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Abstract

Let D be a division ring with centre F . Assume that M is a maximal

subgroup of GLn(D), n ≥ 1 such that Z(M) is algebraic over F . Group

identities on M and polynomial identities on the F -linear hull F [M ] are

investigated. It is shown that if F [M ] is a PI-algebra, then [D : F ] < ∞.

When D is noncommutative and F is infinite, it is also proved that if

M satisfies a group identity and F [M ] is algebraic over F , then we have

either M = K∗, where K is a field and [D : F ] < ∞ or M is absolutely

irreducible. For a finite dimensional division algebra D, assume that N

is a subnormal subgroup of GLn(D) and M is a maximal subgroup of N .

If M satisfies a group identity, it is shown that M is abelian-by-finite.

1 Introduction

Let D be a division ring with centre F , and let n be a positive integer. Denote

by A := Mn(D) the full n × n matrix ring over D and by A∗ := GLn(D),

the units of A. Given a subgroup M of A∗, we shall say that M is maximal

in A∗ if for any subgroup L of A∗ with M ⊂ L, one concludes that L = A∗.
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The study of maximal subgroups of A∗ begins in [1] and [9] in relation with

an investigation of the structure of finitely generated normal subgroups of

GLn(D), where D is of finite dimension over its centre F . In those papers we

essentially show that maximal subgroups arise naturally in A∗, and finitely

generated subnormal subgroups of A∗, are central. This result is used to

prove that a maximal subgroup of A∗ can not be finitely generated. The

reader may consult [7], and the references thereof for more recent results on

multiplicative subgroups of A∗. The object of this note is to investigate the

algebraic structure of D when the F -linear hull F [M ] satisfies a polynomial

identity. We also study the structure of M whenever M satisfies a group

identity. To be more precise, let M be a maximal subgroup of A∗ such that

the centre of M , Z(M) is algebraic over F . It is shown that if F [M ] is a PI-

algebra, then [D : F ] < ∞. As consequences of this, some results of [1] that are

proved there for the case n = 1 may be generalized for n > 1. For examples, it

is shown if [A : F ] = ∞, then A∗ contains no abelian maximal subgroup which

is algebraic over F . Also, if M satisfies a multilinear polynomial identity, then

[D : F ] < ∞. In this direction, it is proved that if D is noncommutative and

M/F ∗ is locally finite, then we have either M is absolutely irreducible and D is

locally finite dimensional or [D : F ] < ∞ and M = K∗, where K is a subfield

of A. We then turn to the case where M satisfies a group identity. Let D

be a noncommutative division ring with infinite centre F and n ≥ 1. Assume

that M is a maximal subgroup of A∗ such that F [M ] is algebraic over F . It is

shown that if M satisfies a group identity, then we have either M = K∗, where

K is a field and [D : F ] < ∞ or M is absolutely irreducible. In particular, if

M is a noncommutative soluble maximal subgroup of A∗ such that F [M ] is

algebraic over F , then M is abelian-by-locally finite. For a noncommutative

finite dimensional F -central division algebra D, assume that N is a subnormal

subgroup of A∗ and M is a maximal subgroup of N . It is proved that if M

satisfies a group identity, then M is abelian-by-finite.
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2 Notations and conventions

Let D be a division ring with centre F and G be a subgroup of A∗ = GLn(D).

We denote by F [G] the F -linear hull of G, i.e., the F -algebra generated by

elements of G over F . We also denote by Dn the space of row n-vectors

over D. Then Dn is a D − G bimodule in the obvious manner. G is said to

be an irreducible (reducible) subgroup of GLn(D) whenever Dn is irreducible

(reducible) as D − G bimodule. Considering the elements of Dn as column

vectors, we may regard Dn as a G − D bimodule. It is easily shown that

Dn is irreducible (reducible) as a G − D bimodule precisely when it has the

property as D − G bimodule. We shall say that G is absolutely irreducible

if Mn(D) = F [G]. For any group G we denote its centre by Z(G). Given a

subgroup H of G, NG(H) means the normalizer of H in G, and < H,K >

the group generated by H and K, where K is a subgroup of G. We shall say

that H is abelian-by-finite if there is an abelian normal subgroup K of H such

that H/K is finite. Let S be a subset of Mn(D), then the centralizer of S in

Mn(D) is denoted by CMn(D)(S). We shall identify the centre FI of Mn(D)

with F . By a dilatation matrix Dii(d), d ∈ D∗ we understand a diagonal n×n

matrix whose diagonal entries are all 1 except the (i, i)-th entry which is d.

