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Abstract

This note is motivated by the problem of determining the u-invariant
of a field F of characteristic different from two when it is known that
u(F (

√
−1)) = 4. A criterion is given to decide whether u(F ) ≤ 4 in

this situation.
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1 Introduction

In the algebraic theory of quadratic forms various open problems and sev-
eral spectacular breakthroughs of the last two decades are related to the
u-invariant (cf. [10, Chapter 8]). Let us consider a field extension F/R of
transcendence degree n ≥ 1 where R is real closed (e.g. R = R). In [9],
Pfister formulated the conjecture that in this situation u(F ) ≤ 2n. For the
case where F is nonreal this is a special case of Lang’s conjecture in [7] ac-
cording to which F would be a Cn-field. The two conjectures are motivated
by the known fact that the quadratic extension F (

√
−1) is a Cn-field, in

particular u(F (
√
−1)) ≤ 2n. This fact can be used to obtain the following

bounds on u(F ) using the results in [5]: if F is nonreal or if n ≤ 2, then
u(F ) ≤ 3 · 2n−1; if F is real and n > 2, then u(F ) < 4n − 2n. So far Pfister’s
conjecture that u(F ) ≤ 2n is settled only for n = 1. For n = 2 one knows
that u(F ) ∈ {0, 1, 2, 4, 6} (cf. [5]). This case is investigated in [9], but the
problem is still open, even in the particular case of the rational function field
in two variables R(X,Y ).

This indicates that we still do not know that much about the quadratic
form theory over the function field of a surface over a real closed field. There-
fore it is natural to seek for inspiration from other types of fields which have
similar properties with respect to quadratic forms. There are at least two

1



interesting types of such fields: first, fraction fields of completions of the local
ring of functions in a closed point of a surface over a real closed field, e.g.
the field of formal power series in two variables R((X,Y )); second, function
fields of curves over the power series field R((t)) or, more generally, over a
field with a henselian discrete valuation with real closed residue field. Fields
of the first type were studied in [3] where it was shown that they satisfy a
certain Hasse principle for quadratic forms of dimension at least three. Fields
of the second type were investigated recently in [12] and [1].

The main result of this article is a criterion to decide whether u(F ) ≤ 4
for a field F of characteristic different from two such that u(F (

√
−1)) = 4

(3.1). The criterion is a strengthening of a criterion formulated by Pfister
in [9, Proposition 6]. It turns out to be trivially satisfied in the case where
F has Pythagoras number p(F ) ≤ 2 (3.3). Using this one easily sees that
certain fields of the two types mentioned above have u-invariant equal to 4
(3.4). Note that the condition that p(F ) ≤ 2 means that the norm form of
the extension F (

√
−1)/F represents all totally positive elements of F . In

view of this observation we obtain a slight generalization of (3.3): if K/F is
a quadratic extension such that the norms of K/F are exactly the sums of
squares in F , then u(F ) ≤ u(K) holds (3.5).

I am grateful to Jan Van Geel, Sergey V. Tikhonov, and Vyacheslav I.
Yanchevskĭı for having inspired this work through stimulating discussions on
the subject and to Thomas Unger for a careful reading of the manuscript. I
want to acknowledge the hospitality of the Universiteit Gent and the finan-
cial support provided by the European RTN Network ‘Algebraic K-Theory,

Linear Algebraic Groups and Related Structures’ (HPRN CT-2002-00287)
during a postdoctoral fellowship in 2004, when the main part of this research
was carried out. I further want to acknowledge financial support form the
Swiss National Science Foundation (grant No. 200020-100229/1).

2 Terminology

Throughout this article, let F be a field of characteristic different from 2.
Let F× denote the multiplicative group of F and

∑

F×2 the subgroup of
non-zero sums of squares in F . Elements of F which are sums of squares
are said to be totally positive. The terms ‘form’ and ‘quadratic form’ shall
always refer to a regular quadratic form. The main references for the theory
of quadratic forms over fields are [11] and [6]. Notations and facts used here
and not given explicitly are standard and can be found in these books.
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The u-invariant of the field F was defined by Elman and Lam in [5] as

u(F ) = sup {dim(ϕ) | ϕ anisotropic torsion form over F} .

The Pythagoras number of the field F is defined by

p(F ) = sup {l ∈ N | ∃ x ∈ ∑

F×2 s.t. x not a sum of less than l squares} .

In both cases, the supremum is taken in the set N ∪ {∞}.
For any quadratic form ϕ over F we denote by DF (ϕ) the set of non-

zero elements of F which are represented by ϕ. Recall that ϕ is universal if
DF (ϕ) = F×, i.e. if ϕ represents all non-zero elements of F . In particular,
any isotropic form is universal. For m ∈ N we also write DF (m) for the set
of non-zero elements in F which can be written as sums of m squares in F .

