = 1 + vcd2 k ≤ 3.

As Theorem 5 holds in the split case over fields of virtual cohomological 2-
dimension at most 3, it follows that λ ∈ G(V, q).

Remark. The same arguments show that if vcd2 k ≤ 2 and indA = 2, then
G+(A, σ) consists of the elements NZ/k(z) where z ∈ Z× is such that

NZ/k

(
z · [C(A, σ)]

)
= 0 in (H3k)/A.

4 Examples

In this section, we give an explicit description of the element γ(σ) of Theorem 2
in some special cases. Throughout this section, we assume the algebra A is not
split, and is split by Z (hence Z is a field and discσ 6= 0). Our first result is
easy:
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Proposition 4.1. If A is split by Z and σ becomes hyperbolic after scalar
extension to Z, then we may choose γ(σ) = 0.

Proof. Let ι be the nontrivial automorphism of Z/k. Since Z is the center of
C(A, σ),

C(A, σ) ⊗k Z ≃ C(A, σ) × ιC(A, σ). (11)

On the other hand, C(A, σ) ⊗k Z ≃ C(A ⊗k Z, σ ⊗ IdZ), and since σ becomes
hyperbolic over Z, one of the components of C(A⊗k Z, σ ⊗ IdZ) is split, by [7,
(8.31)]. Therefore,

[C(A, σ)] = [ιC(A, σ)] = 0 in BrZ.

Corollary 4.2. In the conditions of Proposition 4.1, if deg A ≤ 6 or vcd2 k ≤
2, then

G+(A, σ) = {λ ∈ k× | λ · disc σ = 0 in H2k}

and

G−(A, σ) = {λ ∈ k× | λ · disc σ = [A] in H2k}.

Proof. This readily follows from Proposition 4.1 and Theorem 2 or 5.

To give further examples where γ(σ) can be computed, we fix a particular
representation of A as follows. Since A is assumed to be split by Z, it is
Brauer-equivalent to a quaternion k-algebra Q containing Z. We choose a
quaternion basis 1, i, j, ij of Q such that Z = k(i). Let A = EndQ U for some
right Q-vector space U , and let σ be the adjoint involution of a skew-hermitian
form h on U with respect to the conjugation involution on Q. For x, y ∈ U ,
we decompose

h(x, y) = f(x, y) + jg(x, y) with f(x, y), g(x, y) ∈ Z.

It is easily verified that f (resp. g) is a skew-hermitian (resp. symmetric bilinear)
form on U viewed as a Z-vector space. (See [18, Chapter 10, Lemma 3.1].) We
have

A ⊗k Z = (EndQ U) ⊗k Z = EndZ U.

Moreover, for x, y ∈ U and ϕ ∈ EndQ U , the equation

h
(
x, ϕ(y)

)
= h

(
σ(ϕ)(x), y

)

implies
g
(
x, ϕ(y)

)
= g

(
σ(ϕ)(x), y

)
,

hence σ ⊗k IdZ is adjoint to g.
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Proposition 4.3. With the notation above,

[C(A, σ)] = [C(U, g)] in Br Z.

Proof. Since σ ⊗ IdZ is the adjoint involution of g,

C(A ⊗k Z, σ ⊗ IdZ) ≃ C0(U, g). (12)

Now, discσ is a square in Z, hence C0(U, g) decomposes into a direct product

C0(U, g) ≃ C ′ × C ′′ (13)

where C ′, C ′′ are central simple Z-algebras Brauer-equivalent to C(U, g). The
proposition follows from (11), (12), and (13).

To give an explicit description of g, consider an h-orthogonal basis (e1, . . . , en)
of U . In the corresponding diagonalization of h,

h ≃ 〈u1, . . . , un〉,

each uℓ ∈ Q is a pure quaternion, since h is skew-hermitian. Let u2
ℓ = aℓ ∈ k×

for ℓ = 1, . . . , n. Then

disc σ = (−1)n Nrd(u1) . . . Nrd(un) = a1 . . . an,

so we may assume i2 = a1 . . . an. Write

uℓ = µℓi + jvℓ where µℓ ∈ k and vℓ ∈ Z. (14)

Each eℓQ is a 2-dimensional Z-vector space, and we have a g-orthogonal de-
composition

U = e1Q ⊕ · · · ⊕ enQ.

If vℓ = 0, then g(eℓ, eℓ) = 0, hence eℓQ is hyperbolic. If vℓ 6= 0, then (eℓ, eℓuℓ)
is a g-orthogonal basis of eℓQ, which yields the following diagonalization of the
restriction of g:

〈vℓ,−aℓvℓ〉.

