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Abstract


In characteristic 2 we give a complete characterization of anisotropic symmetric
bilinear forms that become metabolic over the function field of a quadratic form.
We also study the hyperbolicity of nonsingular quadratic forms over such a field
by generalizing some results by Fitzgerald [6]. As an application, we introduce and
study the notion of Pfister neighbors for bilinear forms, and classify anisotropic
bilinear forms of height 1, i.e. those that become metabolic over their own function
fields. Other consequences are also included.
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1 Introduction


Let F denote a field of characteristic 2, and let Wq(F ) (resp. W (F )) be the
Witt group of nonsingular quadratic forms over F (resp. the Witt ring of
regular symmetric bilinear forms over F ). For any field extension K/F , there


are homomorphisms Wq(F )
i−→ Wq(K) and W (F )


j−→ W (K) induced by
scalar extension.
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An important problem in the algebraic theory of quadratic and bilinear forms
is the study of the kernels Wq(K/F ) and W (K/F ) of the homomorphisms i
and j, respectively.


In this paper we are interested to the case where K = F (ϕ), the function field
of a quadratic form ϕ. For such a field in characteristic different from 2, the
study was done by Fitzgerald [6]. Our aim is to treat the case of characteristic
2. More precisely, we will give a complete computation of W (F (ϕ)/F ), and
for the kernel Wq(F (ϕ)/F ) we will extend important results in [6]. Our study
includes function fields of possibly singular quadratic forms.


1.1 The kernel W (F (ϕ)/F )


Throughout this paper, the expression “bilinear form” means “regular sym-
metric bilinear form”.


For a quadratic form (resp. a bilinear form) ϕ with underlying vector space
V , we denote by DF (ϕ) the set of scalars in F ∗ represented by ϕ (resp. the
set of scalars ϕ(v, v) ∈ F ∗ for v ∈ V ). A totally singular form of dimension n
is a quadratic form isometric to


∑n
i=1 aix


2
i for some ai ∈ F ∗. We denote it by


〈a1, · · · , an〉. A bilinear form B is called associated to a totally singular form
ϕ (or ϕ is associated to B) if dim B = dim ϕ and DF (B) = DF (ϕ). Note that
DF (B) is nothing but the F 2-vector space inside F generated by the elements
in the diagonal of any matrix representing B, and that dimF 2 DF (B) ≤ dim B
with equality if B is anisotropic. Moreover, two totally singular forms asso-
ciated to the same bilinear form are isometric. We denote by B̃ the totally
singular form associated to a bilinear form B, and by A(ϕ) the set of bilinear
forms associated to a totally singular form ϕ.


Let 〈a1 : b : a2〉 denote the 2-dimensional bilinear form whose underlying vec-
tor space has a basis {e1, e2} satisfying: B(ei, ei) = ai and B(e1, e2) = b. A
metabolic plane is a 2-dimensional bilinear form isomorphic to 〈a : 1 : 0〉 for
some a ∈ F . A metabolic bilinear form is an orthogonal sum of metabolic
planes. Recall that a bilinear form is isotropic if and only if it contains a
metabolic plane as a subform.


Our first result in this paper is the following proposition which gives the
subform theorem version for bilinear forms. It will be very useful to study the
metabolicity of bilinear forms over function fields of quadratic forms:


Proposition 1.1 Let B be an anisotropic bilinear form, and let ϕ be an
anisotropic quadratic form such that B is metabolic over F (ϕ). Then ϕ is
totally singular and for any α ∈ DF (ϕ)DF (B), there exists a subform B′ of
αB such that B′ ∈ A(ϕ). In particular, dim ϕ ≤ dim B.
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We also need the notion of norm field introduced in [7]. Recall that the norm
field of a nonzero totally singular form ϕ, denoted by NF (ϕ), is the field
F 2(ab | a, b ∈ DF (ϕ)). The degree of the extension NF (ϕ)/F 2, denoted by
ndegF (ϕ), is called the norm degree of ϕ. If b1, · · · , bm ∈ F ∗ are such that
NF (ϕ) = F 2(b1, · · · , bm) and ndegF (ϕ) = 2m, then we denote by ϕqp the
totally singular form associated to the anisotropic m-fold bilinear Pfister form
〈1, b1〉b⊗· · ·⊗〈1, bm〉b, where 〈a1, · · · , an〉b denotes the bilinear form


∑n
i=1 aixiyi


for ai ∈ F ∗. We prove that the anisotropic part ϕan of ϕ is similar to a subform
of ϕqp. Moreover, if ϕan is similar to a subform of a totally singular form ϕ′


which is associated a bilinear Pfister form, then ϕqp is a subform of ϕ′. For
more details on norm fields we refer to [7, Section 8].


Now our criterion concerning the metabolicity of bilinear forms over function
fields of quadratic forms is as follows:


Theorem 1.2 Let ϕ be an anisotropic quadratic form of dimension ≥ 2 such
that W (F (ϕ)/F ) 6= 0. Then ϕ is totally singular, and an anisotropic bilinear
form B over F becomes metabolic over F (ϕ) if and only if B ≃ α1B1 ⊥ · · · ⊥
αrBr for some α1, · · · , αr ∈ F ∗ and B1, · · · , Br d-fold bilinear Pfister forms
belonging to A(ϕqp), where d is such that ndegF (ϕ) = 2d (≃ and ⊥ denote
isometry and orthogonal sum, respectively).


1.2 The kernel Wq(F (ϕ)/F )


Contrary to the case of bilinear forms, the hyperbolicity of nonsingular
quadratic forms was previously studied over some field extensions, like
quadratic and biquadratic extensions. This was done by Baeza [3], [4, Cor.
4.16, Page 128], Mammone and Moresi [17], and Hamza [1, Cor. 2.8], [2]. Re-
cently, the author gave a complete computation of Wq(K/F ) for K/F purely
inseparable multiquadratic extension [16].


As was investigated in characteristic different from 2 by Elman, Lam,
Wadsworth and Fitzgerald [5], [6], an important question related to the com-
putation of Wq(F (ϕ)/F ) is to know if these kernels are generated by Pfister
forms (up to scalars), and whether the description can be given up to isom-
etry instead of Witt-equivalence. In this sense, we recall the terminology of
“Pfister group” and “strong Pfister group” originally due to Elman, Lam and
Wadsworth:


Definition 1.3 For an integer n ≥ 1, we denote by PnF the set of quadratic
forms isometric to n-fold Pfister forms, and GPnF = F ∗PnF . For a field
extension K/F and a subset I of N, we say that:
(1) Wq(K/F ) is an I-Pfister group if it is generated by quadratic forms in
Wq(K/F ) ∩ GPnF for n ∈ I.
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(2) Wq(K/F ) is a strong I-Pfister group if any quadratic form in Wq(K/F )
is isometric to an orthogonal sum of quadratic forms in Wq(K/F )∩GPnF for
n ∈ I.