Some notations and conventions for linear groups and skew linear groups from

[11] and [12] are frequently used throughout.

3 Polynomial identities on F [M ]

Given a maximal subgroup of A∗, this section essentially deals with conditions

on M that imply either the commutativity of M or [D : F ] < ∞. The main

result is Theorem 5 which asserts that if F [M ] is a PI-algebra and Z(M) is

algebraic over F , then [D : F ] < ∞. Using this, it is shown that if M satisfies a

multilinear polynomial identity and Z(M) is algebraic over F , then [D : F ] <

∞. Furthermore, it is proved that if either n = 1 and D is noncommutative

or n > 1 and D is infinite, then there exists no maximal subgroup M of A∗

containing F ∗ such that [M : F ∗] < ∞. For a noncommutative division ring
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with centre F , it is also shown that if M/F ∗ is locally finite, then we have either

M is absolutely irreducible and D is locally finite dimensional or [D : F ] < ∞

and M = K∗, where K is a subfield of A. We begin our material with

Proposition 1. Let D be a division ring with centre F and n ≥ 1. Assume

that M is a maximal subgroup of GLn(D). Then M is either irreducible or it

contains an isomorphic copy of D∗.

Proof. The case n = 1 follows from Proposition 1 of [1]. So, we may

assume that n ≥ 2. Now, consider the F -algebra F [M ]. Since M is maximal

we conclude that either GLn(D) = F [M ]∗ or F [M ]∗ = M . The first case

implies that Mn(D) = F [M ], i.e., M is absolutely irreducible and so it is

irreducible. Thus, we may assume that F [M ]∗ = M . If M is not irreducible,

then Dn has a nontrivial submodule as D−F [M ] bimodule. Thus, by 1.1.1 of

[12], there exists an invertible n× n matrix P over D such that PMP−1 ⊂ Σ,

where Σ = {





A B

0 C



 | A ∈ GLs(D), C ∈ GLn−s(D), B ∈ Ms×(n−s)(D)}.

It is clear that PMP−1 is also a maximal subgroup of GLn(D) and we have

PMP−1 ⊆ Σ ⊂ GLn(D). Therefore, PMP−1 = Σ and since Σ contains a

copy of D∗ we obtain the result.

We shall need the following lemmas to prove our main theorem.

Lemma 2. Let D be a division ring of infinite dimension over its centre F

and n ≥ 1. Assume that M is a maximal subgroup of GLn(D). If F [M ] is a

PI-algebra, then F [M ] is a prime ring.

Proof. By Proposition 1, we know that either M contains a copy of D∗

or M is irreducible. If the first case happens, then D is a PI-algebra. This

implies, by Kaplansky’s Theorem (cf. [11]), that [D : F ] < ∞ which is a

contradiction. So we may assume that M is irreducible. Now, using 1.1.14 of

[12, p. 9], we conclude that F [M ] is a prime ring.

Lemma 3. Let D be a division ring of infinite dimension over its centre F

and n ≥ 1. Assume that M is a maximal subgroup of GLn(D). If F [M ] is a

PI-algebra, then Z(F [M ]) is a field.
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Proof. Set A = F [M ]. Assume that X ∈ Z(A). We consider two cases:

Case 1. If X ∈ GLn(D) and X−1 6∈ A, then we have < M,X >⊆

CMn(D)(Z(A)) and by maximality of M we conclude that CMn(D)(Z(A)) =

Mn(D). This means that Z(A) = F which is a contradiction. Thus X−1 ∈

Z(A).