Therefore,

g = g1 + · · · + gn (15)

where

gℓ =

{

0 if vℓ = 0,

〈vℓ〉〈1,−aℓ〉 if vℓ 6= 0.
(16)

We now consider in more detail the cases n = 2 and n = 3.
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4.1 Algebras of degree 4

Suppose deg A = 4, i.e., n = 2, and use the same notation as above. If
v1 = 0, then squaring each side of (14) yields a1 = µ2

1a1a2, hence a2 ∈ k×2,
a contradiction since Q is assumed to be a division algebra. The case v2 = 0
leads to the same contradiction. Therefore, we necessarily have v1 6= 0 and
v2 6= 0. By (15) and (16),

g = 〈v1〉〈1,−a1〉 + 〈v2〉〈1,−a2〉,

hence by [8, p. 121],

[C(A, σ)] = (a1, v1)Z + (a2, v2)Z + (a1, a2)Z

= (a1,−v1v2)Z . (17)

Since the division algebra Q contains the pure quaternions u1, u2 and i with
u2

1 = a1, u2
2 = a2 and i2 = a1a2, we have a1, a2, a1a2 /∈ k×2 and we may

consider the field extension

L = k(
√

a1,
√

a2).

We identify Z with a subfield of L by choosing in L a square root of a1a2, and
denote by ρ1, ρ2 the automorphisms of L/k defined by

ρ1(
√

a1) = −√
a1, ρ2(

√
a1) =

√
a1,

ρ1(
√

a2) =
√

a2, ρ2(
√

a2) = −√
a2.

Thus, Z ⊂ L is the subfield of ρ1 ◦ ρ2-invariant elements. Let j2 = b. Then
(14) yields

a1 = µ2
1a1a2 + bNZ/k(v1), a2 = µ2

2a1a2 + bNZ/k(v2),

hence NZ/k(−v1v2) = a1a2b
−2(1 − µ2

1a2)(1 − µ2
2a1) and

−v1v2

ρ1(−v1v2)
=

−v1v2

ρ2(−v1v2)
=

a1a2

b2ρ1(−v1v2)2
(1 − µ2

1a2)(1 − µ2
2a1).

Since L = Z(
√

a1) = Z(
√

a2), it follows that 1 − µ2
1a2 and 1 − µ2

2a1 are norms
from L/Z. Therefore, the preceding equation yields

−v1v2

ρ1(−v1v2)
=

−v1v2

ρ2(−v1v2)
= NL/Z(ℓ) for some ℓ ∈ L×.

Since NZ/k(−v1v2ρ1(−v1v2)
−1) = 1, we have NL/k(ℓ) = 1. By Hilbert’s Theo-

rem 90, there exists b1 ∈ L× such that

ρ1(b1) = b1 and b1ρ2(b1)
−1 = ℓρ1(ℓ). (18)
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Set b2 = −v1v2ρ1(ℓ)b
−1
1 . Computation yields

ρ2(b2) = b2 and ρ1(b2)b
−1
2 = ℓρ2(ℓ). (19)

Define an algebra E over k by

E = L ⊕ Lr1 ⊕ Lr2 ⊕ Lr1r2

where the multiplication is defined by

r1x = ρ1(x)r1, r2x = ρ2(x)r2 for x ∈ L,

r2
1 = b1, r2

2 = b2, and r1r2 = ℓr2r1.

Since b1, b2 and ℓ satisfy (18) and (19), the algebra E is a crossed product, see
[1]. It is thus a central simple k-algebra of degree 4.

Proposition 4.4. With the notation above, we may choose γ(σ) = [E] ∈ Br k.

Proof. The centralizer CEZ of Z in E is L ⊕ Lr1r2. Computation shows that

(r1r2)
2 = −v1v2.

Since conjugation by r1r2 maps
√

a1 ∈ L to its opposite, it follows that

CEZ = (a1,−v1v2)Z .

Since [CEZ] = [E]Z , the proposition follows from (17).

Corollary 4.5. Let

E+ = CEZ = {x ∈ E× | xz = zx for all z ∈ Z}

and

E− = {x ∈ E× | xz = ρ1(z)x for all z ∈ Z}.

Then

G+(A, σ) = k×2 NrdE(E+) and G−(A, σ) = k×2 NrdE(E−).

Proof. As observed in the proof of Proposition 4.4, CEZ ≃ C(A, σ). Since, by
[5, Corollary 5, p. 150],

NrdE(x) = NZ/k(NrdCEZ x) for x ∈ CEZ,

the description of G+(A, σ) above follows from [7, (15.11)] (see also Corol-
lary 2.1).
To prove k×2 NrdE(E−) ⊂ G−(A, σ), it obviously suffices to prove NrdE(E−) ⊂
G−(A, σ). From the definition of E, it follows that r1 ∈ E−. By [10, p. 80],

NrdE(r1) · [E] = 0 in H3k. (20)
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Let L1 ⊂ L be the subfield fixed under ρ1. We have r2
1 = b1 ∈ L1, hence

NrdE(r1) = NL1/k(b1).