The following theorem describes, up to isometry, nonsingular quadratic forms
that become hyperbolic over the function field of a Pfister neighbor or quasi-
Pfister neighbor (cf. subsection 2.3). In particular, for the quasi-Pfister neigh-
bors case, this generalizes the result [1, Cor. 2.8] by Hamza:


Theorem 1.4 Let ϕ be an anisotropic Pfister neighbor or quasi-Pfister neigh-
bor of π. Then we have the following:
(1) Wq(F (ϕ)/F ) = Wq(F (π)/F ).
(2) If ϕ is a Pfister neighbor, then any anisotropic form in Wq(F (ϕ)/F ) is
isometric to τ ⊗ π for some bilinear form τ . In particular, Wq(F (ϕ)/F ) is a
strong n-Pfister group, where n satisfies dim π = 2n.
(3) If ϕ is a quasi-Pfister neighbor, then any anisotropic form in Wq(F (ϕ)/F )
is isometric to B ⊗ ρ for some nonsingular quadratic form ρ, where B is a
bilinear Pfister form satisfying B̃ ≃ π. In particular, Wq(F (ϕ)/F ) is a strong
(n + 1)-Pfister group, where n is as in (2).


However, in general, we have no criterion to compute Wq(F (ϕ)/F ) for an arbi-
trary quadratic form ϕ. The principal idea that we will use to get informations
on the kernel Wq(F (ϕ)/F ) is to compare it to another one Wq(F (ϕ′)/F ) pro-
vided that ϕ′ satisfies some properties. Our main result in this sense is Theo-
rem 1.5 which treats the case when ϕ′ is dominated by ϕ, dim ϕ = dim ϕ′ + 1
and Wq(F (ϕ′)/F ) is a strong n-Pfister group for some n ≥ 1 (dominated
means that ϕ′ is the restriction of ϕ to a subspace of its underlying vector
space; cf. subsection 2.2):


Theorem 1.5 Let ϕ be an anisotropic quadratic form (possibly singular) of
dimension ≥ 3, and let ϕ′ be a quadratic form dominated by ϕ with codimen-
sion 1, i.e. dim ϕ = dim ϕ′ + 1, such that Wq(F (ϕ′)/F ) is a strong n-Pfister
group for some n ≥ 1. Then Wq(F (ϕ)/F ) is an {n, n+1}-Pfister group. More-
over, if Wq(F (ϕ)/F ) ∩ PnF = {0}, then Wq(F (ϕ)/F ) is an (n + 1)-Pfister
group.


Theorem 1.5 partially extends [6, Prop. 1.2] to characteristic 2, and can be
refined in the case of a Pfister neighbor ϕ′ as follows:


Theorem 1.6 Let ϕ be an anisotropic quadratic form of dimension ≥ 3, and
let ϕ′ be a quadratic form dominated by ϕ with codimension 1. If ϕ′ is a
Pfister neighbor of an n-fold Pfister form, then Wq(F (ϕ)/F ) is a strong m-
Pfister group where m = n or n + 1 according as ϕ is a Pfister neighbor of an
n-fold Pfister form or not.


This paper is organized as follows. In the next section, we recall definitions
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and notions on bilinear and quadratic forms. Sections 3 is devoted to some
preliminaries that we need for the proofs of our results, and then in section 4
we give our proofs. In view of the subform theorem stated in Proposition 1.1,
we introduce in section 5 the notion of Pfister neighbors for bilinear forms.
We prove preliminary results on such forms, similar to those known for Pfister
neighbors in the case of quadratic forms. By using Theorem 1.2, we prove that
anisotropic bilinear forms of height 1 are those similar to bilinear Pfister forms
(Corollary 5.5). We also give a characterization of Pfister neighbors based on a
splitting property over their own function fields, by proving that an anisotropic
bilinear form B is a Pfister neighbor if and only if there exists B′ ∈ A(B̃)
such that the anisotropic part of B′


F (B) is defined over F (Corollary 5.6).
This is similar to a result by Knebusch for Pfister neighbors in characteristic
different from 2 [12], and its generalization to characteristic 2 by the author
and Hoffmann [7]. In the last section, we give further results on Witt kernels,
and we give a detailed description of Wq(F (ϕ)/F ) for ϕ of small dimension.


2 Backgrounds on bilinear and quadratic forms


Any quadratic form ϕ of dimension ≥ 1 can be written up to isometry


ϕ ≃ [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ 〈c1, · · · , cs〉 .


The form 〈c1, · · · , cs〉 is unique up to isometry, and we call it the quasilinear
part of ϕ. The quadratic form ϕ is called nonsingular if s = 0; singular if
s > 0; and totally singular if r = 0.


Let ϕ be a nonzero quadratic form of dimension n ≥ 1. If ϕ is not isometric
to [0, 0] ⊥ 〈0, · · · , 0〉 and 〈a, 0, · · · , 0〉 for some a ∈ F ∗, then the polynomial
ϕ(x1, · · · , xn) given by ϕ is irreducible. In this case, we define the function


field of ϕ, denoted by F (ϕ), as the quotient field of
F [x1, · · · , xn]


(ϕ(x1, · · · , xn))
. In other


cases, we set F (ϕ) = F .


The function field of a bilinear form B is defined as the field F (B̃).


For a field extension K/F and a quadratic form (or a bilinear form) ϕ, the
form ϕ ⊗ K is denoted by ϕK .


Two quadratic forms (or bilinear forms) ϕ and ϕ′ are called similar if ϕ ≃ aϕ′


for some scalar a ∈ F ∗.


