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Abstract. We prove Berhuy-Reichstein’s conjecture on the canonical dimension of or-
thogonal groups showing that for any integer n ≥ 1, the canonical dimension of SO2n+1


and of SO2n+2 is equal to n(n + 1)/2. More precisely, for a given (2n + 1)-dimensional
quadratic form φ defined over an arbitrary field F of characteristic 6= 2, we establish cer-
tain property of the correspondences on the orthogonal grassmanian X of n-dimensional
totally isotropic subspaces of φ, provided that the degree over F of any finite splitting
field of φ is divisible by 2n; this property allows to prove that the function field of X has
the minimal transcendence degree among all generic splitting fields of φ.


1. Results


Let F be an arbitrary field of characteristic 6= 2, φ a non-degenerate (2n+1)-dimensional
quadratic form over F (with n ≥ 1), X the orthogonal grassmanian of n-dimensional
totally isotropic subspaces of φ. The variety X is projective, smooth, and geometrically
connected; dim X = n(n + 1)/2. We write d(X) for the greatest common divisor of the
degrees of all closed points on X.


In this paper, a field extension E/F is called a splitting field of φ, if the Witt index (see
[9] for the definition of the Witt index of a quadratic form) of the form φE is maximal
(i.e., equal to n). Note that a field extension E/F is a splitting field of φ, if and only if
the set X(E) is non-empty. We write d(φ) for the greatest common divisor of the degrees
of all finite splitting fields of φ.


Clearly, d(φ) = d(X). Moreover, this integer is a power of 2 not exceeding 2n. The
equality d(φ) = 2n holds if, for example, the even Clifford algebra C0(φ) of the quadratic
form φ is a division algebra. Of course, it is so for the (2n + 1)-dimensional generic
quadratic form 〈t1, . . . , t2n+1〉 (defined over the field F (t1, . . . , t2n+1) of rational functions
in variables t1, . . . , t2n+1).


A splitting field L/F of φ is called generic, if it is finitely generated and for any splitting
field E/F and any non-zero element a ∈ L there exists an F -place f : L → E such that
f(a) is neither 0 nor ∞. The function field F (X) is a generic splitting field of φ. In fact,
it is even very generic in the sense of [1] (where it is also explained how the “very generic”
property implies the “generic” one): indeed, if E/F is a splitting field, the variety XE is
rational (as any projective homogeneous variety with a rational point is) and therefore
F (X) is contained in a purely transcendental extension of E (in E(X) namely).


Following [1], we define the canonical dimension cd(φ) of φ as the minimum of the
transcendence degrees of all generic splitting fields of φ (the canonical dimension of SO2n+1
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is then the maximum of cd(φ) when φ runs over all (2n + 1)-dimensional quadratic forms
over (finitely generated) extensions of F ; the canonical dimension of SO2n+2 coincides
with the canonical dimension of SO2n+1, see [1]).


Our main result here reads as follows:


Theorem 1.1. If d(φ) = 2n, then cd(φ) = n(n + 1)/2. In particular,


cd(SO2n+1) = cd(SO2n+2) = n(n + 1)/2 .


The proof is given in section 2. It immediately follows from Theorem 1.2 (proved too in
section 2), dealing with correspondences on X. A similar situation occurs in the proof of
[1, th. 11.3] based on [4, th. 2.1] dealing with correspondences on a Severi-Brauer variety.
An alternative proof of [4, th. 2.1], making use of a degree formula, is given in [7, §7.2].
However, for the similar statement [4, th. 6.4], concerning correspondences on quadrics
(producing a similar to Theorem 1.1 result [5, th. 4.3] on the minimum of transcendence
degree of generic isotropy fields of a quadratic form), there is no proof making use of a
degree formula. In the present article as well, we use neither degree formulas nor Steenrod
operations.


Theorem 1.2. If d(X) = 2n, then the multiplicity of any correspondence α : X Ã X is


congruent modulo 2 to the multiplicity of the transpose of α. In particular, any rational


map X → X is necessarily dominant.


Here by a correspondence X Ã X we mean an algebraic cycle on X ×X of dimension
dim X. The multiplicity mult(α) of such a correspondence α is defined by the formula
(pr 1)∗(α) = mult(α) · [X], where pr 1 : X ×X → X is the projection onto the first factor,
while (pr 1)∗ is the push-forward homomorphism of the group of algebraic cycles, see [3]
(we do not use any equivalence relation on algebraic cycles yet). For the transpose αt of α
we clearly have: mult(αt) · [X] = (pr 2)∗(α). The statement on rational maps is obtained
by consideration of the correspondence given by the closure in X × X of the graph of a
given rational map X → X.


Remark 1.3. Assume that d(X) = 2n. Although we have Theorem 1.2, we do not
know whether the variety X is 2-incompressible in the sense of [7, §7]. Note that the
only known proof of p-incompressibility of Severi-Brauer varieties of p-primary division
algebras (p is an arbitrary prime), given in [7, §7.2], makes use of a degree formula while
the incompressibility of quadrics with first Witt index 1 [5, cor. 3.4] can not be proved
by a degree formula.


On its turn, Theorem 1.2 follows (in a way very similar to the way [4, th. 2.1] follows
from [4, cor. 2.3]) from the following computation of the reduced modulo 2 Chow group
C̄h(X), defined as the image of the restriction homomorphism Ch(X) → Ch(X̄) of the
usual modulo 2 Chow groups, where X̄ is X over an algebraic closure F̄ of F (a general
reference for Chow groups is [3]):


Proposition 1.4. If d(X) = 2n, then C̄h
>0


(X) = 0.