On the other hand, the centralizer of L1 is

CEL1 = L ⊕ Lr1 ≃ (a1a2, b1)L1
,

hence

[NL1/k(CEL1)] =
(
a1a2, NL1/k(b1)

)

k
= NrdE(r1) · disc σ in H2k. (21)

Since [CEL1] = [EL1
], we have [NL1/k(CEL1)] = 2[E]. But 2[E] = 2γ(σ) = [A]

by (7), hence (21) yields

NrdE(r1) · disc σ = [A] in H2k. (22)

From (20), (22) and Theorems 1, 2 it follows that NrdE(r1) ∈ G−(A, σ).
Now, suppose x ∈ E−. Then r1x ∈ E+, hence NrdE(r1x) ∈ G+(A, σ) by the
first part of the corollary. Since

G+(A, σ)G−(A, σ) = G−(A, σ)

it follows that

NrdE(x) ∈ NrdE(r1)G+(A, σ) = G−(A, σ).

We have thus proved k×2 NrdE(E−) ⊂ G−(A, σ).
To prove the reverse inclusion, consider λ ∈ G−(A, σ). Since

G−(A, σ)G−(A, σ) = G+(A, σ),

we have λ NrdE(r1) ∈ G+(A, σ), hence by the first part of the corollary,

λ NrdE(r1) ∈ k×2 NrdE(E+).

It follows that
λ ∈ k×2 NrdE(r1E+) = k×2 NrdE(E−).

4.2 Algebras of degree 6

Suppose deg A = 6, i.e., n = 3, and use the same notation as in the beginning
of this section. If σ (i.e., h) is isotropic, then h is Witt-equivalent to a rank 1
skew-hermitian form, say 〈u〉. Hence i2 = disc σ = u2 ∈ k×. Hence we may
assume that h is Witt-equivalent to the rank 1 skew-hermitian form 〈µi〉 for
some µ ∈ k×. This implies that the form g is hyperbolic and C(U, g) is split.
Hence we may choose γ(σ) = 0. By Theorem 4, we then have λ ∈ G(A, σ) if
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and only if λ.disc σ = 0 in (H2k)/A. If σ becomes isotropic over Z, the form
g is isotropic, hence we may choose a diagonalization of h

h ≃ 〈u1, u2, u3〉

such that g(u3, u3) = 0, i.e., in the notation of (14), u3 = µ3i. Raising each
side to the square, we obtain

a3 = µ2
3a1a2a3,

hence a1 ≡ a2 mod k×2. It follows that u2 is conjugate to a scalar multiple of
u1, i.e., there exists x ∈ Q× and θ ∈ k× such that

u2 = θxu1x
−1 = θ NrdQ(x)−1xu1x.

Since 〈u1〉 ≃ 〈xu1x〉, we may let ν = −θ Nrd(x)−1 ∈ k× to obtain

h ≃ 〈u1,−νu1, µ3i〉.

If v1 = 0, then g is hyperbolic, hence we may choose γ(σ) = 0 by Proposi-
tion 4.1. If v1 6= 0, then (15) and (16) yield

g = 〈v1〉〈1,−a1〉 + 〈−νv1〉〈1,−a1〉 = 〈v1〉〈〈a1, ν〉〉.

The Clifford algebra of g is the quaternion algebra (a1, ν)Z , hence we may
choose

γ(σ) = (a1, ν)k.

Suppose finally that σ does not become isotropic over Z, hence v1, v2, v3 6= 0.
Then

g = 〈v1〉〈1,−a1〉 + 〈v2〉〈1,−a2〉 + 〈v3〉〈1,−a3〉
and, by Proposition 4.3,

[C(A, σ)] = (a1, v1)Z + (a2, v2)Z + (a3, v3)Z + (a1, a2)Z + (a1, a3)Z + (a2, a3)Z .

Since Z = k(
√

a1a2a3), the right side simplifies to

[C(A, σ)] = (a1, v1v3)Z + (a2, v2v3)Z + (a1, a2)Z + (a1a2,−1)Z . (23)

By [7, (9.16)], NZ/kC(A, σ) is split, hence

(
a1, NZ/k(v1v3)

)

k
= (a2, NZ/k(v2v3)

)

k
in Br k.