A bilinear form B′ is called a subform of another one B, denoted by B′ ⊂ B,
if B ≃ B′ ⊥ B′′ for some bilinear form B′′.
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2.1 Witt decomposition of bilinear and quadratic forms


It was proved in [7, Prop. 2.4] that any nonzero quadratic form ϕ is uniquely
decomposed as follows: ϕ ≃ i×H ⊥ j×〈0〉 ⊥ ϕan, where ϕan is an anisotropic
form called the anisotropic part of ϕ, and H = [0, 0] is the hyperbolic plane
(here n × ψ denotes the orthogonal sum of n copies of a quadratic form ψ).
The integer i (resp. j) is called the Witt index of ϕ and denoted by iW (ϕ)
(resp. the defect index of ϕ and denoted by id(ϕ)). A nonsingular form ϕ is
called hyperbolic if dim ϕ = 2iW (ϕ).


Any bilinear form B is decomposed as follows: B ≃ M ⊥ Ban, where M is a
metabolic bilinear form and Ban is an anisotropic bilinear form. The form Ban


is unique [9], [10], and we call it the anisotropic part of B.


Two quadratic forms (or bilinear forms) ϕ and ϕ′ are called Witt-equivalent,
denoted by ϕ ∼ ϕ′, if ϕ ⊥ H ≃ ϕ′ ⊥ H ′ where H and H ′ are hyperbolic
quadratic forms (or metabolic bilinear forms). The condition ϕ ∼ ϕ′ implies
that ϕan ≃ ϕ′


an.


It is clear that a bilinear form B is isotropic if and only if B̃ is isotropic.


2.2 Dominated forms and the subform theorem


Let ϕ and ϕ′ be two quadratic forms with underlying vector spaces V and W ,
respectively. We say that ϕ is dominated by ϕ′ (or ϕ′ dominates ϕ), denoted
by ϕ ≺ ϕ′, if there exists an injective F -linear map t : (ϕ, V ) −→ (ϕ′,W ) such
that ϕ′(t(v)) = ϕ(v) for any v ∈ V . We say that ϕ is weakly dominated by ϕ′


if aϕ ≺ ϕ′ for some a ∈ F ∗.


The following proposition gives an equivalent definition of the domination
relation:


Proposition 2.1 ([7, Lem. 3.1]) For quadratic forms ϕ and ϕ′, we have an
equivalence between:
(1) ϕ ≺ ϕ′.
(2) There exist nonsingular forms Q,R, nonnegative integers s′ ≤ s ≤ t, and
scalars c1, · · · , ct, d1, · · · , ds′ ∈ F such that:
(i) ϕ ≃ R ⊥ 〈c1, · · · , cs〉.
(ii) ϕ′ ≃ Q ⊥ R ⊥ [c1, d1] ⊥ · · · ⊥ [cs′ , ds′ ] ⊥ 〈cs′+1, · · · , ct〉 .


The subform theorem asserts the following:


Theorem 2.2 ([7, Th. 4.2]) If ϕ and ϕ′ are anisotropic quadratic forms such
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that ϕ′ is nonsingular and becomes hyperbolic over F (ϕ), then ϕ ≺ aϕ′ for
any scalar a ∈ DF (ϕ)DF (ϕ′).


2.3 On Pfister forms, quasi-Pfister forms and their neighbors


For an n-fold bilinear Pfister form B, the nonsingular form B ⊗ [1, b] is called
an (n+1)-fold Pfister form, where ⊗ denotes the action of W (F ) on Wq(F ) [4].
A quasi-Pfister form is a totally singular form associated to a bilinear Pfister
form.


We say that a quadratic form ϕ is a Pfister neighbor (resp. a quasi-Pfister
neighbor) if there exists a Pfister form (resp. a quasi-Pfister form) π such that
2 dim ϕ > dim π and ϕ is weakly dominated by π. In this case, the form π is
unique (up to isometry), and for any field extension K/F we have that ϕK


is isotropic if and only if πK is isotropic. In particular, πF (ϕ) and ϕF (π) are
isotropic [7], [13, Prop. 3.1].


3 Preliminaries on bilinear and quadratic forms


We say that a totally singular form ϕ is quasi-hyperbolic if dim ϕ ≥ 2 dim ϕan.
This definition of quasi-hyperbolicity is different from that fixed in [15], and
presents the advantage that it remains invariant under field extensions. How-
ever, it should be noted that the results [15, Prop. 1.4, Th. 1.5] that we will
use in our proofs, and which are proved using the first definition of quasi-
hyperbolicity, remain true with this new one.


Lemma 3.1 Let B be a bilinear form and ϕ a quadratic form. We have:
(1) If B is metabolic, then B̃ is quasi-hyperbolic.
(2) If B is anisotropic and BF (ϕ) is isotropic, then ϕ is totally singular.


Proof. (1) Let V be the underlying vector space of B. If B is metabolic,
then V contains a subspace W of half dimension such that B(W,W ) = 0. In
particular, B̃(w) = 0 for any w ∈ W , and then dim B̃an ≤ dim V − dim W =


dim W = dim B̃
2


.


(2) Since B̃F (ϕ) is isotropic and B̃ is anisotropic, the claim follows from [13,
Cor. 3.3]. 2


Remark 3.2 In general, the quasi-hyperbolicity of the totally singular form
B̃ does not imply the metabolicity of B. For example, for x a variable over F


7







and K = F (x), the bilinear form B = 〈1 : 1 : 0〉 ⊥ 〈1 : 0 : x〉 is not metabolic
over K as we can see by using the uniqueness of the anisotropic part, but
B̃ ≃ 〈1, 0, 1, x〉 ≃ 〈0, 0, 1, x〉 is quasi-hyperbolic over K.


Proposition 3.3 An isotropic bilinear Pfister form is metabolic.


Proof. The proposition is obvious for F = Z/2Z or B of dimension 2. So
suppose F 6= Z/2Z and dim B > 2. Set B = B′ ⊥ αB′ for some α ∈ F ∗ and
B′ a bilinear Pfister form. If B′ is isotropic, then we conclude by induction on
dim B. If not, there exists β ∈ DF (B′)∩DF (αB′). By [4, Cor. 2.16, Page 101]
B′ is round, i.e. any scalar x ∈ DF (B′) satisfies xB′ ≃ B′. Hence, B′ ≃ βB′ ≃
αB′ and thus B is metabolic. 2


We need some results concerning the isotropy of bilinear forms over inseparable
quadratic extensions:


Lemma 3.4 Let B be an anisotropic bilinear form and d ∈ F ∗ − F ∗2. We
have:
(1) B is isotropic over F (


√
d) ⇐⇒ there exist a, b ∈ F with a 6= 0 such that


〈a : b : ad〉 ⊂ B.
(2) B is metabolic over F (


√
d) ⇐⇒ B ≃ ⊥r


i=1 〈ai : bi : aid〉 for some ai, bi ∈ F
with ai 6= 0 (1 ≤ i ≤ r).


