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Abstract

Let D be a division ring with centre F'. Assume that M is a maximal
subgroup of GL, (D), n > 1 such that Z(M) is algebraic over F'. Group
identities on M and polynomial identities on the F-linear hull F[M] are
investigated. It is shown that if F'[M] is a PI-algebra, then [D : F] < cc.
When D is noncommutative and F' is infinite, it is also proved that if
M satisfies a group identity and F'[M] is algebraic over F', then we have
either M = K*, where K is a field and [D : F| < oo or M is absolutely
irreducible. For a finite dimensional division algebra D, assume that N
is a subnormal subgroup of GL, (D) and M is a maximal subgroup of N.

If M satisfies a group identity, it is shown that M is abelian-by-finite.

1 Introduction

Let D be a division ring with centre F', and let n be a positive integer. Denote
by A := M, (D) the full n x n matrix ring over D and by A* := GL,(D),
the units of A. Given a subgroup M of A*, we shall say that M is maximal
in A* if for any subgroup L of A* with M C L, one concludes that L = A*.



The study of maximal subgroups of A* begins in [1] and [9] in relation with
an investigation of the structure of finitely generated normal subgroups of
G L, (D), where D is of finite dimension over its centre F. In those papers we
essentially show that maximal subgroups arise naturally in A*, and finitely
generated subnormal subgroups of A*, are central. This result is used to
prove that a maximal subgroup of A* can not be finitely generated. The
reader may consult [7], and the references thereof for more recent results on
multiplicative subgroups of A*. The object of this note is to investigate the
algebraic structure of D when the F-linear hull F[M] satisfies a polynomial
identity. We also study the structure of M whenever M satisfies a group
identity. To be more precise, let M be a maximal subgroup of A* such that
the centre of M, Z(M) is algebraic over F. It is shown that if F[M] is a PI-
algebra, then [D : F] < co. As consequences of this, some results of [1] that are
proved there for the case n = 1 may be generalized for n > 1. For examples, it
is shown if [A : F| = oo, then A* contains no abelian maximal subgroup which
is algebraic over F. Also, if M satisfies a multilinear polynomial identity, then
[D : F] < co. In this direction, it is proved that if D is noncommutative and
M/ F* is locally finite, then we have either M is absolutely irreducible and D is
locally finite dimensional or [D : F| < oo and M = K*, where K is a subfield
of A. We then turn to the case where M satisfies a group identity. Let D
be a noncommutative division ring with infinite centre F' and n > 1. Assume
that M is a maximal subgroup of A* such that F[M] is algebraic over F. It is
shown that if M satisfies a group identity, then we have either M = K*, where
K is a field and [D : F] < oo or M is absolutely irreducible. In particular, if
M is a noncommutative soluble maximal subgroup of A* such that F[M] is
algebraic over F', then M is abelian-by-locally finite. For a noncommutative
finite dimensional F-central division algebra D, assume that N is a subnormal
subgroup of A* and M is a maximal subgroup of N. It is proved that if M
satisfies a group identity, then M is abelian-by-finite.



2 Notations and conventions

Let D be a division ring with centre F' and G be a subgroup of A* = GL,, (D).
We denote by F[G| the F-linear hull of G, i.e., the F-algebra generated by
elements of G over F. We also denote by D" the space of row n-vectors
over D. Then D" is a D — G bimodule in the obvious manner. G is said to
be an irreducible (reducible) subgroup of GL, (D) whenever D" is irreducible
(reducible) as D — G bimodule. Considering the elements of D" as column
vectors, we may regard D" as a G — D bimodule. It is easily shown that
D™ is irreducible (reducible) as a G — D bimodule precisely when it has the
property as D — G bimodule. We shall say that G is absolutely irreducible
if M,,(D) = F[G]. For any group G' we denote its centre by Z(G). Given a
subgroup H of G, Ng(H) means the normalizer of H in G, and < H, K >
the group generated by H and K, where K is a subgroup of G. We shall say
that H is abelian-by-finite if there is an abelian normal subgroup K of H such
that H/K is finite. Let S be a subset of M, (D), then the centralizer of S in
M, (D) is denoted by Chy,(py(S). We shall identify the centre FI of M, (D)
with F. By a dilatation matrix D;;(d), d € D* we understand a diagonal n xn
matrix whose diagonal entries are all 1 except the (i,4)-th entry which is d.
Some notations and conventions for linear groups and skew linear groups from

[11] and [12] are frequently used throughout.

