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Abstract. Let F be a field of characteristic 2 and let K/F be a purely in-
separable extension of exponent 1. We determine the kernel W (K/F ) of the
natural restriction map WF → WK between the Witt rings of bilinear forms


of F and K, respectively. This complements a result by Laghribi who com-
puted the kernel for the Witt groups of quadratic forms for such an extension
K/F . Based on this result, we will determine W (K/F ) for a wide class of
finite extensions which are not necessarily purely inseparable.


1. Introduction


Throughout this note, we will only consider fields of characteristic 2. Let K be
a finite purely inseparable multiquadratic extension of a field F , in other words,
K = F (


√
a1, · · · ,


√
an). In [7], Laghribi computed the kernel Wq(K/F ) of the


natural map (induced by scalar extension) WqF → WqK between the Witt groups
of nonsingular quadratic forms over F and K, respectively. He shows that


Wq(K/F ) =


n∑


i=1


〈1, ai〉 ⊗ WqF ,


where 〈1, ai〉 is understood to be a binary bilinear form in its diagonal notation,
and WqF is considered as a WF -module. The proof, although elementary as such,
uses as nontrivial ingredients the analogues in characteristic 2 of the Arason-Pfister
Hauptsatz due to Baeza [1, Satz 4.1], and of the Milnor conjecture due to Kato [6].
For multiquadratic extensions which are not purely inseparable, results seem to be
much harder to obtain, and the precise kernels are only known in the quadratic and
biquadratic case. For more details, we refer the reader to Laghribi’s article and the
references there.


Here, we will determine the kernel W (K/F ) of such a purely inseparable mul-
tiquadratic extension K/F for the restriction map WF → WK between the Witt
rings of bilinear forms. It turns out that the behaviour of bilinear forms under such
extensions can be studied in a truly elementary way, without using any deep results
which become necessary when dealing with quadratic forms.


Our main result is the following:
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Theorem 1.1. Let K/F be a field extension such that K2 ⊂ F . Then W (K/F ) is
the ideal in WF generated by {〈1, t〉 | t ∈ K∗2}.


Note that a field extension K/F with K2n ⊂ F is said to have exponent ≤ n.
So our result is a statement concerning field extensions of exponent 1. Such a
field extension is obviously algebraic and purely inseparable. It turns out that the
inseparable extensions K/F we consider have the property that they are excellent,
i.e., if ϕ is a bilinear form over F , then there exists a bilinear form ψ over F such
that the anisotropic part of ϕK is isometric to ψK . The above theorem and the
excellence will be shown in Section 3.


In the case of a finite purely inseparable multiquadratic extension K/F , we
will give a description of W (K/F ) in terms of the annihilator ideal of a certain
bilinear Pfister form naturally attached to such an extension (Section 4), and we will
generalize this result in Section 5 to an even wider class of finite extensions which
are not necessarily purely inseparable and which may contain purely inseparable
subextensions of exponent greater than one. It turns out that all extensions in
this class are excellent in the above sense, but we will also give an example of an
extension of degree 6 which is not excellent.


2. Terminology and definitions


Before turning to the proofs, let us fix some terminology and recall some basic
facts about bilinear forms as can be found, for example, in Chapters 1 and 2 of
Pfister’s book [8]. By a form we will always mean a finite-dimensional regular
symmetric bilinear form.


α ∼= β denotes isometry of the two forms α and β. The orthogonal sum (resp.
the product) of α and β is written α ⊥ β (resp. α ⊗ β).


A form β is said to be isotropic if it represents 0 nontrivially, anisotropic other-
wise, and DF (β) = {β(x, x) |x ∈ V \ {0}} denotes the set of all values represented
nontrivially by β (here, V denotes the underlying F -vector space). Thus, β be-
ing isotropic is equivalent to 0 ∈ DF (β). We put DF (β)∗ = DF (β) ∩ F ∗ and
DF (β)0 = DF (β) ∪ {0}.


A 2-dimensional isotropic form is called a metabolic plane, in which case one can
always find a basis such that the Gram matrix with respect to that basis is of the
shape (


a 1
1 0


)


for some a ∈ F . If a = 0, this is called a hyperbolic plane and denoted by H. A form
β is said to be metabolic (resp. hyperbolic) if it is the orthogonal sum of metabolic
(resp. hyperbolic) planes. It is not difficult to see that a form β is hyperbolic iff
DF (β) = {0}.


