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Abstract. Let i1, i2, . . . , ih be the higher Witt indices of an arbitrary non-degenerate
quadratic form over a field of characteristic 6= 2 (where h is the height of the form). We
show that for any q ∈ [1, h − 1] one has

v2(iq) ≥ min
(

v2(iq+1), . . . , v2(ih)
)

− 1

where v2 is the 2-adic order. Besides we show that

v2(iq) ≤ max
(

v2(iq+1), . . . , v2(ih)
)

provided that iq + 2(iq+1 + · · · + ih) is not a power of 2.
These inequalities are applied in [3] to the problem of determination of the small-

est possible height of an anisotropic quadratic form of any given dimension. The first
inequality formally implies Vishik’s conjecture on dim In proved previously in [6].

The method of the proof is that developed in [6]; it involves the Steenrod operations on
the modulo 2 Chow groups of some direct powers of the projective quadric. It produces
not only the above inequalities, but also some other relations between the higher Witt
indices.
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1. Introduction

We consider non-degenerate quadratic forms over fields of characteristic 6= 2 and estab-
lish the following result (the proof is given in §3 and §5; a definition of the higher Witt
indices can be found in §2):

Theorem 1.1. Let i1, i2, . . . , ih be the higher Witt indices of an arbitrary quadratic form.
Then

(lower bound) v2(iq) ≥ min
(

v2(iq+1), . . . , v2(ih)
)

− 1

for any q ∈ [1, h − 1], where v2 is the 2-adic order. Besides

(upper bound) v2(iq) ≤ max
(

v2(iq+1), . . . , v2(ih)
)

provided that in the even-dimensional case the integer iq +2(iq+1 + · · ·+ ih) is not a power
of 2.

(Note that by [2] (see also [9, th. 7.3]) the upper bound inequality fails without the
additional assumption which excludes the so-called case of maximal splitting.)

This Theorem is applied in [3] to the problem of determination of the smallest possible
height of an anisotropic quadratic form of any given dimension. As shown in §6, the first
inequality of this Theorem (together with Theorem 2.2) immediately implies Vishik’s
conjecture on dim In, where I is the fundamental ideal of the Witt ring of a field (see §6),
proved previously in [6].

The method of the proof is that developed in [6]; it involves the Steenrod operations on
the modulo 2 Chow groups of some direct powers of the projective quadric. It produces
not only Theorem 1.1, but also some other relations between the higher Witt indices.

2. Terminology, notation, and backgrounds

We use the notation and terminology of [6]. In particular, F is a field of characteristic 6=
2, φ a non-degenerate quadratic form over F (in fact, we even assume that φ is anisotropic
in most places), X the projective quadric φ = 0, Xr for any r ≥ 1 the direct product of r
copies of X, Ch(Xr) the modulo 2 Chow group of Xr. The reduced Chow group C̄h(Xr)
is defined as

C̄h(Xr) = Im
(

Ch(Xr) → colim Ch(Xr
E)

)

,

where the colimit is taken over all field extensions E/F . We write Ch(X̄r) for this colimit
and say cycles (on X̄r) for its elements. Note that the homomorphism Ch(Xr

E) → Ch(X̄r)
is an isomorphism as far as φ is completely split over E (it particular, it is so for an
algebraic closure of F ).

A cycle on X̄r is said to be rational (or F -rational), if it is inside of C̄h(Xr). We also
refer to the rational cycles on X̄r as to cycles on Xr. For an extension E/F , a cycle on
X̄r is said to be E-rational, if it is inside of C̄h(Xr

E) ⊂ Ch(X̄r). We also refer to the
E-rational cycles on X̄r as to cycles on Xr

E.
We set D = dim(X) and d = [D/2]. A basis of the group Ch(X̄) (as a vector space over

Z/2Z) is given by hi, li with i = 0, 1, . . . , d, where h ∈ Ch1(X̄) is the hyperplane section
class (which is rational) while li ∈ Chi(X̄) is the class of an i-dimensional linear subspace
(which is rational if and only if the Witt index of the quadratic form φ is > i, see Lemma
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2.7). For any r ≥ 2, a basis of the group Ch(X̄r) is given by all r-fold external products
of the elements of the basis of Ch(X̄).