3 Polynomial identities on F|M|

Given a maximal subgroup of A*, this section essentially deals with conditions
on M that imply either the commutativity of M or [D : F| < co. The main
result is Theorem 5 which asserts that if F[M] is a Pl-algebra and Z(M) is
algebraic over F', then [D : F'] < co. Using this, it is shown that if M satisfies a
multilinear polynomial identity and Z (M) is algebraic over F, then [D : F] <
0o. Furthermore, it is proved that if either n = 1 and D is noncommutative
or n > 1 and D is infinite, then there exists no maximal subgroup M of A*

containing F* such that [M : F*] < co. For a noncommutative division ring
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with centre F', it is also shown that if M /F* is locally finite, then we have either
M is absolutely irreducible and D is locally finite dimensional or [D : F| < oo
and M = K*, where K is a subfield of A. We begin our material with

PROPOSITION 1. Let D be a division ring with centre F andn > 1. Assume
that M is a mazimal subgroup of GL, (D). Then M is either irreducible or it

contains an isomorphic copy of D*.

PRrROOF. The case n = 1 follows from Proposition 1 of [1]. So, we may
assume that n > 2. Now, consider the F-algebra F[M]. Since M is maximal
we conclude that either GL,(D) = F[M|* or F[M]* = M. The first case
implies that M, (D) = F[M], i.e., M is absolutely irreducible and so it is
irreducible. Thus, we may assume that F[M]* = M. If M is not irreducible,
then D™ has a nontrivial submodule as D — F[M] bimodule. Thus, by 1.1.1 of
[12], there exists an invertible n x n matrix P over D such that PM P~ C 3,

A B
where ¥ = {
0C

It is clear that PMP~! is also a maximal subgroup of GL, (D) and we have
PMP™' C Y C GL,(D). Therefore, PMP~' = % and since X contains a
copy of D* we obtain the result.

) | A € GL(D),C € GLy_y(D),B € Myyn_y(D)}.

We shall need the following lemmas to prove our main theorem.

LEMMA 2. Let D be a division ring of infinite dimension over its centre I
and n > 1. Assume that M is a maximal subgroup of GL,(D). If F[M] is a
Pl-algebra, then F[M] is a prime ring.

ProoOF. By Proposition 1, we know that either M contains a copy of D*
or M is irreducible. If the first case happens, then D is a Pl-algebra. This
implies, by Kaplansky’s Theorem (cf. [11]), that [D : F] < oo which is a
contradiction. So we may assume that M is irreducible. Now, using 1.1.14 of

[12, p. 9], we conclude that F'[M] is a prime ring.

LEMMA 3. Let D be a division ring of infinite dimension over its centre F'
and n > 1. Assume that M is a mazimal subgroup of GL, (D). If F[M] is a
Pl-algebra, then Z(F[M]) is a field.



PROOF. Set A = F[M]. Assume that X € Z(A). We consider two cases:

Case 1. If X € GL,(D) and X' ¢ A, then we have < M, X >C
Cwm,(p)(Z(A)) and by maximality of M we conclude that Cy,py(Z(A)) =
M, (D). This means that Z(A) = F which is a contradiction. Thus X! €
Z(A).

Case 2. Assume that X ¢ GL,(D). Then there exists an n x n matrix P
in GL,(D) such that the first row of PXP~! is zero. We note that PM P!
is a maximal subgroup of GL, (D), F[PMP~!] is a Pl-algebra, and PXP~! €
Z(F[PMP™)) = PZ(FIM])P~'. Set J := XF[M]. Then J is an ideal in
F[M] and PXP~'(PF[M|P~') = PJP~' = PXP~'F[PMP] is also an
ideal in F[PMP™']. Put J' = PJP™! and B := {Y € M,(D)|YJ C J'}.
It is clear that B is a ring and PAP~! C B. On the other hand PX P!
is a matrix whose first row is zero. Therefore, Dy;(d) € B for all d € D.
It is clear that PMP~! C B*. Thus, B* = GL,(D) or B* = PMP™'.
In the first case B = M, (D) and so J' is a right ideal and clearly J is a
right ideal in M, (D). In the second case Dy;(d) € PMP~! for all d € D.
Therefore, F[PM P~!] contains a copy of D* and so D is a PI-algebra which
implies [D : F] < oo that is a contradiction. Similarly, there exists a matrix
Q € GL,(D) such that QXQ@Q' is a matrix whose first column is zero. Set
C={Y € M,(D)|(QJQ™")Y C QJQ'}. As above, one may show that J is
a left ideal in M, (D). Consequently, J is an ideal in M, (D). Since J # 0 we
obtain J = M, (D). Therfore, F[M]| = M, (D) and so [D : F|] < co which is a
contradiction. Thus, Z(A) is a field and the proof is complete.