Proof. Let V be the underlying vector space of B. In both assertions the
implication (⇐=) is clear.


(1) =⇒: Suppose that BF (
√


d) is isotropic. Then there exist vectors v, v′ ∈
V , not both zero, such that B(v, v) = dB(v′, v′). Since B is anisotropic, we
have B(v′, v′) 6= 0. Moreover, the vectors v and v′ are linearly independent.
Otherwise, there would exist α ∈ F ∗ such that v = αv′. Hence α2B(v′, v′) =
dB(v′, v′), and thus d would belong to F ∗2. The restriction of B to the space
Fv ⊕Fv′ is the bilinear form 〈a : b : ad〉 where a = B(v′, v′) and b = B(v, v′).


(2) =⇒: Suppose that BF (
√


d) is metabolic. Since BF (
√


d) is isotropic, there exist
by statement (1) scalars a1, b1 with a1 6= 0 such that B ≃ 〈a1 : b1 : a1d〉 ⊥ B′


for some bilinear form B′. If dim B = 2, then we are done. If not, we use the
uniqueness of the anisotropic part to get that B′


F (
√


d)
is metabolic. The claim


then follows by induction on dimB. 2


We get the following corollary:
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Corollary 3.5 If B is a bilinear form and d ∈ F ∗ − F ∗2, then there exists a
bilinear form B′ defined over F such that (BF (


√
d))an ≃ B′


F (
√


d)
.


Proof. Without loss of generality, we may suppose that B is anisotropic and
becomes isotropic over F (


√
d). By Lemma 3.4, B ≃⊥r


i=1 〈ai : bi : aid〉 ⊥ B′


for some anisotropic bilinear B′ over F (
√


d), and scalars ai, bi with ai 6= 0
(1 ≤ i ≤ r). By the uniqueness of the anisotropic part we get (BF (


√
d))an ≃


B′
F (


√
d)


. 2


The following result will be used in the proof of Theorem 1.2:


Proposition 3.6 Let ϕ and ϕ′ be totally singular forms such that ϕ′ is
anisotropic of dimension ≥ 2 and dominated by ϕ. Then we have the inclusion
W (F (ϕ)/F ) ⊂ W (F (ϕ′)/F ).


To prove this proposition we need some results from the specialization theory
of bilinear and quadratic forms. First, we prove the following lemma:


Lemma 3.7 For ϕ and ϕ′ as in Proposition 3.6, there exists an F -place from
F (ϕ) to F (ϕ′).


Proof. Since ϕ′ ≺ ϕ, there exist integers 2 ≤ s ≤ t and scalars c1, · · · , ct ∈ F
such that ϕ′ ≃ 〈c1, · · · , cs〉 and ϕ ≃ ϕ′ ⊥ 〈cs+1, · · · , ct〉. Without loss of gen-
erality, we may suppose c1 = 1. Since dim ϕan ≥ dim ϕ′ ≥ 2, the homogeneous
polynomials given by ϕ and ϕ′ are irreducible and we have:


F (ϕ) = F (x2, · · · , xt)(
√


α)


F (ϕ′) = F (y2, · · · , ys)(
√


α′),


where α =
∑t


i=2 cix
2
i and α′ =


∑s
i=2 ciy


2
i . By [19, Cor. 6.13, page 162], there


exists an F -place λ from F (x2, · · · , xt) to F (y2, · · · , ys) given by:


λ(xi) =







yi if 2 ≤ i ≤ s


0 otherwise.


Since λ(α) = α′, the F -place λ restricts to an F 2-place from F 2(x2
2, · · · , x2


t )(α)
to F 2(y2


2, · · · , y2
s)(α


′). Moreover, the squaring map (resp. its inverse) yields
field isomorphisms F (ϕ) −→ F 2(x2


2, · · · , x2
t )(α) and F 2(y2


2, · · · , y2
s)(α


′) −→
F (ϕ′). It is now clear that composing these isomorphisms with λ yields the
desired F -place from F (ϕ) to F (ϕ′). 2


We also need a specialization result by Knebusch:
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Proposition 3.8 ([11, Th. 3.1]) Let K and L be fields (of any characteristic),
and let λ : K −→ L∪{∞} be a place. Then there exists a unique additive map
λ∗ : W (K) −→ W (L) defined as follows: λ∗(〈a〉b) = 〈λ(a)〉b for every a ∈ K
such that λ(a) 6= 0,∞, and λ∗(〈a〉b) = 0 for every a ∈ K such that λ(ac2) = 0
or ∞ for every c ∈ K∗.


Now we are able to prove Proposition 3.6:


Proof. By Lemma 3.7 there exists an F -place λ : F (ϕ) −→ F (ϕ′) ∪ {∞}.
This place induces an additive map λ∗ : W (F (ϕ)) −→ W (F (ϕ′)) defined as
in Proposition 3.8. Since λ∗(〈a〉b) = 〈λ(a)〉b = 〈a〉b for every a ∈ F ∗, the claim
follows. 2


We give an analogue of Proposition 3.6 for Witt kernels for quadratic forms:


Proposition 3.9 Let ϕ and ϕ′ be quadratic forms such that ϕ is anisotropic
and becomes isotropic over F (ϕ′). Then Wq(F (ϕ)/F ) ⊂ Wq(F (ϕ′)/F ).


Proof. Suppose Wq(F (ϕ)/F ) 6= 0, and let η ∈ Wq(F (ϕ)/F ) be anisotropic.
We proceed by induction on dim η. By the subform theorem ϕ is weakly dom-
inated by η, and thus ηF (ϕ′) is isotropic since ϕF (ϕ′) is also isotropic. Hence
F (ϕ′)(η)/F (ϕ′) is purely transcendental.


(1) If η is similar to a Pfister form, then η ∈ Wq(F (ϕ′)/F ) and we are done.