If the Gram matrix of a form β with respect to a certain basis is a diagonal
matrix with entries ai, 1 ≤ i ≤ n = dim(β), then we write β ∼= 〈a1, · · · , an〉. Such
a diagonalization exists iff β is not hyperbolic, by virtue of the relations


(
a 1
1 0


)
∼= 〈a, a〉 and 〈a〉 ⊥ H ∼= 〈a, a, a〉.


A form β can be decomposed as β ∼= βan ⊥ βm with βan anisotropic and βm


metabolic. βan is uniquely determined up to isometry, but generally not βm as
follows easily from the above relations.
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Two forms β and β′ are called Witt equivalent if there are metabolic spaces M
and M ′ such that β ⊥ M ∼= β′ ⊥ M ′. The equivalence classes together with
addition induced by ⊥ and multiplication induced by ⊗ define the Witt ring of F
denoted by WF . By abuse of notation, if β is a form over F , we will denote its class
in WF also by β. Every class can be represented by an anisotropic form which is
uniquely determined up to isometry.


An n-fold bilinear Pfister form (or n-Pfister for short) is a form of type


〈〈a1, · · · , an〉〉 := 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉
for some ai ∈ F ∗. A bilinear Pfister form π is round, i.e., π ∼= xπ for all x ∈ DF (π)∗


(cf. [2, IV.2.8]), and as an easy consequence one has that π is isotropic iff π is
metabolic.


If β is a form over F and if K/F is a field extension, then we write βK for
the form obtained by scalar extension. This induces a natural ring homomorphism
WF → WK whose kernel will be denoted by W (K/F ). In analogy to the definition
of excellence of field extensions in the theory of quadratic forms in characteristic
6= 2 as defined in [3], we say that K/F is excellent if for any form β over F there
exists a form γ over F with (βK)an ∼= γ, in other words, the anisotropic part of β
over K is defined over F .


The annihilator ideal of a form β over F given by


annF (β) = {ψ ∈ WF |β ⊗ ψ = 0 ∈ WF}.


3. Witt kernels and excellence for extensions of exponent one


Let us now turn to the proof of the main theorem. Throughout this section,
K/F will be a field extension with K2 ⊂ F . We define


JK/F = the ideal in WF generated by the forms 〈1, t〉, t ∈ K∗2.


Lemma 3.1. JK/F ⊂ W (K/F ).


Proof. If t ∈ K∗2, then clearly 〈1, t〉K ∼= 〈1, 1〉K is metabolic and hence 〈1, t〉K =
0 ∈ WK. ¤


Proposition 3.2. Let ϕ be an anisotropic form over F . Then ϕK is isotropic iff
there exist forms µ ∈ JK/F and ψ over F with dimψ < dim ϕ such that


ϕ = ψ + µ ∈ WF .


Proof. If ϕ = ψ +µ ∈ WF as in the statement of the proposition, then ϕK = ψK ∈
WK by the previous Lemma, hence (ϕK)an ∼= (ψK)an, implying the isotropy of ϕK


by comparing dimensions.
Conversely, let ϕ be an anisotropic form over F with ϕK isotropic. Then we may


assume that ϕ ∼= 〈a0, · · · , an〉 with ai ∈ F ∗ and n ≥ 1. For ∅ 6= I ⊂ {0, · · · , n}, let


ϕI :=⊥
i∈I


〈ai〉 .


We may assume that the form ϕI for any I 6= {0, · · · , n} is anisotropic over K, for
otherwise it clearly would suffice to prove the statement in the proposition with ϕ
replaced by ϕI which is of smaller dimension. Let us call this assumption (X).
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Now the isotropy of ϕK implies that there exist ti = x2
i ∈ K2 ⊂ F , 0 ≤ i ≤ n,


not all ti equal to 0, such that


(3.1)


n∑


i=1


aiti = 0,


and by assumption (X), we have t0 6= 0. In particular, after dividing by t0, we may
assume that t0 = 1. By putting A0 = 0 and Ak =


∑n
i=k aiti for 1 ≤ k ≤ n, we have


a0 = A1 by equation 3.1, and it follows from assumption (X) that


(3.2) Ak = ak−1tk−1 + Ak−1 6= 0 for 1 ≤ k ≤ n.