LEMMA 4. Let D be a division ring of infinite dimension over its centre F
and n > 1. Assume that M is a mazimal subgroup of GL, (D). If F[M] is a
Pl-algebra, then F[M] is simple and we have [F[M] : Z(F[M])] < co.

PrROOF. By Lemma 2-3, we conclude that F[M] is a prime ring whose
centre is a field. Since F[M] is also a PI-algebra, by Theorem 7.5 of [3],
we conclude that F[M] is simple. Finally, the rest of the result follows from
Kaplansky’s Theorem.

THEOREM 5. Let D be a division ring with centre Z(D) = F and n > 1.



Assume that M is a mazimal subgroup of GL, (D) such that Z(M) is algebraic
over F. If F[M] is a Pl-algebra, then [D : F] < co.

PrOOF. We have M C F[M]*. By maximality of M we conclude that
either FIM|* = GL,(D) or F[M]* = M. The first case gives us F[M]| =
M, (D). Now, use Kaplansky’s Theorem to obtain [D : F] < oo. Therefore,
we may assume that F[M|* = M. To complete the proof, we show that
the assumption [D : F] = oo leads to a contradiction. Thus, suppose [D :
F] = oo. Then, by Lemma 4 and Artin-Wedderburn’s Theorem, we have
F[M] = M,,(D;) for some positive integer n; and division ring D;, and so
M = GL,,(Dy). We claim that Z(M) = F*. For otherwise, since Z(M) is
algebraic over F' there exists a € Z(M) \ F* such that [F(a) : F] < co. Now,
we have F|M| C Cy,(py)(F(a)) := A. If F[M] # A, then, by the Centralizer
Theorem, we conclude that A is a simple Artinian ring. Therefore, there
exists a positive integer ny and a division ring D, such that A = M,,(Ds)
and so A* =2 GL,,(Dy). We know that M C A*. If M = A* then we
clearly have F[M] = A which is a contradiction to our assumption. Thus,
by maximality of M, one concludes that A* = GL,(D), i.e., Cy,(p)(F(a)) =
A = M, (D) which contradicts the fact that a € Z(M) \ F. Therefore, we
must have A = F[M] and so Z(F[M]) = Z(A) = F(a) by the Centralizer
Theorem. Thus, by Lemma 4, this means that [F[M] : F| < co. Now, apply
the Centralizer Theorem again to obtain M, (D) ® F(a)® = M,(F) ® F[M]
for some positive integer s. The last isomorphism implies that [D : F] < oo
which contradicts our assumption. Therefore, we must have Z(M) = F*
and the claim is established. Now, since F[M] is simple and F[M]* = M
we obtain Z(F[M]) = F. Finally, consider the simple Artinian ring B :=
Cw,(p)(F[M]). There exists a positive integer ns and a division ring D3 such
that B = M,,(Ds). If F # Cy(py(F[M]), then F* C B* = GL,,(Ds).
Therefore. there is an X € B*\ F* such that < M, X >C Cy,(p)(F(X)) and
so M, (D) = Cu,,(p)(#(X)) which is a contradiction to the fact that X ¢ F™.
Thus, F' = Cy,,py(F[M]). Now, using the Centralizer Theorem as above, one

concludes that [D : F] < oo which is a contradiction and this completes the



proof.
The next result generalizes Theorem 4.1 of [1].

COROLLARY 6. Let D be a division ring with centre Z(D) = F and n > 1.
Assume that M is a mazimal subgroup of GL, (D) such that Z(M) is algebraic
over F. If M satisfies a multi-linear polynomial identity, then [D : F] < co.

The following result is also a generalization of Corollary 4.2 of [1].

COROLLARY 7. Let D be a division ring of infinite dimension over its
centre Z(D) = F and n > 1. Then GL,(D) contains no abelian mazimal

subgroup which is algebraic over F.

COROLLARY 8. Let D be a division ring with centre F'. If either n = 1 and
D is noncommutative or n > 1 and D is infinite, then there exists no mazximal
subgroup M of GL,(D), n > 1, containing F* such that [M : F*] < c0.