(2) If η is not similar to a Pfister form, then η1 := (ηF (η))an 6= 0 [14]. The form
ϕF (η) is anisotropic, otherwise F (η)(ϕ)/F (η) would be purely transcendental
[13, Cor. 3.4], and thus ηF (η) would be hyperbolic since ηF (ϕ) ∼ 0. Since
ϕF (η)(ϕ′) is isotropic and (η1)F (η)(ϕ) ∼ ηF (η)(ϕ) ∼ 0, we deduce by induction
that (η1)F (η)(ϕ′) ∼ 0. Since F (η)(ϕ′) = F (ϕ′)(η) and F (ϕ′)(η)/F (ϕ′) is purely
transcendental, the form ηF (ϕ′) is then hyperbolic. Hence the claim. 2


Remark 3.10 Note that in this proof, the use of the subform theorem is nec-
essary when ϕ′ is totally singular. However, for ϕ′ not totally singular, the
subform theorem can be avoided since in this case the isotropy of ϕF (ϕ′) im-
plies that F (ϕ′)(ϕ)/F (ϕ′) is purely transcendental [13, Cor. 3.4], and thus
Wq(F (ϕ)/F ) ⊂ Wq(F (ϕ′)/F ).
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4 Proofs


4.1 Proof of Proposition 1.1


Let B be an anisotropic bilinear form and ϕ an anisotropic quadratic form such
that B is metabolic over F (ϕ). Let α = uv with u ∈ DF (ϕ) and v ∈ DF (B) =
DF (B̃). Since BF (ϕ) is metabolic, B̃F (ϕ) is quasi-hyperbolic and ϕ is totally


singular (Lemma 3.1), hence it follows from [15, Prop. 1.4] that uϕ ⊂ vB̃,
hence DF (ϕ) ⊂ αDF (B̃) = αDF (B). Write ϕ = 〈a1, · · · , an〉, and let xi be
elements in the underlying vector space V of B such that B(xi, xi) = α−1ai.
The xi are F -linearly independent since the ai are F 2-linearly independent
because of the anisotropy of ϕ. Let W be the subspace of V generated by
the xi, and B′ ≃ αB |W . By the anisotropy of B, we conclude that there
exists a bilinear form B′′ with αB ≃ B′ ⊥ B′′. Clearly, DF (B′) = DF (ϕ),
dim B′ = dim ϕ, implying the result. 2


4.2 Proof of Theorem 1.2


We have to show that if ϕ is an anisotropic quadratic form of dimension ≥ 2
such that W (F (ϕ)/F ) 6= 0, then ϕ is totally singular, and any anisotropic B
in W (F (ϕ)/F ) 6= 0 decomposes into an orthogonal sum of forms similar to
bilinear Pfister forms in A(ϕqp).


The metabolicity of BF (ϕ) implies that ϕ is totally singular. We may suppose
that ϕ represents 1, and that ndegF (ϕ) = 2d. We will use induction on d.
Suppose d = 1. Then necessarily ϕ ≃ 〈1, a〉 where NF (ϕ) = F 2(a). In this
situation, F (ϕ) = F (


√
a)(t) for some transcendental element t, and thus B


becomes already metabolic over F (
√


a). The theorem now follows immediately
from Lemma 3.4(2).


So suppose d ≥ 2. Then we may write ϕ = 〈1, a1, · · · , ad, · · · 〉 such
that NF (ϕ) = F 2(a1, · · · , ad). Let ϕ′ = 〈1, a1, · · · , ad−1〉. Then NF (ϕ′) =
F 2(a1, · · · , ad−1), ndegF (ϕ′) = 2d−1. By Proposition 3.6, BF (ϕ′) is metabolic.
By induction, B ≃⊥m


i=1 xiCi with (d − 1)-fold bilinear Pfister forms Ci as-
sociated to ϕ′


qp. In particular, DF (Ci) ∪ {0} = DF (ϕ′
qp) ∪ {0} = NF (ϕ′) =


F 2(a1, · · · , ad−1).


After scaling, we may suppose that x1 = 1. If we write C ′ = C1 = 〈1, c1〉b⊗· · ·⊗
〈1, cd−1〉b, then DF (C ′)∪{0} = F 2(c1, · · · , cd−1) = F 2(a1, · · · , ad−1) = NF (ϕ′),
and we also can write B ≃ C ′ ⊥ B′ for some bilinear form B′.


Since B is metabolic over F (ϕ), we have that B̃ is quasi-hyperbolic over F (ϕ).
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By [15, Prop. 1.4] and since B represents 1, we have NF (ϕ) ⊂ DF (B)∪{0} =
DF (B̃)∪{0}, and by [15, Th. 1.5], we know that dimB = dim B̃ is a multiple
of 2d.


So DF (C ′) ∪ {0} = NF (ϕ′) ⊂ NF (ϕ) ⊂ DF (C ′ ⊥ B′) ∪ {0}, and since
ndegF (ϕ′) = 2d−1 < 2d = ndegF (ϕ), there exists u ∈ DF (C ′) ∪ {0} and
cd ∈ DF (B′)∪{0} such that NF (ϕ′)(u+cd) = F 2(c1, · · · , cd−1, u+cd) = NF (ϕ).
Necessarily, cd 6= 0 since u ∈ NF (ϕ′), and we have NF (ϕ′)(u + cd) =
NF (ϕ′)(cd) = NF (ϕ).


Now let C = C ′ ⊗ 〈1, cd〉b. Note that DF (C) ∪ {0} = NF (ϕ) = NF (ϕqp) =
DF (ϕqp) ∪ {0} and dim C = dim ϕqp = 2d, implying that C is associated to
ϕqp.


Consider C ⊥ B. Since C ′ ⊥ 〈cd〉b ⊂ B and C ′ ⊥ 〈cd〉b ⊂ C, we have that
C ⊥ B ≃ M ⊥ B′′ with B′′ anisotropic and M metabolic of dimension
≥ 2d + 2 = 2 dim(C ′ ⊥ 〈cd〉b). By dimension count, dim B′′ < dim B. Now
CF (ϕ) is clearly isotropic and hence metabolic, so that B′′


F (ϕ) is metabolic as


well, and therefore its dimension is a multiple of 2d [15, Th. 1.5]. In particular,
dim B′′ ≤ dim B−2d as dim B is a multiple of 2d. In W (F ), we therefore have
B ∼ C ⊥ C ⊥ B ∼ C ⊥ B′′ with B anisotropic and dim(C ⊥ B′′) ≤ dim B.
Consequently, B ≃ C ⊥ B′′, and the theorem follows by an easy induction on
the dimension of B. 2


4.3 Proof of Theorem 1.4


Let ϕ be an anisotropic Pfister neighbor or quasi-Pfister neighbor of π.


(1) Since the forms ϕF (π) and πF (ϕ) are isotropic, it follows from Proposition
3.9 that Wq(F (ϕ)/F ) = Wq(F (π)/F ). Hence, for the proofs of statements
(2)-(3) we suppose that ϕ ≃ π.


