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Abstract

Let D be an F-central division algebra of degree p”, p a prime. A set of
criteria is given for D to be a crossed product in terms of irreducible soluble
or abelian-by-finite subgroups of the multiplicative group D* of D. Using the
Amitsur’s classification of finite subgroups of D* and the Tits Alternative, it
is shown that D is a crossed product if and only if D* contains an irreducible
soluble subgroup. Further criteria are also presented in terms of irreducible
abelian-by-finite subgroups and irreducible subgroups satisfying a group iden-
tity. Using the above results, it is shown that if D* contains an irreducible

finite subgroup, then D is a crossed product.

1 Introduction

Let D be an F-central division algebra of degree n. The algebra D is called a crossed
product if it contains a maximal subfield K such that K/F is Galois. We shall say
that D is a nilpotent crossed product if Gal(K/F) is nilpotent. A subgroup G of D*



is said to be irreducible if F|G] = D. When n = p, a prime, it is shown in [6] that D
is cyclic if and only if D* contains a nonabelian soluble subgroup. A criterion is also
given in [3]| for D to be a supersoluble (nilpotent) crossed product division algebra
in terms of subgroups D*. More precisely, it is shown that D is a supersoluble
(nilpotent) crossed product if and only if D* contains an abelian-by-supersoluble
(abelian-by-nilpotent) irreducible subgroup. The aim of this paper is to generalize
some of these results to a division algebra of a prime power degree p". In fact,
we present a set of criteria for D to be a crossed product in terms of irreducible
soluble or abelian-by-finite subgroups of D*. To be more precise, it is shown that
D is a nilpotent crossed product if and only if D* contains an irreducible soluble
subgroup. In addition, it is shown that, except for the case CharF = 0, p = 2
and r > 1, D is a crossed product if and only if either of the following conditions
holds: (i) D* contains an irreducible abelian-by-finite subgroup, or (ii) D* contains
an irreducible subgroup satisfying a group identity. Furthermore, it is proved that
these conclusions also hold for the above excluded case provided that D* contains no
finite subgroup isomorphic to SLy(Z5). Finally, given a non-commutative F-central
division algebra D of index p”, p a prime, using the above mentioned results, it
is shown that if D* contains an irreducible finite subgroup G, then D is a crossed
product. We note that soluble subgroups of the multiplicative group of a division

ring were first studied by Suprunenko in [10].

2 Notations and conventions

We now recall some notations and conventions that are used throughout. Let D
be an F-central division algebra and G be a subgroup of D*. The F-linear hull of
G, i.e., the F-algebra generated by elements of G over F', is denoted by F[G]|. G
is called irreducible if D = F|[G]. For any group G we denote its center by Z(G).
Given a subgroup H of G, Ng(H) means the normalizer of H in G, and (H, K) the
group generated by H and K, where K is a subgroup of G. We shall say that H is
abelian-by-finite if there is an abelian normal subgroup K of H such that H/K is
finite. Let S be a subset of D, then the centralizer of S in D is denoted by Cp(.S).

For notations and results, used in the text, on central simple algebras see [7].



3 Irreducible soluble subgroups

Let D be an F-central division algebra of degree p”, p a prime. This section inves-
tigates the structure of D under the condition that D* has an irreducible soluble
subgroup. To be more precise, it is shown that D is a crossed product if and only if

D* contains an irreducible soluble subgroup. We begin our study with the following:

Lemma 1. Let D be a finite dimensional F-central division algebra. If D is a

soluble crossed product, then D* contains an irreducible soluble subgroup.

PROOF. Let K be a maximal subfield of D such that K/F is soluble Galois.
By Skolem-Noether Theorem, for any ¢ € Gal(K/F) there exists an element z €
N = Np«(K*) such that o(k) = zkz~!, for all kK € K. Hence Np«(K*)/Cp(K*) ~
Gal(K/F). Since K is a maximal subfield of D, we have Cp«(K*) = K*. There-
fore, Np«(K*) is a soluble subgroup of D*. To complete the proof of the lemma,
it is enough to show that N is irreducible, i.e., F[N] = D. Put D, = F[N]. We
have Cp(Dy) € Cp(K) = K, and hence Cp(D;) is an intermediate field of the
Galois extension K/F. By the fact that every element of Gal(K/F') is the restric-
tion of an inner automorphism of N we conclude that Cp(D;) C Fiz(Gal(K/F)).
Therefore Cp(D;) = F. Now, by Centralizer Theorem, we obtain D = Cp(F) =
Cp(Cp(D1)) = Dy, which completes the proof. d

The following lemma is used in many proofs below, its idea is due to Suprunenko
[10].