PROOF. Assume that there is a maximal subgroup M such that [M :
F*] < 0co. Then, we have [F[M]: F] < oo, i.e., F[M] is a PI-algebra and M is
algebraic over F'. Thus, by Theorem 5, we obtain [D : F] < co. Let zy,...,x;
be the representatives for cosets of F* in M, ie., M = F*xy U...U F*xy.
Then, we have M =< zq,...,x2; > F*, where < xy,...,x; > is the group
generated by xzy,...,2;. Take x € GL,(D)\M. By maximality of M, we
obtain GL,(D) =< xy,...,z4,x > F*. Put H =< xy,...,2¢,x >. Thus,
GL,(D) = HF* and consequently we have SL,(D) = H' C H, i. e., H is
normal in GL, (D). Now, by Theorem 5 of [2], we conclude that H C F*, i.
e., GL,(D) = F* which means that n = 1 and D = F that is a contradiction

and so the result follows.

COROLLARY 9. Let R be a semisimple Artinian F-algebra with [Z(R) :
F] < oo. Assume that M is a mazimal subgroup of R* such that Z (M) is
algebraic over F. If F[M] satisfies a polynomial identity, then we have [R :
F| < 0.

Now, assume that M is a maximal subgroup of GL, (D) containing F* such

that M/F* is locally finite. The next result gives some information about the



algebraic structure of M.

THEOREM 10. Let D be a noncommutative division ring with centre F' and
n > 1. Assume that M is a mazimal subgroup of GL,(D) containing F* such
that M/F* is locally finite. Then we have either M is absolutely irreducible
and D s locally finite dimensional or [D : F] < oo and M = K*, where K is
a subfield of M, (D).

ProOOF. Consider the F-algebra F[M]. If F[M]* = GL,(D), then we
have F[M] = M, (D). Since M/F* is locally finite we conclude that D is
locally finite dimenisional and so the result follows. Thus, we may assume
throughout that F[M]|* # GL,(D). By maximality of M we conclude that
F[M]* = M. We observe that since M /F* is locally finite then F[M] is locally
finite dimensional. Therefore, for each finite set of elemnts mq---m, € M
we have [F[my---m,| : F] < co. We next claim that F[M] is a PI-algebra
satisfying P(X,Y) = (XY — Y X)". To do this, let z,y € F[M]. Then, there
exist elements m;,n; € M with 1 <47 <1, 1< j < ssuchthat x =m;+---ny
and y = ny+- - - ng, and we have [F[my,---my,ny,---ng] : F] < oco. Therefore,
A= F[my,---my,ny,---nglis an Artinian P -ring and so the Jacobson radical
J = J(A) of A is nilpotent. Therefore, by 1.3.9 of [12], we conclude that
J" = 0. Now, by Wedderburn-Artin Theorem , there exist positive integers
nq,---,ng such that B := ﬁ = M,,(Dy) x -+ x My, (Dy) as F-algebras , for
some division rings D;, where 1 < ¢ < k. Now, we have B* = {m + J|m €
MNA}=GL,, (D) X -+ GLy, (Dy). Since B* is torsion over F' we conclude
that each D; is torsion over F' where F' C Z(D;). Thus D; is torsion over
Z(D;) and by a result of Kaplansky (cf. [5]), we obtain D; = Z(D;) := F,.
Therefore, we obtain B = M,,, (F}) X - -- X M, (F},). If there exists ¢ such that
n; # 1, then the dilatation n; x n; matrix Dy;(f), where f € Fj, is torsion
over F. In particular, this implies that F* is a torsion group. Now, F* and
M/F* are locally finite. Therefore, by a well-known result of group theory,
M is locally finite. By Proposition 1, either M contains an isomorphic copy
of D* or M is irreducible. The first case says that D* is locally finite. This
implies, by a result of Jacobson (cf. [5]), that D = F which is a contradiction.