(2) Suppose that ϕ is a Pfister form. Let ψ ∈ Wq(F (ϕ)/F ) be anisotropic. By
the subform theorem x1ϕ ≺ ψ for some x1 ∈ F ∗. If dim ψ = dim ϕ, we take
τ = 〈x1〉b and we are done. If not, we write ψ ≃ x1ϕ ⊥ ψ′ for some nonsingular
form ψ′. Since ψF (ϕ) is hyperbolic, the form ψ′


F (ϕ) is also hyperbolic. Since
dim ψ′ < dim ψ, we get by induction on dim ψ that ψ′ ≃ x2ϕ ⊥ · · · ⊥ xrϕ for
some x2, · · · , xr ∈ F ∗. Hence, ψ ≃ τ ⊗ ϕ where τ = 〈x1, · · · , xr〉b.


(3) Suppose that ϕ is a quasi-Pfister form. Let ψ ∈ Wq(F (ϕ)/F ) be anisotropic,
and let B = 〈1, a1〉b ⊗ · · · ⊗ 〈1, an〉b be such that ϕ ≃ B̃. By [8, Rem. 5.2(i)],
ψ ∼ B ⊗ ρ ∈ Wq(F ) for some nonsingular form ρ which we may suppose of
minimal dimension among all γ with ψ ∼ B⊗γ. In particular, ρ is anisotropic.
Let xi ∈ F ∗ and bi ∈ F such that ρ ≃⊥r


i=1 xi[1, bi]. Suppose that B ⊗ ρ is
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isotropic. Then, after reindexing, there exist 2 ≤ s ≤ r, yi ∈ DF (xiB⊗ [1, bi]),
1 ≤ i ≤ s, such that y1 + · · · + ys = 0. By roundness of the Pfister forms
B ⊗ [1, bi], xiB ⊗ [1, bi] ≃ yiB ⊗ [1, bi] for i ≤ s. Let yi := xi for i > s and
put ρ′ =⊥r


i=1 yi[1, bi]. By the above, ψ ∼ B ⊗ ρ ≃ B ⊗ ρ′, but ρ′ is obviously
isotropic, a contradiction. Hence B⊗ρ is anisotropic and thus ψ ≃ B⊗ρ. 2


4.4 Proof of Theorem 1.5


Let ϕ be an anisotropic quadratic form of dimension ≥ 3, and let ϕ′ be a
quadratic form dominated by ϕ such that dim ϕ = dim ϕ′+1 and Wq(F (ϕ′)/F )
is a strong n-Pfister group for some n ≥ 1. We have to prove that Wq(F (ϕ)/F )
is an {n, n + 1}-Pfister group.


Let ψ ∈ Wq(F (ϕ)/F ). We use induction on dim ψ, the initial step dim ψ ≤
2 being trivial. So we may assume ψ anisotropic of dimension > 2. Since
ψ ∈ Wq(F (ϕ′)/F ) (Proposition 3.9) and by assumption, there exist forms
ρi ∈ GPnF ∩ Wq(F (ϕ′)/F ) such that ψ ≃⊥r


i=1 ρi. After scaling, we may
assume that ϕ′ and ρ1 represent 1, so that ϕ′ ≺ ρ1. Put γ =⊥r


i=2 ρi.


Now ρ1 is hyperbolic over F (ϕ) if and only if ϕ is weakly dominated by ρ1


if and only if ρ1 ∈ GPnF ∩ Wq(F (ϕ)/F ), in which case γF (ϕ) is hyperbolic,
and we are done by induction. So we may assume that ρ1 does not dominate
a form similar to ϕ.


Since ρ1 dominates ϕ′ but not ϕ, it follows that it(ϕ ⊥ ρ1) = dim ϕ′ (cf. [7,
Cor. 3.13]; here it denotes the total index iW + id). If σ denotes the anisotropic
part of ϕ ⊥ ρ1, then ϕ ⊥ ρ1 ≃ u × 〈0〉 ⊥ v × H ⊥ σ with u + v = dim ϕ′.


On the other hand, since ψ is hyperbolic over F (ϕ), and since both ψ and
ϕ represent 1, we have that ψ dominates ϕ, hence it(ϕ ⊥ ψ) = dim ϕ =
dim ϕ′ + 1. Therefore,


ϕ ⊥ ψ ≃ u × 〈0〉 ⊥ v × H ⊥ σ ⊥ γ,


and comparing the total index on both sides shows that σ ⊥ γ is isotropic, so
that there exists x ∈ DF (σ) ∩ DF (γ) since σ and γ are anisotropic.


Now consider π = ρ1 ⊥ xρ1 which is anisotropic because it dominates ρ1 ⊥ 〈x〉
which is a Pfister neighbor of π and in turn dominated by the anisotropic form
ψ. Then ϕ ⊥ π ≃ u × 〈0〉 ⊥ v × H ⊥ σ ⊥ xρ1 with σ ⊥ xρ1 isotropic. Hence,
it(ϕ ⊥ π) ≥ dim ϕ′ + 1 = dim ϕ, which by [7, Cor. 3.13] implies equality and
that π dominates ϕ. In particular, π ∈ Pn+1F ∩ Wq(F (ϕ)/F ).


Now let ψ′ be the anisotropic part of ψ ⊥ π. We have that both ψ and π
dominate ρ1 ⊥ 〈x〉, so it(ψ ⊥ π) ≥ dim(ρ1 ⊥ 〈x〉) = 2n + 1, and since
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it(ψ ⊥ π) = iW (ψ ⊥ π) by nonsingularity, we have that dimψ′ ≤ dim ψ +
dim π − 2(2n + 1) < dim ψ. But clearly, ψ′ ∈ Wq(F (ϕ)/F ), and the proof
readily concludes by induction on the dimension. 2


4.5 Proof of Theorem 1.6


Let ϕ be an anisotropic quadratic form of dimension ≥ 3, and let ϕ′ be a Pfister
neighbor of an n-fold Pfister form such that ϕ′ ≺ ϕ and dim ϕ = dim ϕ′ + 1.