Case 2. Assume that X 6∈ GLn(D). Then there exists an n × n matrix P

in GLn(D) such that the first row of PXP−1 is zero. We note that PMP−1

is a maximal subgroup of GLn(D), F [PMP−1] is a PI-algebra, and PXP−1 ∈

Z(F [PMP−1]) = PZ(F [M ])P−1. Set J := XF [M ]. Then J is an ideal in

F [M ] and PXP−1(PF [M ]P−1) = PJP−1 = PXP−1F [PMP−1] is also an

ideal in F [PMP−1]. Put J ′ = PJP−1 and B := {Y ∈ Mn(D)|Y J ′ ⊂ J ′}.

It is clear that B is a ring and PAP−1 ⊆ B. On the other hand PXP−1

is a matrix whose first row is zero. Therefore, D11(d) ∈ B for all d ∈ D.

It is clear that PMP−1 ⊆ B∗. Thus, B∗ = GLn(D) or B∗ = PMP−1.

In the first case B = Mn(D) and so J ′ is a right ideal and clearly J is a

right ideal in Mn(D). In the second case D11(d) ∈ PMP−1 for all d ∈ D.

Therefore, F [PMP−1] contains a copy of D∗ and so D is a PI-algebra which

implies [D : F ] < ∞ that is a contradiction. Similarly, there exists a matrix

Q ∈ GLn(D) such that QXQ−1 is a matrix whose first column is zero. Set

C = {Y ∈ Mn(D)|(QJQ−1)Y ⊂ QJQ−1}. As above, one may show that J is

a left ideal in Mn(D). Consequently, J is an ideal in Mn(D). Since J 6= 0 we

obtain J = Mn(D). Therfore, F [M ] = Mn(D) and so [D : F ] < ∞ which is a

contradiction. Thus, Z(A) is a field and the proof is complete.

Lemma 4. Let D be a division ring of infinite dimension over its centre F

and n ≥ 1. Assume that M is a maximal subgroup of GLn(D). If F [M ] is a

PI-algebra, then F [M ] is simple and we have [F [M ] : Z(F [M ])] < ∞.

Proof. By Lemma 2-3, we conclude that F [M ] is a prime ring whose

centre is a field. Since F [M ] is also a PI-algebra, by Theorem 7.5 of [3],

we conclude that F [M ] is simple. Finally, the rest of the result follows from

Kaplansky’s Theorem.

Theorem 5. Let D be a division ring with centre Z(D) = F and n ≥ 1.
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Assume that M is a maximal subgroup of GLn(D) such that Z(M) is algebraic

over F . If F [M ] is a PI-algebra, then [D : F ] < ∞.

Proof. We have M ⊆ F [M ]∗. By maximality of M we conclude that

either F [M ]∗ = GLn(D) or F [M ]∗ = M . The first case gives us F [M ] =

Mn(D). Now, use Kaplansky’s Theorem to obtain [D : F ] < ∞. Therefore,

we may assume that F [M ]∗ = M . To complete the proof, we show that

the assumption [D : F ] = ∞ leads to a contradiction. Thus, suppose [D :

F ] = ∞. Then, by Lemma 4 and Artin-Wedderburn’s Theorem, we have

F [M ] ∼= Mn1
(D1) for some positive integer n1 and division ring D1, and so

M ∼= GLn1
(D1). We claim that Z(M) = F ∗. For otherwise, since Z(M) is

algebraic over F there exists a ∈ Z(M) \ F ∗ such that [F (a) : F ] < ∞. Now,

we have F [M ] ⊆ CMn(D)(F (a)) := A. If F [M ] 6= A, then, by the Centralizer

Theorem, we conclude that A is a simple Artinian ring. Therefore, there

exists a positive integer n2 and a division ring D2 such that A ∼= Mn2
(D2)

and so A∗ ∼= GLn2
(D2). We know that M ⊆ A∗. If M = A∗, then we

clearly have F [M ] = A which is a contradiction to our assumption. Thus,

by maximality of M , one concludes that A∗ = GLn(D), i.e., CMn(D)(F (a)) =

A = Mn(D) which contradicts the fact that a ∈ Z(M) \ F . Therefore, we

must have A = F [M ] and so Z(F [M ]) = Z(A) = F (a) by the Centralizer

Theorem. Thus, by Lemma 4, this means that [F [M ] : F ] < ∞. Now, apply

the Centralizer Theorem again to obtain Mn(D) ⊗ F (a)0p ∼= Ms(F ) ⊗ F [M ]