Now if u, v ∈ F ∗ such that u+ v ∈ F ∗ (i.e. u 6= v as char(F ) = 2), then one verifies
easily that 〈u, v〉 ∼= 〈u + v, (u + v)uv〉, or


(3.3) 〈u + v〉 = 〈u, v, (u + v)uv〉 ∈ WF.


Now define


αk := ak−1tk−1Ak−1Ak = (ak−1tk−1 + Ak)ak−1tk−1Ak for 2 ≤ k ≤ n.


Equations 3.2 and 3.3 yield in WF :


ϕ = 〈a0, a1, · · · , an〉
= 〈A1, a1, · · · , an〉
= 〈a1t1 + A2, a1, a2, · · · , an〉
= 〈a1t1, A2, α2, a1, a2, · · · , an〉
= a1〈1, t1〉 + 〈A2, a2, · · · , an〉 + 〈α2〉 .


Repeating this for 〈A2, a2, · · · , an〉 and so on, and using in the last step that
〈An, an〉 ∼= an〈1, tn〉, we get


ϕ = a1〈1, t1〉 + a2〈1, t2〉 + 〈A3, a3, · · · , an〉 + 〈α2, α3〉
...
=


∑n
i=1 ai〈1, ti〉 + 〈α2, · · · , αn〉 .


The proof is now finished by putting ψ := 〈α2, · · · , αn〉 and µ = ⊥n
i=1ai〈1, ti〉. ¤


Corollary 3.3. Let ϕ be a form over F . Then there exist forms ψ and µ over F
with ψK anisotropic (possibly dimψ = 0) and µ ∈ JK/F , such that ϕ = ψ+µ ∈ WF .
In particular, (ϕK)an ∼= ψK .


Proof. If ϕK is anisotropic, the we can put ψ := ϕ and µ = 0.
If ϕK is isotropic, then we apply the above proposition to find forms µ′ ∈ JK/F


and ψ′ over F with dim ψ′ < dim ϕ such that ϕ = ψ′ + µ′ ∈ WF . If ψ′
K is


anisotropic, we are done, otherwise we conclude by induction on the dimension
applied to dimψ′.


Now by Lemma 3.1, we have µK = 0, hence ϕK = ψK ∈ WK. The anisotropy
of ψK yields (ϕK)an ∼= ψK . ¤


Our main theorem from the introduction and the excellence of K/F are now
immediate consequences of the preceding corollary and Lemma 3.1:


Theorem 3.4. (i) W (K/F ) = JK/F .
(ii) K/F is excellent.
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4. Annihilator ideals for Pfister forms


Consider an n-Pfister


π = 〈〈a1, · · · , an〉〉 = ⊥
∅⊂I⊂{1,··· ,n}


〈aI〉


where aI =
∏


i∈I ai. We associate to this Pfister form the field K = F (
√


a1, · · · ,
√


an)


which is purely inseparable of exponent 1, and we have K2 = F 2(a1, · · · , an). It is
clear that ∑


∅⊂I⊂{1,··· ,n}


aIF
2 = DF (π)0 = K2.


We call K the root field of π (as it consists exactly of all square roots of elements in
DF (π)0). Note that π is anisotropic iff the aI are F 2-linearly independent, which
in turn is equivalent to saying that [K : F ] = [K2 : F 2] = 2n.


Conversely, if K/F is a purely inseparable extension of exponent 1 and degree
2n, then we can find a1, · · · , an ∈ F ∗ such that K = F (


√
a1, · · · ,


√
an). We then


call π = 〈〈a1, · · · , an〉〉 a Pfister form associated to K/F , and we have DF (π)0 =
K2. Note that this Pfister form is generally not unique up to isometry. For if we
choose different elements b1, · · · , bn ∈ F with K = F (


√
b1, · · · ,


√
bn), then generally


〈〈b1, · · · , bn〉〉 6∼= 〈〈a1, · · · , an〉〉.
For example, if F = F2(T ) is the rational function field in one variable T over the


field with two elements, and if K = F (
√


T ) = F (
√


1 + T ), then 〈〈T 〉〉 6∼= 〈〈1 + T 〉〉 by
comparing determinants.


We will focus on annihilator ideals for Pfister forms.


For the remainder of this section, π will be an anisotropic n-Pfister, and K will be
the root field of π.


Lemma 4.1. JK/F ⊂ annF (π).