Thus, we may assume that M is irreducible and so it is completely reducible.
Therefore, by 1.1.14 of [12], we conclude that F[M] is semisimple Artinian.
Thus, as in the above case, there exist positive integers my, - - -, my such that
FIM] = M, (Dy)x---xXM,, (Dy), for some division rings D;, where 1 <i < k.
Now, we have F[M|* = M = GL,,(D;) X -+-GLy,, (Dy). Since M is locally
finite, as above, we conclude that D; = F; = Z(D;). Therefore, F[M] =
Mo, (Fy) X - X My, (Fy). This means that F'[M] satisfies a polynomial identity
and so by Theorem 5 we conclude that [D : F] < co. Since F* is torsion we
obtain D = F which is a contradiction. Therefore, in the decomposition of B
for all ¢ we have n; = 1, i.e., B = F; X --- X Fj. This implies that for each
x,y € A we have zy — yx € J and therefore (zxy — yx)" = 0 since J" = 0.
Thus, F[M] satisfies P(X,Y) = (XY — Y X)". Therefore, by Theorem 5, we
obtain [D : F] < oo. Since M is irreducible and [D : F] < oo, by 1.1.12 of [12],
we conclude that F[M] is simple Artinian, i.e., F[M] = M,(D;) for some t
and division ring D;. Now, we may use a similar argument as above to deduce
that D; = Fy = Z(Dy). If t # 1, we may conclude that F' is torsion and since
[D : F] < oo we obtain D = F which is a contradiction. Therefore, ¢t = 1 and
we have F[M]* = M = F} which completes the proof.

COROLLARY 11. Let D be a division ring with centre F' andn > 1. Assume
that M is a mazimal subgroup of GL, (D). If M 1is locally finite, then we have
D=F.

Proor. If F* € M, then SL,(D) C M. Since M is torsion, we conclude
that SL, (D) is torsion. Thus, by Corollary 2 of [8], we conclude that D = F.
So, we may assume that F* C M. This implies that F™* is torsion and so M /F*
is torsion. Now, Theorem 10 implies that D is algebraic over F'. Therefore, D

is algebraic over its prime subfield and so by a result of Jacobson we conclude
that D = F'.



4 Group identities on M

Let D be a noncommutative division ring with infinite centre F' and n be
a positive integer. Given a maximal subgroup M of A* such that F[M] is
algebraic over F', the key result of this section is to show that if M satisfies a
group identity, then we have either M = K*, where K is a field and [D : F] <
oo or M is absolutely irreducible. Particularly, if M is a noncommutative
soluble maximal subgroup of A* such that F[M] is algebraic over F, it is
proved that M is abelian-by-locally finite. When D is of finite dimension
over F', assume that N is a subnormal subgroup of A* and M is a maximal
subgroup of N. It is proved that if M satisfies a group identity, then M is
abelian-by-finite.

THEOREM 1. Let D be a noncommutative division ring with infinite centre
F and n > 1. Assume that M is a mazimal subgroup of GL,(D) such that
F[M] is algebraic over F. If M satisfies a group identity, then we have either
M = K*, where K is a field and [D : F| < oo or M is absolutely irreducible.

Proor. If F* ¢ M, then M is normal in GL,(D). This means that
F[M] is normal in M, (D). Thus, by a result of [10], we conclude that either
F[M] C F or F[M] = M, (D). If the first case occurs, then we have M C F*
which is a contradiction to the fact that M is a maximal subgroup of GL,, (D).
The second case says that M is absolutely irreducible. So, let F* C M, we have
two cases to consider. If F[M|* = GL,(D), then M is absolutely irreducible.
So, assume that F[M]* = M. By Proposition 3.1, we know that either M
contains an isomorphic copy of D* or M is irreducible. If the first case occurs,
then D* satisfies a group identity. But since F' is infinite this is impossible
by a result of Amitsur (cf. [11]). Therefore, M must be irreducible. Thus,
by 1.1.14 of [12, p. 9], we conclude that F[M] is a prime ring. Now, by
Theorem 5.5 of [6], we have F[M] = M, (K) for some positive integer r, where
K is an extension field of F. This shows that F[M] satisfies a polynomial
identity. Now, by Theorem 3.5, we conclude that [D : F] < co. Finally, we
have FIM|* = M = GL,(K). If r # 1, then M contains a copy of SL,(K),
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i.e., M contains a free subgroup (cf. [12]). This contradicts the fact that M
satisfies a group identity. Therefore, we have r = 1 and this completes the

proof.

COROLLARY 2. Let D be a division ring with infinite centre F' and n > 1.
Assume that M is a noncommutative mazimal subgroup of GL,(D) such that
F[M] is algebraic over F. If M satisfies a group identity, then M,(D) is

algebraic over F.

COROLLARY 3. Let D be a diwision ring with infinite centre F' and n > 1.
Assume that M is a noncommutative nilpotent mazimal subgroup of GL,(D)
such that F[M] is algebraic over F. Then M is centre-by-locally finite. There-
fore, M/F* is locally finite and so D is locally finite dimensional.