The next section starts with the proof of Proposition 1.4.
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2. Proofs


In the proof of Proposition 1.4, we are going to use the description of the integral Chow
ring CH(X̄) given in [8] (we borrowed this reference from beautiful Totaro’s paper [10]).
The graded ring CH∗(X̄) is isomorphic to the quotient of the polynomial ring Z[e1, . . . , en]
by the ideal generated by the polynomials


e2


i − 2ei−1ei+1 + 2ei−2ei+2 − · · · + (−1)i−12e1e2i−1 + (−1)ie2i


with i = 1, . . . , n (ei should be understood to mean 0 for i > n in this formula), where
the degree of ei is i. The element of CH(X̄) corresponding to the class of ei is a special
Schubert class; we still write ei for it. For any i, the element 2ei is the i-th Chern class
of the tautological vector bundle on the grassmanian, therefore is rational, that is, lies in
the integral reduced Chow group C̄H(X) ⊂ CH(X̄).


For any subset I of the set {1, 2, . . . , n}, let us define an element eI ∈ CH(X̄) as the
product


∏


i∈I ei. Defining |I| as
∑


i∈I i, we have codim eI = |I|. The element e{1,2,...,n} of
the maximal codimension 1+2+ · · ·+n = dim X is equal to the class of a rational point.


A basis of the modulo 2 Chow group Ch(X̄) is given by the classes of the elements
eI , where I runs over all subsets of the set {1, 2, . . . , n} (in particular, the dimension of
Ch(X̄) (as a vector space over Z/2Z) is equal to 2n).


Proof of Proposition 1.4. Assume the contrary: there exists a homogeneous element α ∈
C̄H(X) of a positive codimension such that α (mod 2) is a non-zero element of C̄h(X).
Decomposing α in a sum of some eI (without repetitions) plus 2β with some β ∈ CH(X̄),
let us fix a set I such that the element eI occurs in the decomposition. Let J be the
complement of I. Let m be the number of elements in J (note that m < n). Then the
product 2meJ is rational. We claim that the degree of the rational 0-cycle α · (2meJ) is an
odd multiple of 2m: indeed, the product eI · (2


meJ) = 2me{1,2,...,n} has the degree 2m, while
the product eI′ · (2


meJ) for any I ′ 6= I with |I ′| = |I| as well as the product (2β) · (2meJ)
are 0 modulo 2m+1. We have got a contradiction with the assumption on d(X). ¤


In the proof of Theorem 1.2, which follows, we use a motivic decomposition of X×X (in
the category of the integral Chow motives), produced in [2]. This motivic decomposition
arises from the relative cellular structure on X × X, where the cells are the orbits of the
diagonal G-action for G = SO(φ). Every summand of this decomposition is a Tate twist
of the motive of X. More precisely, there is one copy of the motive of X (without twist,
that is, with the zero twist), while the remaining summands have some positive twists
(although we do not need the completely precise information, here it is: for any i, the
number of summands twisted i times is equal to the rank of the group CHi(X̄)).


To be absolutely precise, we have to say that the motivic decomposition of X given in
[2] is not yet the decomposition described above: it also contains motives of certain flag
varieties of the tautological vector bundle on X. However the motive of each such flag
variety decomposes in the sum of some twists of the motive of X by [6].


Proof of Theorem 1.2. First of all, since X is projective, the multiplicity homomorphism
factors through the Chow group, so that we have mult : CHN(X × X) → Z, where
N = dim X = n(n+1)/2. Since the multiplicity of a cycle is not changed under extensions
of the base field, the multiplicity homomorphism factors even through the reduced Chow
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group, so that we may replace CH(X × X) by C̄H(X × X). Since we are interested in
multiplicities modulo 2, we consider the induced homomorphism of the modulo 2 Chow
group (still denoted by mult): mult : C̄hN(X × X) → Z/2Z.


Theorem under proof claims that the image of the homomorphism


f : C̄h(X × X) → Z/2Z ⊕ Z/2Z , f : α 7→
(


mult(α), mult(αt)
)


is contained in the diagonal subgroup of Z/2Z⊕Z/2Z. Using the described above motivic
decomposition of X×X, we get a decomposition of C̄hN(X×X) in the direct sum, where
the summands are: one copy of C̄hN(X) and several copies of C̄hi(X) with various i < N .
Since C̄hi(X) = 0 for any i < N by Proposition 1.4, the image of the homomorphism f
is cyclic. Since on the other hand, f([∆X ]) = (1, 1), the image of f is generated by (1, 1),
that is, coincides with the diagonal subgroup of Z/2Z ⊕ Z/2Z. ¤


Proof of Theorem 1.1. We repeat the proof of [1, th. 11.3] using Theorem 1.2 instead
of [7, §7.2] (and meaning by X our orthogonal grassmanian instead of a Severi-Brauer
variety).


Since the field F (X) is a generic splitting field of φ and has the transcendence degree
n(n+1)/2, the inequality cd(φ) ≤ n(n+1)/2 holds (the assumption on d(φ) is not needed
for this bound).


If now L is another generic splitting field of φ, then we show that tr. deg(L/F ) ≥
n(n + 1)/2 as follows. Let Y be a projective model of L/F . Since both F (X) and
F (Y ) are generic splitting fields of φ, there exist rational morphisms f : X → Y and
g : Y → X. Moreover, for any non-empty open subset U ⊂ Y , there exists a rational
morphism X → Y with an image meeting U , so that we may assume that f and g are
composable. Since the rational map X → X given by the composition g ◦ f is dominant
by Theorem 1.2, the dimension of Y is at least equal to dim X = n(n + 1)/2. ¤
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