Proof. JK/F is generated by elements of type 〈1, t〉 with t ∈ K∗2 = DF (π)∗. Since
π is round, we have tπ ∼= π, i.e. 〈1, t〉 ⊗ π = 0 ∈ WF for all t ∈ DF (π)∗. This
clearly implies JK/F ⊂ annF (π). ¤


Proposition 4.2. Let ϕ = 〈a0, · · · , an〉 be an anisotropic form over F . Then π⊗ϕ
is isotropic iff ϕK is isotropic.


Proof. π ⊗ ϕ ∼= ⊥n
i=0aiπ is isotropic iff there exist ti ∈ DF (π)0 = K2, 0 ≤ i ≤ n,


not all ti equal to 0 (here, we use the anisotropy of π), such that
∑n


i=0 aiti = 0.
Since ti = x2


i for a uniquely determined xi ∈ K, this immediately shows that the
isotropy of π ⊗ ϕ is equivalent to the isotropy of ϕK . ¤


Corollary 4.3. Let ϕ be a form over F . Then there exist forms ψ and µ over F with
π ⊗ ψ anisotropic (possibly dimψ = 0) and µ ∈ JK/F , such that ϕ = ψ + µ ∈ WF .
In particular, (π ⊗ ϕ)an ∼= π ⊗ ψ.


Proof. By Corollary 3.3, there exist forms ψ and µ over F with ψK anisotropic
(possibly dimψ = 0) and µ ∈ JK/F , such that ϕ = ψ + µ ∈ WF . Now π ⊗ µ =
0 ∈ WF by Lemma 4.1, and π ⊗ ψ is anisotropic by Proposition 4.2. Hence
π ⊗ ϕ = π ⊗ ψ ∈ WF and thus (π ⊗ ϕ)an ∼= π ⊗ ψ. ¤


This corollary together with Lemma 4.1 and Theorem 3.4(i) immediately implies


Theorem 4.4. annF (π) = JK/F = W (K/F ).
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Corollary 4.5. Let E/F be purely inseparable of exponent 1. For any finite subex-
tension L of F inside E, let π(L) be the Pfister form associated to L/F . Then


W (E/F ) =
⋃


F⊂L⊂E


L/F finite


annF (π(L)).


Proof. Every form ϕ over F which becomes metabolic over E will become so already
over some finite subextension of E/F . Hence, W (E/F ) =


⋃
L W (L/F ) where L


ranges over all finite subextensions of F inside E. The claim now follows by applying
Theorem 4.4. ¤


5. A generalization


Our results on isotropy over purely inseparable (finite) extensions can be ex-
tended to a wider class of algebraic extensions, not necessarily purely inseparable.
We will often refer to [4] where diagonal forms of degree p over fields of charac-
teristic p > 0 are studied. In our situation, the characteristic is 2, and diagonal
forms of degree 2 are then nothing else but totally singular quadratic forms. The
results in [4] can now be applied by noting that the isotropy of a bilinear form β is
by definition the same as the isotropy of the associated totally singular quadratic
form q given by q(x) = β(x, x).


The case of separable extensions can be disposed of immediately.


Lemma 5.1. Let ϕ be an anisotropic form over F and let K be a separable exten-
sion of F . Then ϕK is anisotropic.


Proof. [4, Prop. 5.3]. ¤


This result applies to separable extensions in the widest sense, namely exten-
sions K/F which can be written as a purely transcendental extension (of arbitrary
transcendence degree) followed by a separable algebraic extension (not necessarily
finite).


Let now K/F be an algebraic extension. We still assume char(F ) = 2 although
all the field theoretic definitions and results in the next few paragraphs make sense
in arbitrary (positive) characteristic.


It is well-known that K/F can be written as K/L/F with L/F separable and
K/L purely inseparable. If it can also be written as K/M/F with M/F purely
inseparable and K/M separable, then the field extension K/F is said to be balanced.
Now generally, finite extensions need not be balanced. But if K/F is balanced, then
the M above is necessarily the maximal purely inseparable extension of F in K.


More precisely, if L (resp. M) is the maximal separable (resp. purely insep-
arable) extension of F inside K, then K/F is balanced iff K/M is separable iff
K = LM . For example, every finite normal extension K/F is balanced. (see, e.g.,
[5, Th. 46]).