The inner product h · li for any i ∈ [1, d] is equal to li−1; besides, hd+1 = 0. The
(modulo 2) total cohomological Steenrod operation S on Ch(X̄) is determined by the
formulae S(hi) = hi · (1 + h)i and S(li) = li · (1 + h)D−i+1 (for the proof of the second
formula as well as for a calculation of the binomial coefficients modulo 2 see [7]; for
construction of the Steenrod operation on the Chow groups of smooth varieties see [1]);
since S commutes with the external products, the formulae given also determine S on
Ch(X̄r) for all r ≥ 2.

We say that a cycle α ∈ Ch(X̄r) contains a given basis element β (and write β ∈ α), if
β appears in the decomposition of α into the sum of basis elements. More generally, for
two arbitrary cycles α′, α ∈ Ch(X̄r), we say that α contains α′, if every basis elements
contained in α′ is also contained in α. According to this, a rational cycle is called minimal,
if it is non-zero and does not contain a proper rational subcycle.

Lemma 2.1 ([6, lemma 4.2]). The intersection (still in the above specific sense) of rational
cycles is rational (therefore a minimal cycle is contained in every rational cycle “touched”
by it; in particular, a minimal cycle containing a given basis element β is unique (al-
though may not exist) and coincides (if exists) with the intersection of all rational cycles
containing β).

The basis elements of Ch(X̄r) which are external products of powers of h are called
non-essential (all non-essential basis elements are rational); the remaining basis elements
are called essential. A cycle on X̄r is said to be non-essential, if it does not contain any
essential basis element. The essence of a cycle α ∈ Ch(X̄r) is the sum of the essential
basis elements contained in α. Note that the essence of a rational cycle is rational.

We write h for the height of φ; i0 for the usual Witt index of φ (see [8] for the definition);
i1, . . . , ih for the higher Witt indices of φ; and 0 ≤ j0 < j1 < · · · < jh = [dim(φ)/2] for the
Witt indices of φE, where E runs over all field extension of F (so that jq = i0 + i1 + · · ·+ iq
for any q ∈ [0, h]; this equality gives a definition of the higher Witt indices).

We write F0 = F ⊂ F1 ⊂ · · · ⊂ Fh for the fields of the generic splitting tower of
the quadratic form φ; besides, for q ∈ [1, h], we write φq for the anisotropic part of
the quadratic form φFq

and we write Xq for the projective quadric of φq (the variety Xq

is defined over the field Fq). For any q ∈ [0, h] and r ∈ [1, h − q] we therefore have
jq = i0(φFq

), h(φq) = h − q, and iq+r = ir(φq). Note that for any q ∈ [1, h], the field
Fq is the function field Fq−1(Xq−1), and this gives an inductive definition of the generic
splitting tower of the quadratic form φ.

We recall the available description of the possible values of the first Witt index of the
anisotropic quadratic forms of a given dimension which will be used several times in this
paper:

Theorem 2.2 ([5]). Assume that φ is anisotropic. Then there exists an integer n ≥ 0
with 2n < dim(φ) such that i1 ∈ [1, 2n] and i1 ≡ dim(φ) (mod 2n).

Remark 2.3. Theorem 2.2 implies, in particular, that the higher Witt indices of an odd-
dimensional quadratic form are odd. Therefore Theorem 1.1 gives no information in the
odd-dimensional case.
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The original proof of the following very important result is given in [4, th. 6.1]. An
alternative proof is available in [7] (see also [6, prop. 3.3(8) and §4]):

Theorem 2.4 ([4]). Assume that φ is anisotropic. If a (rational) cycle on X2 contains
h0 × l0 and does not contain any hi × li with i > 0, then the integer dim(φ)− i1 is a power
of 2.

The following statement is a scion of [9, th. 4.13]:

Proposition 2.5 ([6, lemma 4.23]). Assume that for some q ∈ [0, h − 1] there exists
a rational cycle containing hi × l? with some i ∈ [jq, jq+1) (note that the interval is
semi-open) and none of hi × l? with i < jq. Then there exists a rational cycle containing
hjq × ljq+1−1 and none of hi × l? with i < jq.

Remark 2.6. The assumption of Proposition 2.5 is always satisfied for q = 0: the rational
cycle given by the diagonal (computed, e.g., in [6, cor. 3.9]) contains h0 × l0.

The following statement is a consequence of the Springer-Satz for quadratic forms (for
the Springer-Satz see [8]):

Lemma 2.7 ([6, cor. 2.5]). The group C̄h(X) is generated by the elements li having
i < i0(φ) together with all hi.