By the “common slot lemma” (see for instance [2, Lemma 1.7]), there exists
α ∈ k× such that

(
a1, NZ/k(v1v3)

)

k
=

(
α,NZ/k(v1v3)

)

k
=

(
α,NZ/k(v2v3)

)

k
=

(
a2, NZ/k(v2v3)

)

k
.
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Then

(αa1, NZ/k(v1v3)
)

k
= (αa2, NZ/k(v2v3)

)

k
=

(
α,NZ/k(v1v2)

)

k
= 0.

By [21, (2.6)], there exist β1, β2, β3 ∈ k× such that

(αa1, v1v3)Z = (αa1, β1)Z , (αa2, v2v3)Z = (αa2, β2)Z ,

(α, v1v2)Z = (α, β3)Z .

Since

(a1, v1v3)Z + (a2, v2v3)Z = (αa1, v1v3)Z + (αa2, v2v3)Z + (α, v1v2)Z ,

it follows from (23) that

[C(A, σ)] = (αa1, β1)Z + (αa2, β2)Z + (α, β3)Z + (a1, a2)Z + (a1a2,−1)Z .

We may thus take

γ(σ) = (a1, β1)k + (a2, β2)k + (α, β1β2β3)k + (a1, a2)k + (a1a2,−1)k

= (a1,−a2β1)k + (a2,−β2)k + (α, β1β2β3)k.
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de déploiement, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 2,
105–108. MR1813765 (2001m:11054)

[5] P. K. Draxl, Skew fields, Cambridge Univ. Press, Cambridge, 1983.
MR0696937 (85a:16022)

[6] S. Eilenberg and S. MacLane, Cohomology and Galois theory. I. Normality
of algebras and Teichmüller’s cocycle, Trans. Amer. Math. Soc. 64 (1948),
1–20. MR0025443 (10,5e)

[7] M.-A. Knus et al., The book of involutions, Amer. Math. Soc., Providence,
RI, 1998. MR1632779 (2000a:16031)



Multipliers of Improper Similitudes 21

[8] T. Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Inc.,
Reading, Mass., 1973. MR0396410 (53 #277)

[9] A. S. Merkurjev, On the norm residue symbol of degree 2, Dokl. Akad.
Nauk SSSR 261 (1981), no. 3, 542–547. MR0638926 (83h:12015)

[10] A. S. Merkurjev, K-theory of simple algebras, in K-theory and algebraic
geometry: connections with quadratic forms and division algebras (Santa
Barbara, CA, 1992), 65–83, Proc. Sympos. Pure Math., Part 1, Amer.
Math. Soc., Providence, RI. MR1327281 (96f:19004)

[11] A. S. Merkurjev, Certain K-cohomology groups of Severi-Brauer varieties,
in K-theory and algebraic geometry: connections with quadratic forms and
division algebras (Santa Barbara, CA, 1992), 319–331, Proc. Sympos. Pure
Math., Part 2, Amer. Math. Soc., Providence, RI. MR1327307 (96g:19004)

[12] A. S. Merkurjev, R. Parimala and J.-P. Tignol, Invariants of quasi-trivial
tori and the Rost invariant, Algebra i Analiz 14 (2002) 110–151; St. Pe-
tersburg Math. J. 14 (2003) 791–821.

[13] A. S. Merkurjev and A. A. Suslin, Norm residue homomorphism of de-
gree three, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 2, 339–356;
translation in Math. USSR-Izv. 36 (1991), no. 2, 349–367. MR1062517
(91f:11083)

[14] A. S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and
the Brauer group of homogeneous varieties, J. Reine Angew. Math. 461

(1995), 13–47. MR1324207 (96c:20083)

[15] R. Parimala, R. Sridharan and V. Suresh, Hermitian analogue of a the-
orem of Springer, J. Algebra 243 (2001), no. 2, 780–789. MR1850658
(2002g:11043)

[16] E. Peyre, Products of Severi-Brauer varieties and Galois cohomology, in
K-theory and algebraic geometry: connections with quadratic forms and
division algebras (Santa Barbara, CA, 1992), 369–401, Proc. Sympos. Pure
Math., Part 2, Amer. Math. Soc., Providence, RI. MR1327310 (96d:19008)

[17] M. Rost, On Hilbert Satz 90 for K3 for
degree-two extensions, preprint, Regensburg 1986.
http://www.mathematik.uni-bielefeld.de/~rost/K3-86.html

[18] W. Scharlau, Quadratic and Hermitian forms, Springer, Berlin, 1985.
MR0770063 (86k:11022)

[19] J.-P. Serre, Corps locaux, Actualités Sci. Indust., No. 1296. Hermann,
Paris, 1962. MR0150130 (27 #133)

[20] J-P. Serre, Cohomologie galoisienne, Fifth edition, Springer, Berlin, 1994.
MR1324577 (96b:12010)



22 R. Preeti and J.-P. Tignol
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