A quadratic form ϕ over F is said to be weakly isotropic (resp. torsion)
if for some n ≥ 1 the multiple n × ϕ = ϕ ⊥ · · · ⊥ ϕ (n times) is isotropic
(resp. hyperbolic) over F .

If ϕ is a quadratic form and d is its determinant, then

d±(ϕ) =

{

d if dim(ϕ) ≡ 0, 1 mod 4
−d if dim(ϕ) ≡ 2, 3 mod 4

is called the discriminant (also ‘signed determinant’) of ϕ. An Albert form

is a quadratic form of dimension 6 and of trivial discriminant. Given a form
ϕ which is similar to a subform of a Pfister form π with 1

2
dim(π) < dim(ϕ)

is called a Pfister neighbor (of π).
For n ∈ N, we denote by InF the nth power of the fundamental ideal in

the Witt ring WF of F . By X(F ) we denote the space of orderings of F .
By the Artin-Schreier Theorem, X(F ) 6= ∅ if and only if −1 /∈ ∑

F×2 and in
this case the field F is said to be real, otherwise nonreal. The real closure of
F with respect to an ordering P ∈ X(F ) is denoted by FP .

3 A criterion

We know that the condition that u(F (
√
−1)) = 4 implies that I3F is torsion-

free and u(F ) ∈ {0, 1, 2, 4, 6}. Moreover, if in this situation u(F ) = 6, then
there exists an Albert form over F which is torsion and anisotropic.

3.1 Theorem. Assume that u(F (
√
−1)) = 4. A necessary and sufficient

condition to have that u(F ) ≤ 4 is that, for any a ∈ DF (3) and d ∈ DF (2),
the form 〈1, 1,−a,−ad〉 is universal over F .
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Proof: Assume first that a ∈ DF (3) and d ∈ DF (2) do exist such that
the form ψ = 〈1, 1,−a,−ad〉 is not universal over F . Let t ∈ F× be an
element which is not represented by ψ. Since I3F is torsion-free, any 3-fold
Pfister form over F is either hyperbolic or definite at some ordering P of F .
Since ψ ⊥ 〈−t〉 is totally indefinite and anisotropic, it follows that this 5-
dimensional form is not a Pfister neighbor. Therefore ψ ⊥ 〈−t〉 does not rep-
resent its discriminant −dt. Then ϕ = ψ ⊥ 〈−t, dt〉 = 〈1, 1,−a,−ad,−t, dt〉
is anisotropic. Since ϕ is a torsion form, we obtain that u(F ) ≥ dim(ϕ) = 6.

To prove the converse implication assume now that u(F ) = 6. Then
there exists an Albert form ϕ over F which is torsion and anisotropic. Since
u(F (

√
−1)) = 4, ϕ becomes isotropic over F (

√
−1). Hence ϕ contains a

subform 〈z, z〉 with z ∈ F×. Since I3F is torsion-free, we have zϕ ∼= ϕ and
2×ϕ is hyperbolic. Therefore we have ϕ ∼= 〈1, 1〉 ⊥ ψ for some 4-dimensional
form ψ. Then 2 × ψ is isotropic and a well known argument yields that ψ
contains a binary form β such that 2 × β is hyperbolic (cf. [5, Proposition
2.2]). We denote by d the discriminant of β and observe that d is a sum
of two squares in F . Comparing determinants, we see that we can write
ϕ ∼= 〈1, 1,−a,−ad〉 ⊥ β for some a ∈ F×. Now, since both ϕ and β are
torsion, so is 〈1, 1,−a,−ad〉. In particular, a is a sum of squares in F . As
I3F is torsion-free we have p(F ) ≤ 4, thus a is a sum of four squares in F .
We may write a = x + y where each x and y are sums of two squares and
x 6= 0. Then xa = x2 + xy is a sum of three squares. Multiplying ϕ with x
we obtain ϕ ∼= xϕ ∼= 〈1, 1,−ax,−axd〉 ⊥ xβ. As we can replace xβ by β and
ax by a, we may assume that a is a sum of three squares. Now, since ϕ is
anisotropic, 〈1, 1,−a,−ad〉 is not universal over F . ¤

3.2 Remark. In [9, Proposition 6] it is shown, under some hypothesis which
in particular implies that u(F (

√
−1)) ≤ 4, that one has u(F ) ≤ 4 if and only

if every form 〈1,−t1〉 ⊥ a〈1,−t2〉 with t1, t2 ∈
∑

F×2 and a ∈ F× is universal
over F . The above theorem shows that it actually suffices to consider all such
forms where a = 1.