3. The upper bound

In this § we are assuming that φ is anisotropic.

Proposition 3.1. Let α be the minimal cycle on X2 containing the basis element h0 × l0.
If α also contains hi × li with some positive i, then such smallest integer i coincides
with the Witt index of φ over some field extension of F ; more precisely, i = jq for some
q ∈ [1, h − 1].

Proof. Let i be the smallest positive integer satisfying hi × li ∈ α. Note that i ≥ j1 (see
[6, §4]). Let q ∈ [1, h − 1] be the biggest integer with jq ≤ i. To prove that jq = i,
we assume that jq < i. Let β be the minimal cycle on X2

F (X) containing hjq × ljq+1−1.

This cycle exists and does not contain any hj × l? with j < jq by Proposition 2.5 because
of the F (X)-rationality of the cycle α − (h0 × l0). Let η ∈ C̄h(X3) be a preimage of
β under the pull-back epimorphism g∗

1 : C̄h(X3) →→ C̄h(X2
F (X)), where the morphism

g1 : X2
F (X) → X3 is induced by the generic point of the first factor of X3. We consider η

as a correspondence from X to X2 and set µ = η ◦ α. The cycle δ∗12(µ) ∈ C̄h(X2), where
δ12 : X2 → X3 is the morphism x1 × x2 → x1 × x1 × x2, contains hjq × ljq+1−1 and does
not contain any hj × l? with j < jq. Therefore the cycle δ∗12(µ) · (hi−jq ×hjq+1−1−i) contains
hi × li and does not contain h0 × l0. By Lemma 2.1, this gives a contradiction with the
minimality of α. ¤

The following observation is due to A. S. Merkurjev:

Proposition 3.2. Let n ≥ 0 be an integer such that i1 > 2n. Let α be the minimal cycle
on X2 containing h0 × li1−1 (see Remark 2.6). Let i be such that hi is a factor of some
basis element contained in α. Then i is divisible by 2n+1.
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Proof. Considerations similar to that of [6, example 4.22] show that Sj(α) = 0 for any j
with 0 < j < i1. Since α contains hi × li+i1−1 or li+i1−1 ×hi, it follows that Sj(li+i1−1) = 0

for such j. Since S2v2(i)
(li+i1−1) 6= 0 and 2v2(i) ≤ 2n < i1 if v2(i) ≤ n, it follows that

v2(i) ≥ n + 1. ¤

The key to the upper bound of Theorem 1.1 is the following result, which is in fact, in
some sense, a more precise version of the upper bound part of Theorem 1.1:

Theorem 3.3. Let α ∈ C̄h(X2) be the minimal cycle containing h0 × l0. Assume that α
also contains hi × li for some i > 0. Let q ∈ [1, h − 1] be such that

jq ≤ min{i > 0 | α ∋ hi × li} < jq+1 .

Then v2(iq+1) ≥ v2(i1).

Proof. For n = v2(i1), by Theorem 2.2, the integer 2n divides dim(φ) − i1; therefore it
divides as well dim(φ).

By Proposition 3.1, the minimal positive i with α ∋ hi × li is equal to jq; on the
other hand, by Proposition 3.2, the integer i is divisible by 2n. It follows that 2n divides
dim(φq) = dim(φ) − 2jq. Now if we assume that m < n for m = v2(iq+1), we get by
Theorem 2.2 (applied to φq) that iq+1 = i1(φq) is equal to 2m and, in particular, is smaller
than i1, a contradiction with [9, th. 7.7(1)] (see also [6, §4]). ¤

Proof of the upper bound relation of Theorem 1.1. Clearly, it suffices to prove the upper
bound inequality of Theorem 1.1 only for q = 1. Let α be the minimal cycle on X2

containing h0 × l0. Since dim(φ)− i1 is not a power of 2 (by the special assumption of the
upper bound part of Theorem 1.1), the hypothesis of Theorem 3.3 is satisfied by Theorem
2.4. Consequently, by Theorem 3.3, v2(i1) ≤ v2(iq+1) for some q ∈ [1, h − 1]. ¤

4. A trick

A simple (may be strange looking) idea developed in this § allows one to avoid a solid
amount of direct computation done in [6, §6]. One can say that the (only real) difference
between the proof of Vishik’s conjecture given in [6] and the proof via the upper bound
of Theorem 1.1 presented here in §6, is contained in the current §.