If ϕ is a Pfister neighbor of an n-fold Pfister form, then Wq(F (ϕ)/F ) is a
strong n-Pfister group (Theorem 1.4(2)). So suppose that ϕ is not a Pfister
neighbor of an n-fold Pfister form. Our aim is to prove that Wq(F (ϕ)/F ) is
a strong (n + 1)-Pfister group. Let ρ be the Pfister form associated to ϕ′ and
let ψ ∈ Wq(F (ϕ)/F ) be anisotropic. Then ψ becomes hyperbolic over F (ϕ′)
and thus over F (ρ). After scaling, we may assume that ψ and ϕ′ represent
1, so that by Theorem 1.4(2), ψ ≃ ρ ⊥ τ ⊗ ρ for some bilinear form τ . We
now repeat the same proof as for Theorem 1.5, with ρ1 replaced by ρ and γ
by τ ⊗ ρ, by noting that ρ does not dominate a form similar to ϕ because by
assumption ϕ is not a Pfister neighbor of some n-fold Pfister form. We also
let σ be the anisotropic part of ϕ ⊥ ρ.


As before, it follows that there exists x ∈ DF (σ) ∩ DF (τ ⊗ ρ). By a standard
argument, the roundness of ρ readily implies that τ ⊗ ρ ≃ xρ ⊥ τ ′ ⊗ ρ for
some bilinear form τ ′.


Now consider π = ρ ⊥ xρ ∈ Pn+1F . As above, we have that ϕ is dominated
by π. Hence, π ∈ Pn+1F ∩Wq(F (ϕ)/F ). Therefore also τ ′⊗ ρ ∈ Wq(F (ϕ)/F ),
and the proof can now readily be completed by induction on dimψ as ψ ≃
π ⊥ τ ′ ⊗ ρ. 2


5 Pfister neighbors for bilinear forms


In view of the subform theorem given in Proposition 1.1, we suggest the fol-
lowing definition for Pfister neighbors in the case of bilinear forms:


Definition 5.1 We say that a bilinear form B′ is a Pfister neighbor of a
bilinear Pfister form B if 2 dim B′ > dim B and there exists B′′ ∈ A(B̃′)
similar to a subform of B.


As for quadratic forms we prove the following:


Proposition 5.2 Let B′ be a Pfister neighbor of a bilinear Pfister form B.
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Then:
(1) For any field extension K/F , the forms BK and B′


K are simultaneously
isotropic or anisotropic. In particular, BF (B′) and B′


F (B) are isotropic.
(2) If B′ is anisotropic and a Pfister neighbor of another bilinear Pfister form
ρ, then B̃ ≃ ρ̃.


Proof. (1) Let B′′ ∈ A(B̃′) similar to a subform of B. The forms B′
K and B′′


K


are simultaneously isotropic or anisotropic since B̃′′ ≃ B̃′. If BK is isotropic,
then it is metabolic and B′′


K becomes isotropic as dim B′′ = dim B′ > dim B
2


.
Obviously, the isotropy of B′′


K implies that of BK .


(2) By statement (1) B′
F (ρ) is isotropic and thus BF (ρ) is also isotropic. Since


B is anisotropic, dim B = dim ρ and 1 ∈ DF (B) ∩ DF (ρ), it follows from
Proposition 1.1 that B ∈ A(ρ̃), i.e. B̃ ≃ ρ̃. 2


We give an equivalent definition to 5.1:


Proposition 5.3 Let B and B′ be anisotropic bilinear forms such that B is
a bilinear Pfister form. Then B′ is a Pfister neighbor of B if and only if B
becomes isotropic over F (B′) and 2 dim B′ > dim B.


Proof. If B is isotropic over F (B′), then it is metabolic over F (B′), and by
Proposition 1.1 there exists a bilinear form B′′ ∈ A(B̃′) similar to a subform
of B. If moreover 2 dim B′ > dim B, then B′ is a Pfister neighbor of B. The
converse follows from Proposition 5.2(1). 2


Theorem 1.2 allows us important corollaries:


Corollary 5.4 Let B be an anisotropic bilinear form and ϕ an anisotropic
totally singular form. Suppose that BF (ϕ) is metabolic and 2 dim ϕ > dim B.
Then B is similar to a bilinear Pfister form ρ, and any bilinear form B′ ∈ A(ϕ)
is a Pfister neighbor of ρ.


Proof. By Theorem 1.2, B ≃⊥r
i=1 αiBi for some scalars αi ∈ F ∗ and d-


fold bilinear Pfister forms Bi associated to ϕqp. Since dim ϕqp ≥ dim ϕ and
2 dim ϕ > dim B = r dim ϕqp, it follows that r = 1 and thus B is similar to the
bilinear Pfister form ρ = B1. Moreover, it follows from Proposition 5.3 that any
B′ ∈ A(ϕ) is a Pfister neighbor of ρ since 2 dim B′ = 2 dim ϕ > dim B = dim ρ
and ρ is isotropic over F (ϕ) = F (B′). 2
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This corollary allows us to classify anisotropic bilinear forms of height 1. This
makes up the first step for a standard splitting theory of bilinear forms:


Corollary 5.5 An anisotropic bilinear form B becomes metabolic over F (B)
if and only if it is similar to a bilinear Pfister form.


Proof. We use Proposition 3.3, and Corollary 5.4 applied to the case ϕ =
B̃. 2


Corollary 5.6 Let B be an anisotropic bilinear form. Then the following are
equivalent:
(1) B is a Pfister neighbor of some bilinear Pfister form.
(2) There exist anisotropic bilinear forms B′, B′′ such that dim B′′ < dim B′,
B′ ∈ A(B̃) and B′


F (B) ∼ B′′
F (B).


(3) There exists a bilinear form B′ ∈ A(B̃) such that the anisotropic part of
B′


F (B) is defined over F .


Proof. (2) =⇒ (1) The assumption B′
F (B) ∼ B′′


F (B) implies (B′ ⊥ B′′)F (B) ∼
0. Since B′ is anisotropic and dimB′′ < dim B′, the bilinear form B′ ⊥ B′′ can
not be metabolic. Moreover, 2 dim B̃ = 2 dim B′ > dim(B′ ⊥ B′′) ≥ dim(B′ ⊥
B′′)an. We apply Corollary 5.4 with ϕ = B̃ to get that (B′ ⊥ B′′)an is similar
to a bilinear Pfister form ρ, and B is a Pfister neighbor of ρ since B ∈ A(B̃).


(3) =⇒ (2) If B′′ is a bilinear form over F satisfying
(
B′


F (B)


)
an


≃ B′′
F (B), then


clearly B′
F (B) ∼ B′′


F (B), and dim B′′ < dim B′ since B′
F (B) is isotropic.