Recall that elements b1, · · · , bm ∈ F are called 2-independent if they are F 2-
linearly independent as elements in the F 2-vector space F . This is equivalent to
saying that [F (


√
b1, · · · ,


√
bm) : F ] = 2m.


Now suppose that K/F is a finite purely inseparable extension of degree 2r > 1.
Then there exist elements a1, · · · , an ∈ F , α1, · · · , αn ∈ K and integers r1, · · · , rn ≥
1 such that ai = α2ri


i , and K = F (α1, · · · , αn). One can show that


2r = [K : F ] = 2r1+···+rn
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if and only if [F (
√


a1, · · · ,
√


an) : F ] = 2n, i.e., the ai are 2-independent (cf. [4,
Prop. 5.7]). If we are in this situation, then we have


K =


n∏


i=1


F (αi) ∼= F (α1) ⊗F · · · ⊗F F (αn),


and we say that K/F admits a higher 2-basis {α1, · · · , αn}. Generally, finite purely
inseparable extensions do not admit higher 2-bases (cf. [9]).


We now have all the ingredients to generalize the results from the previous sec-
tions to a much wider class of field extensions.


Theorem 5.2. Let K/F be a finite balanced extension and let M be the maximal
purely inseparable extension of F inside K. Suppose that M/F admits a higher 2-
basis {α1, · · · , αn} ⊂ M , and let {a1, · · · , an} ⊂ F be 2-independent with ai = α2ri


with integers r1, · · · , rn ≥ 1. Let L = F (
√


a1, · · · ,
√


an).
Then π = 〈〈a1, · · · , an〉〉 is anisotropic, and for an anisotropic form ϕ over F ,


the following are equivalent:


(i) ϕK is isotropic;
(ii) ϕM is isotropic;
(iii) ϕL is isotropic;
(iv) π ⊗ ϕ is isotropic.


In particular, K/F is excellent and W (K/F ) = W (M/F ) = W (L/F ) = annF (π).


Proof. The anisotropy of π is clear (see the introductory remarks in Section 4).
The equivalence of (i) and (ii) follows from the assumption that K/F is balanced


which in turn means that K/M is separable, implying that a form (defined over
M) is anisotropic over K iff it is so over M by Lemma 5.1.


The equivalence of (ii) and (iii) has been proved in [4, Th. 5.9], and Proposition
4.2 yields the equivalence of (iii) and (iv).


The excellence follows now readily from Corollary 3.3. The equality of the Witt
kernels is also immediate, and the proof is finished by invoking Theorem 4.4. ¤


We conclude by giving an example of a finite algebraic extension K/F which is
not excellent.


Example 5.3. Let F = F2(a, b, c) be the rational function field in the variables a, b, c
over F2. One readily checks that X3 + aX2 + bX + c ∈ F [X] is irreducible over F .
Hence,


P (X) = X6 + aX4 + bX2 + c ∈ F [X]


is irreducible over F . Let α be a root of P (X) is some algebraic closure of F , and
put K = F (α). We have [K : F ] = 6 and clearly K/F is neither separable nor
purely inseparable.


Now let
ϕ = 〈1, a, b, c〉 and π = 〈〈a, b, c〉〉.


One easily sees that ϕ and π are anisotropic as a, b, c are 2-independent. Further-
more, ϕK is isotropic because we have


(α3)2 + a(α2)2 + bα2 + c.12 = 0.


Suppose that there exists a form ψ over F with (ϕK)an ∼= ψK . Then dimψ ∈ {0, 2}.
Let


η ∼= (ϕ ⊥ ψ)an.
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By comparing dimensions, we have 2 ≤ dim η ≤ 6. Furthermore, by construction,
ηK is metabolic. Let η̂ (resp. π̂) be the anisotropic totally singular quadratic form
given by η̂(x) = η(x, x) (resp. π̂(x) = π(x, x)). Since ηK is metabolic, we have that
η̂K is 2-split in the terminology of [4, Def. 2.11].


Now the coefficients of P (X) are 1, a, b, c, and we have [F 2(a, b, c) : F 2] = 8 and
K ∼= F [X]/P (X). We then can invoke [4, Th. 6.10] to get that η̂ ∼= π̂ ⊗ γ̂ for
some totally singular quadratic form γ̂. In particular, dim η = dim η̂ is divisible by
dimπ = dim π̂ = 8, a contradiction. Thus, (ϕK)an is not defined over F .
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