Assume for a moment that φ is isotropic and let ψ be a Witt-equivalent to φ quadratic
form with dim(ψ) < dim(φ). We write n for the integer

(

dim(φ) − dim(ψ)
)

/2. Let Y be
the projective quadric given by ψ.

Let us write Ch(X̄∗) for the direct sum
⊕

Ch(X̄r) taken over all r ≥ 1 and consider
the commuting with the external products ∗-homogeneous group homomorphisms

pr ∗ : Ch(X̄∗) → Ch(Ȳ ∗) and in∗ : Ch(Ȳ ∗) → Ch(X̄∗)

determined by pr 1(hi) = hi−n, pr 1(li) = li−n, in1(hi) = hi+n, in1(li) = li+n (hi and li are
(defined as) 0 as far as i is outside of the interval of the admissible values).

Obviously, the composite pr ∗ ◦ in∗ is the identity. Moreover, both pr ∗ and in∗ preserve
rationality of cycles (see [6, cor. 2.4]).
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Lemma 4.1. Let δX : X → X2 and δY : Y → Y 2 be the diagonal morphisms. Let β be a
cycle on Ȳ 2 such that β 6∋ ld−n × ld−n in the case of even D. Then

δ∗X
(

in2(β)
)

= hn · in1
(

δ∗Y (β)
)

.

Proof. A direct verification on the basis. ¤

In the following Proposition we do not assume that φ is isotropic anymore.

Proposition 4.2. Let α be a homogeneous cycle on X̄2. Assume that for some q ∈
[0, h− 1] the cycle α is Fq-rational and does not contain any hi × l? or l? ×hi with i < jq.
Then δ∗X(α) is non-essential (in particular, δ∗X(α) = 0 if codim α > d).

Proof. If codim α > D, then the cycle δ∗X(α) is zero simply because its dimension is
negative; below we assume that codim α ≤ D.

Since α is Fq-rational, α 6∋ ld × ld by [6, lemma 4.1]; therefore, α contains none of li × lj
(those different from ld × ld are excluded simply by the dimension assumption).

Let α′ be the essence of α (the definition of essence is given in §2). The cycle α′ is still
Fq-rational and δ∗X(α′) is the essence of δ∗X(α).

The remaining assumption on α ensures that α′ = in2(β) for some β ∈ Ch(X̄q
2
). Since

β = pr 2(α′), the cycle β is rational (where “rational” means “Fq-rational” because Fq is
the field of definition for the quadric Xq) and satisfies the assumption of Lemma 4.1 (with
n = jq). By the formula of Lemma 4.1, it follows that δ∗X(α′) ∈ hjq · C̄h(XFq

). The group
hjq · C̄h(XFq

) consists of non-essential elements by Lemma 2.7. ¤

5. The lower bound

Assume that we are given a counter-example (with q = 1 and with an anisotropic
quadratic form) to the lower bound inequality of Theorem 1.1: an even-dimensional
anisotropic quadratic form φ of height > 1 with v2(i1) ≤ v2(i2, . . . , ih)− 2. Let n = v2(i1).
Since 2n+2 divides iq for each q ∈ [2, h], Theorem 2.2 shows that i1 is a power of 2, that
is, i1 = 2n. Note that the difference dim(φ) − i1 can not be a power of 2 (because it is
bigger that 2n and congruent to 2n modulo 2n+3), therefore, by Theorem 2.4, the minimal
cycle α ∈ C̄h(X2) containing h0 × l0 also contains hi × li for some i > 0. Moreover, by
Proposition 3.1, min{i > 0 | α ∋ hi × li} = jq for some q ∈ [1, h − 1].

We fix the following notation (using the particular q introduced above):

a = i1 ,

b = i2 + · · · + iq = jq − a ,

c = iq+1 .

By Lemma 2.1, the following Proposition contradicts the minimality of α and therefore
proves that our counter-example is a fake one. The following morphisms are used in the
statement: g1 : X2

F (X) → X3 is introduced above; t12 : X3 → X3, (x1, x2, x3) 7→ (x2, x1, x3)

is the transposition of the first two factors of X3; δX2 : X2 → X4, (x1, x2) 7→ (x1, x2, x1, x2)
is the diagonal morphism of X2. Note that by Proposition 2.5 there exists a cycle in
C̄h(X2

F (X)) containing ha+b × la+b+c−1.
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Proposition 5.1. Let β ∈ C̄h(X2
F (X)) be the minimal cycle containing ha+b × la+b+c−1.