Lemma 2. Let D be a finite dimensional F'-central division algebra. Suppose that
G is a subgroup of D* such that F* C Z(G). If K = Z(G) U{0} is a subfield of
D and G/K* is abelian, then we have [K[G] : K] = |G/K*| and hence G/K* is a
finite group.

ProOOF. Let ¢1,...,9; be a set of linearly independent elements of G over K.
It is clearly seen that g1 K*, ..., g, K* are distinct elements of G/K*. On the other
hand, if g; K*, ..., g K* are distinct elements of G/K*, we shall show that ¢y,..., g



are linearly independent over K. To see this, since G/K* is abelian, for every g € G
we have gg;ig~! = k;g; with 1 < i < t, where k; € K*. We claim that for each pair
i # j we can find an element g in G such that k; # k;. For suppose that for each
g in G we have ggig'g;' = ki = gg;97'g; ' = kj. Therefore, we conclude that
g, gj_lgi] =1, and hence gj_lgi € K*. This contradicts the choice of g.s, and so the
claim is established. Now, suppose that gy, ..., g; are linearly dependent over K and
consider a relation

)\191+...+)\tgt:(). (*)

Of all relations of the form (%), there must be at least one for which the number
of nonzero terms is least. Let (x) be such a relation. Now, we may assume that
A1 # 0, Ay # 0 and choose g in G such that k| = gg197 97" # 9929795 = ko. From
the relation (*) we obtain

ki(Aigr + .o+ Mge) — g(agr + o F Ng)gt = Mk + o Nkige — (Mkigr +
oo Aikige) = Xa(ky — ko)ga + ... 4+ Me(ky — ki)ge = 0.

Now, the last equation contradicts the choice of the relation (x). Therefore, g1, ..., g

are a linearly independent subset of G over K, and this completes the proof.
To prove our next lemma, we shall need the following results from [3].

LEMMA A. Let D be a finite dimensional F-central division algebra. Suppose
that K is a subfield of D containing F. If G is an irreducible subgroup of D* such
that K* < G, then K/F is Galois and G/Cq(K*) ~ Gal(K/F).

LEMMA B. Let D be a finite dimensional F-central division algebra and let G
be an irreducible subgroup of D*. If K is a subfield of D containing F' such that
|G : Co(K*)] = [K : F], then Cp(K) = F[Cq(K™*)].

THEOREM C. Let D be a noncommutative finite dimensional F-central division
algebra. Then D is a nilpotent crossed product if and only if there exist an irreducible

subgroup G of D* and an abelian normal subgroup A of G such that G /A is nilpotent.

Lemma 3. Let D be a finite dimensional F-central division algebra of index n. As-
sume that D* contains an irreducible soluble subgroup. Then we have the following:

(i) there is an irreducible soluble subgroup G and a mazimal abelian normal subgroup



K* of G such that K = K*U{0} is a subfield of D and G/K* is finite. Furthermore,
setting H := Cg(K™), then the derived group H' of H is also finite.

(ii) Assume the notation of (i). If H' is abelian and n = q", q a prime, then G/K*
18 @ q-group.

(111) Keep the notation of (i). If H' is nonabelian and n = q", q a prime, then H'>
is a g-group, where H* denotes the i-th term of the derived series of H.

() If D is a non-crossed product with index i(D) = 2", then D* contains the finite
quaternion subgroup Qs, or SLo(Z3), or the binary octahedral group of order 48.

PROOF. (i) Let Gy be an irreducible soluble subgroup of D*. By Lemma 3 of
[5], we know that Gy is abelian-by-finite, i.e., there is an abelian normal subgroup
A in Gy of finite index. Take A maximal in Gy, and set K = F/(A). One may easily
show that Gy C Np«(A) and that K*Gy is an irreducible soluble subgroup of D*.
Set G = K*G. Then, it is easily seen that K* is maximal abelian normal in G and
G/K* is a finite group. Furthermore, we know that H/Z(H) is finite and hence, by
Theorem 15.1.13 of [8], the derived group H' is a finite group.

(ii) Because H' C C¢(K*), K*H' is an abelian normal subgroup of G. Hence, by
maximality of K*, we have H' C K* = Z(H). Therefore, H/K* is abelian. Now, by
Lemma 2, we conclude that [K[H] : K] = |[H/K*|. Since [D : F] = ¢*" and F* C K*
we conclude that [K[H] : K| divides ¢*", i.e., there exists a natural number s such
that |H/K*| = [K[H] : K] = ¢°. Now, by Lemma A, we have G/H ~ Gal(K/F)
and K/F is a Galois extension. Since i(D) = ¢" there exists a natural number ¢
such that |Gal(K/F)| = [K : F] = ¢". Thus, |G/H| = ¢' and hence |G/K*| = ¢°*,
i.e., G/K* is a g-group.