3.3 Corollary. If u(F (
√
−1)) = 4 and p(F ) ≤ 2, then u(F ) ≤ 4.

Proof: This follows from the theorem, since by the additional hypothesis
that p(F ) ≤ 2, the form 〈1, 1,−a〉 is isotropic over F whenever a is a sum of
squares in F . ¤

3.4 Examples. (1) In [2] it was proven that p(R((X,Y ))) = 2 and that
u(C((X,Y ))) = 4. Using the corollary this gives an elementary argument
that u(R((X,Y ))) = 4. In [3, Theorem 4.4] it was shown more generally that
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u(F ) ≤ 4 holds when F is the fraction field of an excellent 2-dimensional
local domain with real closed residue field.

(2) It is not difficult to see that the field R((X))(Y ) has Pythagoras
number 2. This follows from Milnor’s exact sequence (cf. [6, Chapter 9,
Sect. 3]), together with the fact that R((X)) is hereditarily pythagorean.
More generally, let R be a real closed field and C an elliptic curve over R((t))
which has good reduction to R with respect to t. In [12] it is shown that the
Pythagoras number of the function field F = R((t))(C) is two. Furthermore
u(F (

√
−1)) = 4, since F (

√
−1) is a C2-field. From (3.3) we then obtain that

u(F ) ≤ 4. It is then not difficult to show that u(F ) = 4 in this case.

The above corollary can be generalized a little.

3.5 Proposition. Let K/F be a quadratic extension where K is nonreal and

not quadratically closed and such that every totally positive element of F is

a norm of K/F . Then u(F ) ≤ u(K).

Proof: We fix t ∈ F× such that K = F (
√−t). As K is nonreal, t is a sum

of squares in F . By hypothesis, the norm form of K/F represents all sums
of squares over F . In other terms, we have DF (〈1, t〉) =

∑

F×2. This implies
that any form τ over F is weakly isotropic if and only if 〈1, t〉⊗τ is isotropic.

Assume now that u(F ) > u(K). Then there exists an anisotropic torsion
form ϕ over F such that dim(ϕ) > u(K). Since ϕ must become isotropic
over K, it follows that ϕ contains the norm form 〈1, t〉 up to a scalar factor.
After scaling ϕ, we may assume that ϕ = 〈1, t〉 ⊥ ϑ. By the hypotheses we
have that u(K) ≥ 2, thus dim(ϕ) ≥ 3. If F were nonreal, then 〈1, t〉 would
be universal, and this would be in contradiction to ϕ being anisotropic.

Hence we may assume for the rest that F is real. Using the ‘β-decomp-
osition’ argument in [5], we may write ϑ ∼= γ ⊥ β1 ⊥ . . . ⊥ βr where γ
is a form such that 〈1, t〉 ⊗ γ is anisotropic while each βi (1 ≤ i ≤ r) is a
2-dimensional form such that 〈1, t〉 ⊗ βi is hyperbolic. Then γ is not weakly
isotropic, while any βi (1 ≤ i ≤ r) is a torsion form. Since ϕ is a torsion
form over F , it follows now that 〈1, t〉 ⊥ γ is torsion. Since γ is not weakly
isotropic, we get that dim(γ) = 2. Since 〈1, t〉 represents only totally positive
elements of F and since 〈1, t〉 ⊥ γ is torsion, γ represents only totally negative
elements of F . But as 〈1, t〉 represents all totally positive elements of F , we
conclude that 〈1, t〉 ⊥ γ is isotropic, which is in contradiction to ϕ being
anisotropic. ¤

3.6 Remarks. (1) If F has Pythagoras number p(F ) ≤ 2, then K =
F (

√
−1) is a quadratic extension satisfying the hypotheses of the propo-

sition. Therefore, (3.3) can also be derived from (3.5).
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(2) At least in the case where the base field F is nonreal, the statement
of (3.5) is not new. In this case we have K = F (

√
t) where t belongs to

the Kaplansky radical of F (cf. [4]); in particular, any anisotropic quadratic
form over F of dimension at least 3 remains anisotropic over K, which is a
stronger observation than that u(F ) ≤ u(K).

(3) Assume that F is a real field with finite square class group F×/F×2.
If the Witt ring WF is of elementary type, then a quadratic extension K/F
such as in the statement of the proposition always exists. This may be useful
in view of the Elementary Type Conjecture (cf. [8]), especially in connection
with the question about the possible values for u(F ) when F×/F×2 is finite.
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