Let η ∈ C̄h(X3) be a preimage of β under the pull-back epimorphism g∗
1. Let µ be the

essence of the composite η ◦ α. Then the cycle

(h0 × hc−a−1) · δ∗X2

(

t∗12(µ) ◦
(

S2a(µ) · (h0 × h0 × hc−a−1)
)

)

∈ C̄h(X2)

contains ha+b × la+b and does not contain h0 × l0.

Proof. We recall our notation:

a = i1 ,

b = i2 + · · · + iq = jq − a ,

c = iq+1 .

We keep in mind that a = 2n, b ≥ 0, 2n+2 divides b and c, and dim(φ) ≡ 2a (mod 2n+2)
(the congruence is in fact valid even modulo 2n+3 but we do not care).

Note that for a given i, the basis element hi × li appears in α only if i is outside of the
open interval (0, a + b). Since the cycle β does not contain any basis element having hi

with i < a + b as a factor and is symmetric (by [6, lemma 4.17]), we have β = β0 + β1,
where

β0 = Sym
(

ha+b × la+b+c−1

)

,

β1 = Sym
(

∑

i∈I

hi+a+b × li+a+b+c−1

)

with some set of positive integers I, where Sym of a cycle on X̄2 is the symmetrization,
that is, the cycle plus its transpose. Furthermore

µ ≡ h0 × β + ha+b × γ (mod (h1+a+b × h0 × h0) · Ch(X̄3))

with γ = γ0 + γ1, where

γ0 = x · (h0 × la+b+c−1) + y · (la+b+c−1 × h0) ,

γ1 =
∑

j∈J

hj × lj+a+b+c−1 +
∑

j∈J ′

lj+a+b+c−1 × hj

for some modulo 2 integers x, y ∈ Z/2Z and some sets J, J ′ ⊂ Z>0.

Lemma 5.2. One has: x = y = 1, I ⊂ Z≥c, and J, J ′ ⊂ Z≥a+b+c.

Proof. To determine y, consider the cycle δ∗13(µ) · (h0 × hc−1) ∈ C̄h(X2) where δ13 : X2 →
X3 is the morphism (x1, x2) 7→ (x1, x2, x1). This rational cycle does not contain h0 × l0,
while the coefficient of ha+b × la+b is equal to 1+y; consequently, y = 1 by the minimality
of α.

Similarly, using δ∗12, one shows that x = 1 (but actually the value of x is not important
for our future purpose).

To show that I ⊂ Z≥c, assume that i < c for some i ∈ I. Then li+a+b ∈ C̄h(XFq+1) and
therefore the cycle

li+a+b+c−1 = (pr 3)∗

(

(l0 × li+a+b × h0) · µ
)
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(where pr 3 : X3 → X is the projection onto the third factor) is Fq+1-rational. This is a
contradiction with Lemma 2.7 (note that i > 0) because i + a + b + c − 1 ≥ a + b + c =
jq+1(X) = i0(XFq+1).

To prove the statement on J , let us assume the contrary: there exists j ∈ J with
j < a + b + c. Then lj ∈ C̄h(XFq+1) and therefore

lj+a+b+c−1 = (pr 3)∗

(

(la+b × lj × h0) · µ
)

∈ C̄h(XFq+1) ,

a contradiction (note that j > 0). The statement on J ′ is proved similarly. ¤

Lemma 5.3. The cycle β is F1-rational. The cycles γ and γ1 are Fq+1-rational.

Proof. Let pr 23 : X3 → X2, (x1, x2, x3) 7→ (x2, x3) be the projection onto the product
of the second and the third factors of X3. The cycle l0 is F1-rational, therefore β =

(pr 23)∗

(

(l0 × h0 × h0) · µ
)

is F1-rational. The cycle la+b is Fq+1-rational, therefore γ =

(pr 23)∗

(

(la+b × h0 × h0) · µ
)

is Fq+1-rational. Since γ0 is Fq+1-rational, it follows that γ1

Fq+1-rational as well. ¤

Setting

ξ = δ∗X2

(

t∗12(µ) ◦
(

S2a(µ) · (h0 × h0 × hc−a−1)
)

)

,

we continue the proof of Proposition 5.1 which states that the cycle ξ · (h0 × hc−a−1) ∈
C̄h(X2) contains ha+b × la+b and does not contain h0 × l0.