(iii) Suppose that H’ is nonabelian. Then, the soluble length of H ist = I(H) >
3. Now, consider the derived chain (¢) = H' € H"™' C ... C H' C H. It is clear
that H'~! is abelian and H®"?2 is a nonabelian subgroup of H’. Now, we know that
H'™' <G and H*™! C Cg(K*). Thus, H"'K* is an abelian normal subgroup of G.
Hence, by maximality of K*, we conclude that H*~! C K*. Therefore, H'2K*/K*
is an abelian subgroup of G/K*. Set N = H'"2K*. We note that N is normal in G,
and hence Z(NN) is an abelian normal subgroup of G containing K*. By maximality
of K*, we have Z(N) = K*. Now, N is a subgroup of D* such that N/K* is abelian
and Z(N) = K*. By Lemma 2, we obtain [K[N] : K| = |[N/K*|. By our assumption,
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we know that [K[N] : K] divides ¢*". Therefore, N/K* ~ H'2/K*N H"" % is a ¢-
group. Now, by Lemma B, we have F[H| = K[H| = Cp(K). Put D, = Cp(K).
We know that Z(D;) = K. We now claim that H'~2 is a ¢g-group. To see this, let
x € H'2. Then, there exists a natural number s such that z¢9° € K*NH*2. On the
other hand, 29" € H' C Dj, and hence RNp, k(%) = 1. Since 27" € K* = Z(D;)*
we obtain RNp, /x(z7") = (29"){P1) = 24" where i(D;) = ¢*. Therefore, 29" = 1

and so H'~? is a finite ¢g-group.

(iv) Let G be the irreducible soluble subgroup obtained by (i) and keep the
notations of the above cases. If H' is abelian, then by the case (ii), G/K* is a 2-
group and hence nilpotent and so G is an irreducible abelian-by-nilpotent subgroup
of D*. Now, by Theorem C, we conclude that D is a nilpotent crossed product,
which contradicts our assumption that D is a non-crossed product. Therefore, H’
is nonabelian. By (iii) we conclude that H'™2 is a finite 2-group. Now, by a result
of [9, p.45], we conclude that H'~2 is cyclic or a (generalized) quaternion group.
Since H'"? is nonabelian we conclude that H'~? is a (generalized) quaternion group.
We recall that the (generalized) quaternion group of order 2%, u > 3, is defined with
the presentation Qou = ( 2,y | 22" = y%, y* =1, yay~' = z~1). It is clear that
() < Qo and Q%) = (22). Thus, (22) is a characteristic subgroup of H'~2 and
hence (z?) is an abelian normal subgroup of G. We note that (z?) C Cg(K*) and
so K*(z?) is an abelian normal subgroup of G. Therefore, by maximality of K*, we
have (z%) C K*. Thus, 22 € Z(Q.), and hence 272 = yx?y~! = z2. Therefore,
2* = 1. On the other hand, we have 22 = 1, and so u = 3, i.e., H"2 ~ Qs.
Now, assume that N is a maximal normal 2-subgroup of H’. For every g € G, set
Ny = gNg~!. N;is anormal 2-subgroup of H'. Hence NN; is a normal 2-subgroup
of H'. By maximality of N, we obtain N; C N and so we have N < G. We note
that H’ is finite and hence N is a finite 2-group. Thus, as in the case of H!~?2
above, we conclude that N ~ Qg. Therefore, by a result of [9, p.54], we have either
H' ~ Qg x M, where M is a group of odd order, or H' ~ SLy(Z3) x M, where M
is a group of order m coprime to 6, or H’ is isomorphic to the binary octahedral
group. In the first case, M is a characteristic subgroup of H’. Therefore, M is a
normal subgroup of G. Let [ be the soluble length of M. We know that M!~! is a
nontrivial abelian normal subgroup of G. Thus, M'~! C K*, and hence for every

x € M'™! we have 2*° = RN, k) x(x) = 1, which contradicts the fact that M is



of odd order. Therefore, M is trivial and so H' ~ Q)s. One may easily show that

other cases are also true by similar arguments and this proves the case (iv).

We are now prepared to prove the following.