for some positive integer s. The last isomorphism implies that [D : F ] < ∞

which contradicts our assumption. Therefore, we must have Z(M) = F ∗

and the claim is established. Now, since F [M ] is simple and F [M ]∗ = M

we obtain Z(F [M ]) = F . Finally, consider the simple Artinian ring B :=

CMn(D)(F [M ]). There exists a positive integer n3 and a division ring D3 such

that B ∼= Mn3
(D3). If F 6= CMn(D)(F [M ]), then F ∗ ⊂ B∗ ∼= GLn3

(D3).

Therefore. there is an X ∈ B∗ \ F ∗ such that < M,X >⊆ CMn(D)(F (X)) and

so Mn(D) = CMn(D)(F (X)) which is a contradiction to the fact that X 6∈ F ∗.

Thus, F = CMn(D)(F [M ]). Now, using the Centralizer Theorem as above, one

concludes that [D : F ] < ∞ which is a contradiction and this completes the
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proof.

The next result generalizes Theorem 4.1 of [1].

Corollary 6. Let D be a division ring with centre Z(D) = F and n ≥ 1.

Assume that M is a maximal subgroup of GLn(D) such that Z(M) is algebraic

over F . If M satisfies a multi-linear polynomial identity, then [D : F ] < ∞.

The following result is also a generalization of Corollary 4.2 of [1].

Corollary 7. Let D be a division ring of infinite dimension over its

centre Z(D) = F and n ≥ 1. Then GLn(D) contains no abelian maximal

subgroup which is algebraic over F .

Corollary 8. Let D be a division ring with centre F . If either n = 1 and

D is noncommutative or n > 1 and D is infinite, then there exists no maximal

subgroup M of GLn(D), n ≥ 1, containing F ∗ such that [M : F ∗] < ∞.

Proof. Assume that there is a maximal subgroup M such that [M :

F ∗] < ∞. Then, we have [F [M ] : F ] < ∞, i.e., F [M ] is a PI-algebra and M is

algebraic over F . Thus, by Theorem 5, we obtain [D : F ] < ∞. Let x1, . . . , xt

be the representatives for cosets of F ∗ in M , i.e., M = F ∗x1 ∪ . . . ∪ F ∗xt.

Then, we have M =< x1, . . . , xt > F ∗, where < x1, . . . , xt > is the group

generated by x1, . . . , xt. Take x ∈ GLn(D)\M . By maximality of M , we

obtain GLn(D) =< x1, . . . , xt, x > F ∗. Put H =< x1, . . . , xt, x >. Thus,

GLn(D) = HF ∗ and consequently we have SLn(D) = H ′ ⊂ H, i. e., H is

normal in GLn(D). Now, by Theorem 5 of [2], we conclude that H ⊂ F ∗, i.

e., GLn(D) = F ∗ which means that n = 1 and D = F that is a contradiction

and so the result follows.

Corollary 9. Let R be a semisimple Artinian F -algebra with [Z(R) :

F ] < ∞. Assume that M is a maximal subgroup of R∗ such that Z(M) is

algebraic over F . If F [M ] satisfies a polynomial identity, then we have [R :

F ] < ∞.

Now, assume that M is a maximal subgroup of GLn(D) containing F ∗ such

that M/F ∗ is locally finite. The next result gives some information about the
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algebraic structure of M .

Theorem 10. Let D be a noncommutative division ring with centre F and

n ≥ 1. Assume that M is a maximal subgroup of GLn(D) containing F ∗ such

that M/F ∗ is locally finite. Then we have either M is absolutely irreducible

and D is locally finite dimensional or [D : F ] < ∞ and M = K∗, where K is

a subfield of Mn(D).