If the cycle ξ · (h0 × hc−a−1) contains h0 × l0, then ξ ∋ h0 × lc−a−1. Passing from F to
F1 = F (X), we get

C̄h(XF (X)) ∋ (pr 2)∗

(

(l0 × h0) · ξ
)

= lc−a−1

(pr 2 : X2 → X is the projection onto the second factor of X2), a contradiction with
Lemma 2.7 because c − a − 1 ≥ a = i1(X) = i0(XF (X)).

It remains to show that ha+b × lb+c−1 ∈ ξ. Equivalently, it remains to show that

δ∗X

(

γ ◦
(

S2a(β) · (h0 × hc−a−1)
)

+ β ◦
(

S2a(γ) · (h0 × hc−a−1)
)

)

= lb+c−1

with δX : X → X2 being the diagonal morphism of X.
We start by showing that

(1) δ∗X

(

β ◦
(

S2a(γ) · (h0 × hc−a−1)
)

)

= 0 .

Note that S2a vanishes on h0 × la+b+c−1. Therefore S2a(γ) = S2a(γ1). Also note, that we
may assume that dim(X) ≥ 4(a+b+c)−2 because otherwise γ1 = 0. It is straighforward
to see that for any j < a + b + c none of the basis elements hj × lj+b+c−1 and lj+b+c−1 ×hj

is present in β ◦
(

S2a(γ1) · (h
0 × hc−a−1)

)

(look at the index of the first factor of the basis
elements contained in S2a(γ1) and use Lemma 5.2). Taking in account Lemma 5.3, we
obtain the relation (1) as a consequence of Proposition 4.2.
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Since S2a(β0) = Sym
(

h2a+b×lb+c−1

)

, we have γ0◦
(

S2a(β0) ·(h
0×hc−a−1)

)

= lb+c−1×h0

and

(2) δ∗X

(

γ0 ◦
(

S2a(β0) · (h
0 × hc−a−1)

)

)

= lb+c−1 .

The composite γ0 ◦
(

S2a(β1) · (h
0 × hc−a−1)

)

is 0 by the following reason. Every basis
element included in the cycle S2a(β1) · (h

0 × hc−a−1) has on the second factor place either
lj with j ≥ b+ c > 0 or hj with j ≥ b+2c−1 > a+ b+ c−1 (while the two basis elements
of γ0 have h0 and la+b+c−1 on the first factor place). Consequently

(3) δ∗X

(

γ0 ◦
(

S2a(β1) · (h
0 × hc−a−1)

)

)

= 0 .

It is straightforward to see that for any j < a + b + c none of the basis elements
hj × lj+b+c−1 and lj+b+c−1 ×hj is present in γ1 ◦

(

S2a(β) · (h0 ×hc−a−1)
)

(look at the index
of the second factor of the basis elements contained in γ1). Therefore the relation

(4) δ∗X

(

γ1 ◦
(

S2a(β) · (h0 × hc−a−1)
)

)

= 0

holds by Proposition 4.2 once again taking in account Lemma 5.3.
Taking the sum of the established relations (1)–(4), we finish the proof of Proposition

5.1 (and also the proof of the lower bound inequality of Theorem 1.1). ¤

6. Holes in In

Let W (F ) be the Witt ring ([8, def. 1.2 of ch.2]) of the classes of the quadratic forms
over the field F , and let I(F ) ⊂ W (F ) be the ideal of the classes of all even-dimensional
forms.

Here we show how the lower bound inequality of Theorem 1.1 implies

Theorem 6.1 ([6]). Let n ≥ 2 be an integer, φ an anisotropic quadratic form such that
φ ∈ I(F )n and 2n < dim(φ) < 2n+1. Then dim(φ) = 2n+1 − 2i+1 for some i ∈ [0, n − 2].

Proof. Assume that we are given a counter-example φ. We replace F by the biggest field
Fq of the generic splitting tower of φ such that the dimension of the anisotropic part of
φFq

is still “wrong”, and we replace φ by this anisotropic part. Applying Theorem 2.2,
we see that the situation is as follows: dim(φ) = 2n+1 − 2i+1 + 2j with i ∈ [1, n − 1] and
j ∈ [1, i− 1]; moreover the higher Witt indices of φ are 2j−1, 2i, 2i+1, . . . , 2n−1. Therefore
φ is a counter-example to the lower bound inequality of Theorem 1.1. ¤
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