Theorem 1. Let D be an F'-central division algebra of index q", q a prime. If D*

contains an irreducible soluble subgroup, then D is a crossed product.

PrOOF. We may consider the following two cases:

Case 1. CharF = p > 0. By Lemma 3, we know that there is an irreducible
soluble subgroup G and abelian normal subgroup K* of G such that K = K*U {0}
is a subfield of D and G/K* as well as H' is finite, where H = Cg(K™*). Since
CharF = p > 0, by a result of [4, p.215], we conclude that H' is cyclic. Now, by
Lemma 3, G/K* is a g-group and hence it is nilpotent. Thus, G is an irreducible
abelian-by-nilpotent subgroup of D*. Now, by Theorem C, we conclude that D is a

nilpotent crossed product, which completes the proof of this case.

Case 2. CharF = 0. We keep to the notations of the case 1. If H' is abelian, then
as in the above case we obtain the result. So, we may assume that H' is nonabelian.
By Lemma 3, we know that H'2 is a finite g-group. If ¢ is odd, then, by a result
of [9, p.45], we conclude that H'™2 is cyclic, which contradicts the fact that H'~? is
nonabelian. So, we may assume that ¢ = 2. We now proceed by induction on r. If
r = 1, then it is clear that D is cyclic. Assume that the result holds for all n < r.
Now, by a result of [9, p.45] again, we conclude that H*~? is cyclic or a (generalized)
quaternion. Since H'™? is nonabelian we conclude that H'"? is a (generalized)
quaternion. As in the proof of Lemma 3, one may easily show that H'=2 ~ Q.
Therefore, H*™? is normal in G. Set D; = F[H'?]. Tt is clear that i(D;) = 2 and
Z(Dy) = F and D is a crossed product. Now, by the Double Centralizer Theorem,
we have D ~ D; @ Cp(D;). Since G normalizes Dy we see that for any g € G we
may define a natural homomorphism f, : D1 — Dy, given by the rule f,(z) = gzg™*
for any € D;. Hence, by Skolem-Noether Theorem there is an element a, € D7
such that f, = fo,. If u,v € Dy satisfy f, = f,, then for any x € D; we have
uzu~! = vxv~!. Therefore, u='v € Z(D;) = F, which shows that u,v are equal

modulo F*, ie., F*u = F*v. Now, for any x € D; we have grg~' = agva,”,
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and hence b, := a;'g € Cp(Dy). The fact that b, commutes with a, implies that
ay, g, and b, pairwise commute. Set A = UgeqF*a, and B = UyeqF*b,. We claim
that A, B are groups. To see this, it is enough to show that for any g,h € G
we have F*a,-1 = F*ag_l,F*ahag = Frapg, F"by-1 = F*bg_l,F*bhbg = F"bpy. For
any r € Dlvfagfl(‘r) = fo-1(x) = g7'wg = (agby) ' w(azd,) = a;lxag = fa;1(x).
Therefore, F*ag1 = F*a,'. Also, we have f,, () = frg(x). Hence f,, (z) =
hgrg 'h™' = hagra,'h™" = apagra; a;' = (apag)z(anag)™ = fa,a,(x). Therefore,
F*apa, = F*ap, which shows that A is a group. Next, considering the fact that
a; € Dy and b, € Cp(D;) we obtain byb, = bhaglg = a;lbhg = a;la,jlhg =
(anay)~thg. Thus, since A is a group we conclude that F*bpb, = F*(apa,) thg =
F*a, hg = F*bpg, F*b, ' = Fra,g™' = F*a;_llg_l = F*b,-1. Therefore, B is also a
group. We claim that B is soluble that is normalized by G. To see this, consider the
epimorphism 6 : G — B/F* given by 0(g) = F*b, for all g € G. Hence B/F* as a
homomorphic image of a soluble group is soluble, and so is B. Set Dy = Cp(Dy). If
we show that Dy = F[B], then by induction Dy is a crossed product. To prove this,
put D3 = F[B]. Now, for all g € G we have g = a,b, = (a, ® 1)(1 ® by) = a, ® by.
Therefore, we conclude that G C D1® D3 and hence F[G] = D = D1®D3 = D1®Ds.
Finally, one may easily see that [Ds : F| = [Dy : F], and so D3 C Dy, i.e., D3 = Dy

and so the result follows.