PROOF. M satisfies a group identity since M is nilpotent. Thus, by The-
orem 1, we conclude that M is absolutely irreducible. Now, by a result of
[12, p. 213], this implies that M is centre-by-locally finite and so the proof is

complete.

COROLLARY 4. Let D be a division ring with infinite centre F' and n > 1.
Assume that M is a noncommutative soluble mazimal subgroup of GL,(D)
such that F[M] is algebraic over F'. Then M is abelian-by-locally finite.

PROOF. M satisfies a group identity since M is soluble. By Theorem 1,
we conclude that M is absolutely irreducible. Now, by a result of [13], this
implies that M is abelian-by-locally finite and so the proof is complete.

To prove our final result, we need the following

LEMMA 5. Let D be a division algebra of finite dimension over its centre
F. Assume that G is a subgroup of D*. If G satisfies a group identity, then G

18 abelian-by-finite.

PROOF. Assume that G satisfies a group identity. Since [D : F] < oo we
conclude that G is a linear group. By a theorem of Platonov (cf. [14. p. 149]),
(G is soluble-by-finite, i.e., there exists a soluble normal subgroup N of G such
that G/N is finite. Since [D : F] < oo we conclude that F[N] is a division
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ring, and therefore F[N] is semisimple. Thus, N as a linear group over F
is completely reducible. Therefore, N is a completely reducible soluble linear
group. So, by a theorem of [4, p. 111], N is abelian-by-finite and consequently,
G is abelian-by-finite which completes the proof.

THEOREM 6. Let D be a noncommutative division algebra of finite dimen-
sion over its centre F' and n > 1. Assume that N is a subnormal subgroup of
GL,(D) and M is a maximal subgroup of N. If M satisfies a group identity,
then M 1is abelian-by-finite.

PROOF. The case n = 1 follows from Lemma 4. So, we may assume that
n > 2 and N is a subnormal subgroup of GL,(D). By Theorem 11 of [8],
we have either N C F* or SL,(D) C N, i.e., N is normal in GL, (D). We
now claim that M is irreducible. For otherwise assume that M is reducible.
Therefore, D™ has a nontrivial submodule as D — F[M] bimodule. Thus, there

exists an invertible n x n matrix P over D such that PMP~! C X, where
A B
3= {( 0 C ) | A€ GLy(D),C € GLp—s(D),B € Myx(n—s(D)} N N. It is

clear that PM P~! is also a maximal subgroup of N. Set

( SLy(D) 0 )
T = .
0 SL,_s(D)

Then, we have T' C SL, (D) and so T C 2. Now, we clearly have PM P~ C
¥ C N. By maximality of PMP~! we conclude that either PMP~! = ¥ or
N = X. If the second case occurs, then I + e,; € SL,(D) whereas I + €,; &
¥ = N and this contradicts the fact that SL, (D) C N. Therefore, PM P! =
Y. which implies that > satisfies a group identity, and so 7" C X satisfies a
group identity. Now, by 4.5.1 of [12], we conclude that D = F which is a
contradiction. Thus, M is irreducible as claimed. Therefore, by 1.1.12 of [12],
F[M] is simple Artinian. So, there exists a positive integer ¢ and a division ring
D, such that F[M] = M,(D,) as F-algebras. Thus, F[M]* = GL;(D;) and
(F[M]*) = SLi(D;). Since N is normal in GL,(D) we have (F[M]*) C N.
If FIM]* NN = M, then we have SL;(D;,) = (FIM]|*) C FIM]* "N = M.
Since M satisfies a group identity, by 4.5.1 of [12] again, we conclude that

12



either D is a locally finite field or ¢ = 1 and Dy = Z(D;). In the first case
F is also a locally finite field and since [D : F] < oo we conclude that D = F'
which is a contradiction. The second case implies that M is abelian and the
result follows. Finally, if N N F[M]* = N, then N C F[M]*. Since N is
normal in GL,(D) we conclude that F[M]| = M,(D), i.e., M is absolutely
irreducible. By a result of [14, p. 149, M is soluble-by-finite, i.e., there is a
soluble normal subgroup N; such that M /N is finite. Now, by 1.2.12 of [12],
F[N;] is semisimple Artinian. Therefore, N; is a soluble completely reducible
linear group. By a theorem of [4, p. 111], Ny is abelian-by-finite and therefore
M is abelian-by-finite which completes the proof.
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