Proof. Consider the F -algebra F [M ]. If F [M ]∗ = GLn(D), then we

have F [M ] = Mn(D). Since M/F ∗ is locally finite we conclude that D is

locally finite dimenisional and so the result follows. Thus, we may assume

throughout that F [M ]∗ 6= GLn(D). By maximality of M we conclude that

F [M ]∗ = M . We observe that since M/F ∗ is locally finite then F [M ] is locally

finite dimensional. Therefore, for each finite set of elemnts m1 · · ·mr ∈ M

we have [F [m1 · · ·mr] : F ] < ∞. We next claim that F [M ] is a PI-algebra

satisfying P (X,Y ) = (XY − Y X)n. To do this, let x, y ∈ F [M ]. Then, there

exist elements mi, nj ∈ M with 1 ≤ i ≤ t, 1 ≤ j ≤ s such that x = m1 + · · ·mt

and y = n1 + · · ·ns, and we have [F [m1, · · ·mt, n1, · · ·ns] : F ] < ∞. Therefore,

A = F [m1, · · ·mt, n1, · · ·ns] is an Artinian PI -ring and so the Jacobson radical

J = J(A) of A is nilpotent. Therefore, by 1.3.9 of [12], we conclude that

Jn = 0. Now, by Wedderburn-Artin Theorem , there exist positive integers

n1, · · · , nk such that B := A
J(A)

∼= Mn1
(D1)×· · ·×Mnk

(Dk) as F -algebras , for

some division rings Di, where 1 ≤ i ≤ k. Now, we have B∗ = {m + J |m ∈

M ∩ A} ∼= GLn1
(D1) × · · ·GLnk

(Dk). Since B∗ is torsion over F we conclude

that each Di is torsion over F where F ⊆ Z(Di). Thus Di is torsion over

Z(Di) and by a result of Kaplansky (cf. [5]), we obtain Di = Z(Di) := Fi.

Therefore, we obtain B ∼= Mn1
(F1)× · · ·×Mnk

(Fk). If there exists i such that

ni 6= 1, then the dilatation ni × ni matrix D11(f), where f ∈ Fi, is torsion

over F . In particular, this implies that F ∗ is a torsion group. Now, F ∗ and

M/F ∗ are locally finite. Therefore, by a well-known result of group theory,

M is locally finite. By Proposition 1, either M contains an isomorphic copy

of D∗ or M is irreducible. The first case says that D∗ is locally finite. This

implies, by a result of Jacobson (cf. [5]), that D = F which is a contradiction.
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Thus, we may assume that M is irreducible and so it is completely reducible.

Therefore, by 1.1.14 of [12], we conclude that F [M ] is semisimple Artinian.

Thus, as in the above case, there exist positive integers m1, · · · ,mk such that

F [M ] ∼= Mm1
(D1)×· · ·×Mmk

(Dk), for some division rings Di, where 1 ≤ i ≤ k.

Now, we have F [M ]∗ = M ∼= GLm1
(D1) × · · ·GLmk

(Dk). Since M is locally

finite, as above, we conclude that Di = Fi = Z(Di). Therefore, F [M ] ∼=

Mm1
(F1)×· · ·×Mmk

(Fk). This means that F [M ] satisfies a polynomial identity

and so by Theorem 5 we conclude that [D : F ] < ∞. Since F ∗ is torsion we

obtain D = F which is a contradiction. Therefore, in the decomposition of B

for all i we have ni = 1, i.e., B ∼= F1 × · · · × Fk. This implies that for each

x, y ∈ A we have xy − yx ∈ J and therefore (xy − yx)n = 0 since Jn = 0.

Thus, F [M ] satisfies P (X,Y ) = (XY − Y X)n. Therefore, by Theorem 5, we

obtain [D : F ] < ∞. Since M is irreducible and [D : F ] < ∞, by 1.1.12 of [12],

we conclude that F [M ] is simple Artinian, i.e., F [M ] ∼= Mt(D1) for some t

and division ring D1. Now, we may use a similar argument as above to deduce

that D1 = F1 = Z(D1). If t 6= 1, we may conclude that F is torsion and since

[D : F ] < ∞ we obtain D = F which is a contradiction. Therefore, t = 1 and

we have F [M ]∗ = M ∼= F ∗

1 which completes the proof.

Corollary 11. Let D be a division ring with centre F and n ≥ 1. Assume

that M is a maximal subgroup of GLn(D). If M is locally finite, then we have

D = F .