Let D be an F-central division algebra of degree p”, p a prime. Using the above
result one may conclude that if D* contains an irreducible finite subgroup G, then
D is a crossed product. To see this, by a result of [9, p.51, Thm 2.1.11], we know
that either G is soluble or G ~ SLy(Z5). If the first case happens, then the result
follows from Theorem 1. If the second case occurs, then as in the course of the proof
of Theorem 2.1.11 of [9, p.51], we have [Q(G) : Q] < 8. Since Q C F we clearly
have [F[G] : F] < 8 and hence [D : F] = 4 because G is irreducible. Therefore,
D is cyclic and so the result also follows for this case. Later on we shall present a
different proof of this fact which may be of some interest. Now, combining Lemma 1

and Theorem 1, we are able to obtain one of our main results in the following form.

Corollary 1. Let D be an F'-central division algebra of index p”, p a prime. Then,

D s a crossed product if and only if D* contains an irreducible soluble subgroup.



4 Irreducible abelian-by-finite subgroups

This section turns to the case where the multiplicative group D* contains an irre-
ducible abelian-by-finite subgroup. Let D be an F-central division algebra of index
p", p a prime. It is proved that except when CharF =0 and p=2,r > 1, Dis a
crossed product if and only if D* contains an irreducible abelian-by-finite subgroup.
Furthermore, the conclusion also holds for the excluded case provided that D* con-
tains no finite subgroup isomorphic to SLs(Z5). Using the above result, and the
Tits Alternative which asserts that a finitely generated linear group either contains
a non-cyclic free subgroup or it is soluble-by-finite [11], we are able to show that D
is a crossed product if and only if D* contains an irreducible subgroup satisfying a
group identity. Furthermore, the conclusion also holds for the above excluded case
provided that D* contains no finite subgroup isomorphic SLy(Z5). To prove our

results, we shall need the following lemma.

Lemma 4. Given a field F' of characteristic zero, let D be an F-central division
algebra of index 2",r > 1. Assume that D* contains an irreducible abelian-by-finite

subgroup. If D is a non-crossed product, then D* contains a copy of the finite group

SLy(Zs).

PROOF. Suppose that G is an irreducible abelian-by-finite subgroup of D* and A
is a maximal abelian normal subgroup of G such that G/A is finite. Set K = F(A).
It is clear that G C Np*(K*), and hence G; = GK* is an irreducible subgroup of D*
so that G1/K* is finite. One may easily show that K* is a maximal abelian normal
subgroup of G;. Put H = Cg,(K*). By maximality of K*, we have Z(H) = K*.
Now, we know that H/Z(H) is finite, and so by Theorem of [8, p.443, Thm. 15.1.13],
the derived group H’ is a finite group. We claim that H’ is nonabelian. For if H’
is abelian, then H is soluble. Now, by Lemma A, we have G1/H ~ Gal(K/F) and
K/F is a Galois extension. Thus, G;/H is a 2-group and hence G is soluble. We
note that Gy is an irreducible soluble subgroup of D*. By Theorem 1, we conclude
that D is a crossed product which is a contradiction. Thus, H' is nonabelian as
claimed. Therefore, by a result of [9, p.51], this implies that either H’ is a soluble

group or H' ~ SL,(Z5). If the first case occurs, then H is soluble and hence as above



G is soluble. Therefore, by Theorem 1, we conclude that D is a crossed product

which is a contradiction. So, we have H' ~ SLy(Zs5), and the result follows.

Theorem 2. Let D be an F-central division algebra of index q", q a prime. If D*
contains an irreducible abelian-by-finite subgroup, then, except for the case CharF =
0 and q =2,r > 1, D is a crossed product. Furthermore, the conclusion also holds

for the above excluded case provided that D* contains no finite subgroup isomorphic
to SLQ(Zg,)

ProOOF. We consider the following three cases:

Case 1. C'harF = p > 0. Suppose that G is an irreducible abelian-by-finite subgroup
of D* and A is a maximal abelian normal subgroup of G such that G/A is finite. Set
K = F(A). It is clear that G C Np*(K*), and hence G; = GK* is an irreducible
subgroup of D* so that G;/K™* is finite. One may easily show that K* is a maximal
abelian normal subgroup of G;. Put H = Cg, (K*). By maximality of K*, we have
Z(H) = K*. Now, we know that H/Z(H) is finite, and so by Theorem of [8, p.443],
the derived group H’ is a finite group. Thus, by a result of [4, 4, Cor. 13.3], we
conclude that H' is cyclic. Therefore, H is a soluble group. Now, by Lemma A, we
have G1/H ~ Gal(K/F) and K/F is a Galois extension. Thus, G;/H is g-group
and hence G is soluble. We note that GG is an irreducible soluble subgroup of D*.
By Theorem 1, we conclude that D is a crossed product, which completes the proof
of this case.

Case 2. CharF = 0. If ¢ = 2 and r = 1, then it is clear that D is cyclic. So,
we may assume that ¢ is odd. Keeping to the notations of the above case, we
know that H/Z(H) is finite as well as the derived group H’. Therefore, by a result
of [9, p.51], we know that either H' is a soluble group or H' ~ SLy(Z5). In the
first case H is soluble and as in the above case we have that G; is also a soluble
subgroup of D*. Thus, by Theorem 1, we conclude that D is a crossed product.
We claim that the second case leads to a contradiction. So, we may assume that
H' ~ SLy(Z5). In the course of the proof of Theorem 2.1.11 of [9, p.51], that the only
finite insoluble subgroup of a division ring is SLs(Z5) we obtain [Q(H') : Q] < 8.
Since Q@ C K we conclude that [K[H'] : K] < 8. On the other hand, we have
K C Z(K[H']). Set D; = K[H'|. Now, we know that D; is a division algebra
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with [Dy : Z(D;)] < 8. Therefore, [D; : Z(D;)] = 4 and hence 2 divides ¢", which
contradicts our assumption that ¢ is odd.

Case 3. Assume that CharF = 0,p = 2, and r > 1. If D is not a crossed product,
then, by Lemma 4, we conclude that D* contains a copy of the finite group SLs(Z5),

which is a contradiction. This completes the proof of the theorem.

Combining Lemma 1 and Theorem 2, we obtain the following.

Corollary 2. Let D be an F-central division algebra of index p”, p a prime. Then,
except when CharF = 0 and p = 2,7 > 1, D s a crossed product if and only if
D* contains an irreducible abelian-by-finite subgroup. Furthermore, the conclusion
also holds for the above excluded case provided that D* contains no finite subgroup

isomorphic to SLo(Zs).

Using the above result, and the Tits Alternative which asserts that a finitely
generated linear group either contains a non-cyclic free subgroup or it is soluble-by-

finite [11], we are able to prove the following criterion.

Corollary 3. Let D be an F-central division algebra of index p", p a prime. Then,
except when CharF = 0 and p = 2,r > 1, D is a crossed product if and only if
D* contains an irreducible subgroup satisfying a group identity. Furthermore, the
conclusion also holds for the above excluded case provided that D* contains no finite

subgroup isomorphic to SLy(Zs).

ProOOF. The “only if “ part is clear by Lemma 1. Assume that G is an irreducible
subgroup of D* satisfying a group identity. Since [D : F] < oo we may view G as
a linear group. Let (G; be a subgroup of G generated by the elements of a basis
of D over F'. Thus, by Tits Alternative, we know that G is soluble-by-finite, i.e.,
there is a soluble normal subgroup N of G; such that G;/N is finite. Now, by
Lemma 3 of [5], N is abelian-by-finite. Thus, G is abelian-by-finite. Therefore, by

Theorem 2, D is crossed product.

Now, one may apply the above results to prove the following criterion for D to

be cyclic. This is one of the main results of [2].
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Corollary 4. Let D be an F-central division algebra of prime degree p. Then D is

cyclic if and only if D* contains a nonabelian subgroup satisfying a group identity.

PRrROOF. The “only if“ part is clear by Lemma 1. If p = 2, then D is cyclic. Let
p be an odd prime. Now, by Corollary 3, one can easily show that D is cyclic. [

Let D be an F-central division algebra of finite index i(D) = n and G be an
irreducible subgroup of D*. Assume that A is a maximal abelian normal subgroup
of G. We conclude this section with some remarks concerning the relation between
the cardinal of G/A and the dimension of D/F.

Remark 1. Let D be a finite dimensional F-central division algebra. If G is
an irreducible subgroup of D* with maximal abelian normal subgroup A such that
G/A is nilpotent, then |G/A| = i(D). To see this, set G; = K*G, where K = F[A].
It is easily seen that G is irreducible with maximal abelian normal subgroup K*
such that G;/K* ~ G/A and so G;/K* is nilpotent. As in the proof of Theorem
3.4 of [3], one may easily check that K/F is Galois and K is a maximal subfield
of D. Therefore, we have Cg, (K*) = K*. Now, by Lemma B, we have G;/K* ~
Gal(K/F), ie., |Gi/K*| =|G/A| = [K : F] =i(D).