Proof. If F ∗ 6⊆ M , then SLn(D) ⊂ M . Since M is torsion, we conclude

that SLn(D) is torsion. Thus, by Corollary 2 of [8], we conclude that D = F .

So, we may assume that F ∗ ⊆ M . This implies that F ∗ is torsion and so M/F ∗

is torsion. Now, Theorem 10 implies that D is algebraic over F . Therefore, D

is algebraic over its prime subfield and so by a result of Jacobson we conclude

that D = F .
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4 Group identities on M

Let D be a noncommutative division ring with infinite centre F and n be

a positive integer. Given a maximal subgroup M of A∗ such that F [M ] is

algebraic over F , the key result of this section is to show that if M satisfies a

group identity, then we have either M = K∗, where K is a field and [D : F ] <

∞ or M is absolutely irreducible. Particularly, if M is a noncommutative

soluble maximal subgroup of A∗ such that F [M ] is algebraic over F , it is

proved that M is abelian-by-locally finite. When D is of finite dimension

over F , assume that N is a subnormal subgroup of A∗ and M is a maximal

subgroup of N . It is proved that if M satisfies a group identity, then M is

abelian-by-finite.

Theorem 1. Let D be a noncommutative division ring with infinite centre

F and n ≥ 1. Assume that M is a maximal subgroup of GLn(D) such that

F [M ] is algebraic over F . If M satisfies a group identity, then we have either

M = K∗, where K is a field and [D : F ] < ∞ or M is absolutely irreducible.

Proof. If F ∗ 6⊆ M , then M is normal in GLn(D). This means that

F [M ] is normal in Mn(D). Thus, by a result of [10], we conclude that either

F [M ] ⊂ F or F [M ] = Mn(D). If the first case occurs, then we have M ⊆ F ∗

which is a contradiction to the fact that M is a maximal subgroup of GLn(D).

The second case says that M is absolutely irreducible. So, let F ∗ ⊂ M , we have

two cases to consider. If F [M ]∗ = GLn(D), then M is absolutely irreducible.

So, assume that F [M ]∗ = M . By Proposition 3.1, we know that either M

contains an isomorphic copy of D∗ or M is irreducible. If the first case occurs,

then D∗ satisfies a group identity. But since F is infinite this is impossible

by a result of Amitsur (cf. [11]). Therefore, M must be irreducible. Thus,

by 1.1.14 of [12, p. 9], we conclude that F [M ] is a prime ring. Now, by

Theorem 5.5 of [6], we have F [M ] ∼= Mr(K) for some positive integer r, where

K is an extension field of F . This shows that F [M ] satisfies a polynomial

identity. Now, by Theorem 3.5, we conclude that [D : F ] < ∞. Finally, we

have F [M ]∗ = M ∼= GLr(K). If r 6= 1, then M contains a copy of SLr(K),
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i.e., M contains a free subgroup (cf. [12]). This contradicts the fact that M

satisfies a group identity. Therefore, we have r = 1 and this completes the

proof.

Corollary 2. Let D be a division ring with infinite centre F and n ≥ 1.

Assume that M is a noncommutative maximal subgroup of GLn(D) such that

F [M ] is algebraic over F . If M satisfies a group identity, then Mn(D) is

algebraic over F .

Corollary 3. Let D be a division ring with infinite centre F and n ≥ 1.

Assume that M is a noncommutative nilpotent maximal subgroup of GLn(D)

such that F [M ] is algebraic over F . Then M is centre-by-locally finite. There-

fore, M/F ∗ is locally finite and so D is locally finite dimensional.

proof. M satisfies a group identity since M is nilpotent. Thus, by The-

orem 1, we conclude that M is absolutely irreducible. Now, by a result of

[12, p. 213], this implies that M is centre-by-locally finite and so the proof is

complete.

Corollary 4. Let D be a division ring with infinite centre F and n ≥ 1.

Assume that M is a noncommutative soluble maximal subgroup of GLn(D)

such that F [M ] is algebraic over F . Then M is abelian-by-locally finite.

proof. M satisfies a group identity since M is soluble. By Theorem 1,

we conclude that M is absolutely irreducible. Now, by a result of [13], this

implies that M is abelian-by-locally finite and so the proof is complete.