Remark 2. Let D be an F-central division algebra of index p", p a prime.
Assume that G is an irreducible subgroup of D* with maximal abelian subgroup
A such that G/A is finite. Then, except when CharF = 0 and p = 2,7 > 1, we
have |G/A| = (D). Furthermore, the conclusion also holds for the excluded case
provided that D* contains no finite subgroup isomorphic to SLy(Z5). To prove this,

we may use Theorem 1, Theorem 2, and the Remark 1 to obtain the result.

5 Irreducible finite subgroups

Let D be an F-central division algebra of degree p”, p a prime. This section studies
the structure of D under the condition that D* has an irreducible finite subgroup.
Using Amitsur’s classification of finite multiplicative subgroups of a division ring,
it is proved that if D* contains an irreducible finite subgroup, then D is a crossed

product.
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Theorem 3. Let D be an F'-central division algebra of index q", q a prime. If D*

contains an irreducible finite subgroup G, then D is a crossed product.

ProoOF. We first observe that C'harF' = 0. Since otherwise G is cyclic and since
G is irreducible we obtain D = F which is a contradiction. If ¢ is odd, then the result
follows from Corollary 3. So we may assume that ¢ = 2. By a result of [9, p.51], we
know that either G is soluble or G ~ SLy(Z5). If the second case occurs, then as in
the course of the proof of Theorem 2.1.11 of [9, p.51], that the only finite insoluble
subgroup of a division ring is SLs(Z5), we may obtain [Q(G) : Q] < 8. Since Q C F
we clearly have [F[G] : F] < 8 and hence [D : F] = 4 because G is irreducible.
Therefore, D is cyclic and so the result follows for this case. It remains to consider
the case where G is soluble and ¢ = 2. By Lemma 3 of [5], we know that G is abelian-
by-finite, i.e., there is an abelian normal subgroup A in G of finite index. Take A
maximal in G, and set K = F(A). One may easily show that G C Np-(A) and that
Gy, = K*@G is an irreducible soluble subgroup of D* with maximal abelian normal
subgroup K*. Set H = Cg(A), H; = Cg,(K*). It is clearly seen that H; = HK*.
Since elements of K* and H pairwise commute we conclude that H] = H’. Now,
by Lemma B, K/F is Galois with G;/H, = Gal(K/F). Therefore, G1/H; is a
2-group and hence it is nilpotent. Now, one may easily show that G N H; = H and
G1 = GK* = GH;. Thus, we have G;1/H; = G/H and hence G/H is a 2-group. If
Hj is abelian, then as in the proof of Lemma 3, one may easily show that H;/K*
is a 2-group. Now, since A = H N K* and H; = HK"* we conclude that H/A is a
2-group. This means that G /A is also a 2-group and hence G is abelian-by-nilpotent.
Therefore, by Theorem C, we conclude that D is crossed product. Thus, we may
assume that H{ = H' is nonabelian. Let [(H) =t be the derived length of H. As in
the proof of Lemma 3, one may easily show that H'~2 is a nonabelian 2-group and
it is isomorphic to the quaternion group ()s. This means that H contains a normal
subgroup isomorphic to Qs. Now, assume that 7" = O,(H) is a maximal normal
2-subgroup of H. As in Lemma 3, it is easily seen that Os(H) ~ (Js. Now, by a
result of [9, p.54], we have either H ~ Qg x M, where M is a group of odd order, or
H ~ SLy(Z3) x M, where M is a group of order m coprime to 6, or H is isomorphic

to the binary octahedral group. We deal with these cases separately as follows:
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Case 1. H ~ Qg x M, where M is a group of odd order. We claim that M
is normal in G. Since H is normal in G for each ¢ € G and m € M we have
gmg~! = (¢,my) € H. Comparing the orders of both sides of the last relation,
one may easily conclude that ¢ = 1 and so the claim is established. Now, we show
that M is abelian. Otherwise, M’ is nontrivial. If [ is the soluble length of M,
then [ > 2. Thus, M'~! C M’ is a nontrivial abelian subgroup. This implies that
AM'1 is an abelian normal subgroup of G' and hence by the choice of A we obtain
M'=! C A. By Lemma B, we know that F[H,] = Cp(K). Since M C H C H,
we obtain M’ C Cp(K). Take an element z € M'™* C A C K*. We have
1 = RNey i)k (z) = 2%, where i(Cp(K)) = 2°. This shows that the order of x is
a power of 2 which contradicts the fact that M has odd order. Hence M’ must be
trivial and so M is abelian. It is clear that H/M ~ Qg and G1/H; ~ G/H is a
2-group. Since M is normal in G we conclude that G /M is also a 2-group. This says

that G is abelian-by-nilpotent and hence, by Theorem C, D is a crossed product.

Case 2. H ~ SLy(Z3) x M. Since the order of M is prime to 6 and |SLo(Z3)| =
24, as in the case 1, we conclude that M is an abelian normal subgroup of G. Now,
M as an abelian normal subgroup of D* is cyclic. Set M =< m > such that for
each natural number s with (s,6) = 1 we have m® = 1. Since SLy(Z3) C G we have
2||G| and hence there exists g € G such that g> =1, i.e., =1 € G.

If m € F*, then m € Z(G). Therefore, 1,m,--- ,m*"* —1,—m,--- ,—m* ! are
distinct elements of Z(G) for if m* = —m/ with 0 < 4,5 < s — 1, then raising
to the power of s we obtain 1 = —1 which is a contradiction to the fact that

CharF = 0. Thus, |Z(G)| > 2s. Now, G as an irreducible subgroup of D* contains
a basis g1, s, - , g, with t = 22", Since g1, ¢, - , g; are linearly independent over
F we conclude that ¢1Z(G), g2Z(G),- -+ ,g:Z(G) are distinct elements of G/Z(G)
and hence |G/Z(G)| > t. Therefore, we have |G| > 2% x 2s. On the other hand,
we have |[M| = s and so |H| = 23 x 3 x s and also G/H ~ Gal(K/F), where K/F
is Galois. If [K : F] = 2", then K is a maximal subfield of D and hence D is
crossed product. So, we may assume that [K : F| < 2", In this case we obtain
|G| < 23 x 3 x s x 27! Therefore, 22! x s < 22 x 3 x s which implies that
2=l < 3,ie,r=1orr =2 Ifr =1, then it is clear that D is cyclic. If r = 2,
then, by a result of [7, p. 183], D is a crossed product.
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If m ¢ F*, then M A is an abelian normal subgroup of G. By maximality of A,
we conclude that M C A C K*. Since m is not in F' we obtain |Gal(K/F)| = 2*
with w > 1. Since Z(H) is an abelian normal subgroup of G, by maximality of A
, we have Z(H) = A. Therefore, A =< —1 > xM and hence |A| = 2s. Since
Qg is normal in G let O5(G) = Q. It is clearly seen that (Q)? =< z? >, where
Qu =< z,ylz¥ " = y* = Lyzy™' = z* >. Now, one may casily show that
N =< 22 > is normal in G. Since the orders of M and N are coprime we have
M N N = 1. Therefore, each element of M commutes with each element of N, i.e.,
M N is abelian. Since —1 € N we obtain A C M N. But this contradicts the choice
of A unless < 22 >=< —1 >, i.e., 2 =1 and [ = 3. Thus, O5(G) = Qz. Now, by a

result of [9, p.54] again we have three subcases to consider as follows:

Subcase 1. G ~ Qg x M, where the order of M; is odd. If |M;| = 2n + 1,
then |G| = 23 x (2n + 1). Now, we have |H| = 2% x 3 x s, where s is odd, and
|G/H| = |Gal(K/F)| = 2* with K # F. Therefore, (2n+ 1) = 3s x 2% which is not
possible.

Subcase 2. G ~ SLy(Z3) x My, where the order of M, is prime to 6. Since the

order of M is odd, as in the Subcase 1, we obtain a contradiction.

Subcase 3. G is isomorphic to the binary octahedral group of 48 elements. Then,
|G| = 2* x 3. Since —1 € Z(G) we obtain |Z(G)| > 2. As before, because G is
irreducible we have |G/Z(G)| > 2?". Therefore, 2" ™! < 2% x 3. This means that

either r =1 or r = 2, and as above we conclude that D is a crossed product.

Case 3. H is isomorphic to the binary octahedral group of 48 elements. Then,
|H| = 2* x 3. As in the Subcase 3, we conclude that |G| > 2**!. In addition, as
in the previous cases, we have |G/H| < 2"7' and hence |G| < 277! x 21 x 3, i.e,,
22r+l < 9r+3 % 3. This implies that either r = 1 or r = 2 or » = 3. For the cases
r =1 or r = 2, as before, we conclude that D is crossed product. Assume that
r = 3. If D is not a crossed product, then, by Lemma 3, D* contains a copy of Qs.
It is clear that [F[Qg] : F] = 4. Set B = F[Qs]. Then, by Centralizer Theorem, we
have D ~ B ® Cp(B). Since i(Cp(B)) = 4, by a result of [7, p. 183], Cp(B) is
a crossed product. Therefore, D which is a tensor product of crossed products is a

crossed product division algebra. This completes the proof of the theorem.
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