To prove our final result, we need the following

Lemma 5. Let D be a division algebra of finite dimension over its centre

F . Assume that G is a subgroup of D∗. If G satisfies a group identity, then G

is abelian-by-finite.

proof. Assume that G satisfies a group identity. Since [D : F ] < ∞ we

conclude that G is a linear group. By a theorem of Platonov (cf. [14. p. 149]),

G is soluble-by-finite, i.e., there exists a soluble normal subgroup N of G such

that G/N is finite. Since [D : F ] < ∞ we conclude that F [N ] is a division
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ring, and therefore F [N ] is semisimple. Thus, N as a linear group over F

is completely reducible. Therefore, N is a completely reducible soluble linear

group. So, by a theorem of [4, p. 111], N is abelian-by-finite and consequently,

G is abelian-by-finite which completes the proof.

Theorem 6. Let D be a noncommutative division algebra of finite dimen-

sion over its centre F and n ≥ 1. Assume that N is a subnormal subgroup of

GLn(D) and M is a maximal subgroup of N . If M satisfies a group identity,

then M is abelian-by-finite.

proof. The case n = 1 follows from Lemma 4. So, we may assume that

n ≥ 2 and N is a subnormal subgroup of GLn(D). By Theorem 11 of [8],

we have either N ⊂ F ∗ or SLn(D) ⊂ N , i.e., N is normal in GLn(D). We

now claim that M is irreducible. For otherwise assume that M is reducible.

Therefore, Dn has a nontrivial submodule as D−F [M ] bimodule. Thus, there

exists an invertible n × n matrix P over D such that PMP−1 ⊂ Σ, where

Σ = {





A B

0 C



 | A ∈ GLs(D), C ∈ GLn−s(D), B ∈ Ms×(n−s)(D)} ∩ N . It is

clear that PMP−1 is also a maximal subgroup of N . Set

T =





SLs(D) o

o SLn−s(D)



 .

Then, we have T ⊂ SLn(D) and so T ⊂ Σ. Now, we clearly have PMP−1 ⊆

Σ ⊆ N . By maximality of PMP−1 we conclude that either PMP−1 = Σ or

N = Σ. If the second case occurs, then I + en1 ∈ SLn(D) whereas I + en1 6∈

Σ = N and this contradicts the fact that SLn(D) ⊆ N . Therefore, PMP−1 =

Σ which implies that Σ satisfies a group identity, and so T ⊂ Σ satisfies a

group identity. Now, by 4.5.1 of [12], we conclude that D = F which is a

contradiction. Thus, M is irreducible as claimed. Therefore, by 1.1.12 of [12],

F [M ] is simple Artinian. So, there exists a positive integer t and a division ring

D1 such that F [M ] ∼= Mt(D1) as F -algebras. Thus, F [M ]∗ ∼= GLt(D1) and

(F [M ]∗)′ ∼= SLt(D1). Since N is normal in GLn(D) we have (F [M ]∗)′ ⊂ N .

If F [M ]∗ ∩ N = M , then we have SLt(D1) ∼= (F [M ]∗)′ ⊆ F [M ]∗ ∩ N = M .

Since M satisfies a group identity, by 4.5.1 of [12] again, we conclude that

12



either D1 is a locally finite field or t = 1 and D1 = Z(D1). In the first case

F is also a locally finite field and since [D : F ] < ∞ we conclude that D = F

which is a contradiction. The second case implies that M is abelian and the

result follows. Finally, if N ∩ F [M ]∗ = N , then N ⊆ F [M ]∗. Since N is

normal in GLn(D) we conclude that F [M ] = Mn(D), i.e., M is absolutely

irreducible. By a result of [14, p. 149], M is soluble-by-finite, i.e., there is a

soluble normal subgroup N1 such that M/N1 is finite. Now, by 1.2.12 of [12],

F [N1] is semisimple Artinian. Therefore, N1 is a soluble completely reducible

linear group. By a theorem of [4, p. 111], N1 is abelian-by-finite and therefore

M is abelian-by-finite which completes the proof.
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