(1) =⇒ (3) Let B′ and B′′ be bilinear forms such that B′ ∈ A(B̃), B′ ⊥ B′′


is similar to a d-fold bilinear Pfister form and dim B > 2d−1. Since B′
F (B)


is isotropic, we get B′
F (B) ∼ B′′


F (B). Moreover, dim B′′ = 2d − dim B′ =


2d − dim B < 2d−1 < dim B. By [8, Th. 1.1], B′′
F (B) is anisotropic and thus(


B′
F (B)


)
an


≃ B′′
F (B). 2


6 Other results on Witt kernels


We begin this section by a criterion about the metabolicity over inseparable bi-
quadratic extensions. The case of quadratic extensions is covered by Theorem
1.2.


Proposition 6.1 Let B be an anisotropic bilinear form of dimension ≥ 2 and
a1, a2 ∈ F ∗. Then the following are equivalent:
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(1) B is metabolic over F (
√


a1,
√


a2).
(2) B ∼ (⊥r


i=1 αiλi)⊥ (⊥s
i=1 βiµi) for some scalars αi, βj ∈ F ∗, 1-fold bilinear


Pfister forms λi ∈ A(〈1, a1〉), and µj = 〈1, xj + a2〉b with xj ∈ F 2(a1).


Proof. (1) =⇒ (2) By Theorem 1.2, it suffices to prove the existence of scalars
βj ∈ F ∗, and bilinear forms µj = 〈1, xj + a2〉b with xj ∈ F 2(a1) such that(
B ⊥ (⊥s


j=1 βjµj)
)


F (
√


a1)
∼ 0. We proceed by induction on dimB and we may


suppose that BF (
√


a1) is not metabolic.


By Corollary 3.5 there exists an anisotropic bilinear form B′ over F such
that (BF (


√
a1))an ≃ B′


F (
√


a1). Let β1 ∈ DF (B′). Since B′
F (


√
a1) is metabolic over


F (
√


a1,
√


a2), it follows from Proposition 1.1 that B′
F (


√
a1) ≃ β1B


′
1 ⊥ B′


2 for


some B′
1 ∈ A(〈1, a2〉F (


√
a1)) and a bilinear form B′


2 over F (
√


a1). Let u, v be


vectors in the underlying vector space V of B′
1 such that B′


1(u, u) = 1 and
B′


1(v, v) = a2. Since 〈1, a2〉 is anisotropic, the vectors u and v are F -linearly
independent. Let α = B′


1(u, v). By considering the basis {u, αu + v} of V , we
get the isometry B′


1 ≃ 〈1, x1 + a2〉b, where x1 = α2 ∈ F 2(a1). In particular,
(B′ ⊥ β1 〈1, x1 + a2〉b)F (


√
a1)


∼ B′
2.


If dim B = 2, then B′
2 = 0 since we may take B = B′. So suppose dim B > 2


and B′
2 6∼ 0. Since


(
(B′ ⊥ β1 〈1, x1 + a2〉b)F (


√
a1)


)
an


≃ B′
2, there exists by


Corollary 3.5 an anisotropic bilinear form B′′ over F such that B′
2 ≃ B′′


F (
√


a1).


The form B′′
F (


√
a1) is metabolic over F (


√
a1,


√
a2) since B′ is also metabolic over


F (
√


a1,
√


a2) and x1 + a2 is a square in F (
√


a1,
√


a2). Since dim B′′ < dim B,
we conclude by induction.


(2) =⇒ (1) The forms λi are metabolic over F (
√


a1), and for any j ∈ {1, · · · , s}
the form µj is also metabolic over F (


√
a1,


√
a2) since xj + a2 is a square in


this field. 2


Theorem 1.6 generalizes [6, Prop. 1.4], and together with Theorem 1.5 it im-
plies the following corollary which is a partial generalization of [6, Th. 2.1]:


Corollary 6.2 Let ϕ′ be a codimension 1 Pfister neighbor of an n-fold Pfister
form, and let ϕ be a quadratic form which is not a Pfister neighbor and domi-
nates ϕ′ such that dim ϕ = dim ϕ′+2. Then Wq(F (ϕ)/F ) is an (n+2)-Pfister
group.


Proof. We reproduce the same proof like that for [6, Th. 2.1]. We have
Wq(F (ϕ)/F ) ∩ Pn+1F = 0 since dim ϕ = 2n + 1 and ϕ is not a Pfis-
ter neighbor. Let ϕ′′ be a quadratic form such that ϕ′ ≺ ϕ′′ ≺ ϕ and
dim ϕ′′ = dim ϕ′ + 1. The form ϕ′′ is not a Pfister neighbor, otherwise
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ϕ′′ ∈ GPnF since dim ϕ′′ = dim ϕ′ + 1 = 2n, and thus ϕ would be a
Pfister neighbor. By Theorem 1.6, Wq(F (ϕ′′)/F ) is a strong (n + 1)-Pfister
group, and by Theorem 1.5 Wq(F (ϕ)/F ) is an (n + 2)-Pfister group since
Wq(F (ϕ)/F ) ∩ Pn+1F = 0. 2


We combine [1, Cor. 2.8], Theorems 1.4, 1.5, 1.6 and Corollary 6.2 to describe
Wq(F (ϕ)/F ) for ϕ of small dimension:


Corollary 6.3 Let ϕ be an anisotropic quadratic form of dimension at most
5, and let s denote the dimension of its quasilinear part. Then we have the
following description:


Dimension of ϕ Condition on ϕ The kernel Wq(F (ϕ)/F )


2 s = 0 strong 1-Pfister group


s = 2 strong 2-Pfister group


3 s = 1 strong 2-Pfister group


s = 3 strong 3-Pfister group


s = 0 and ϕ is not similar strong 3-Pfister group


to a 2-fold Pfister form


s = 2 strong 3-Pfister group


4 s = 4 and ϕ is similar to strong 3-Pfister group


a 2-fold quasi-Pfister form


s = 0 and ϕ is similar strong 2-Pfister group


to a 2-fold Pfister form


s = 4 and ϕ is not similar {3, 4}-Pfister group


to a 2-fold quasi-Pfister form


s = 1 or 3 and ϕ is not 4-Pfister group


a Pfister neighbor


5 s = 1 or 3 and ϕ is strong 3-Pfister group


a Pfister neighbor


s = 5 and ϕ is strong 4-Pfister group


quasi-Pfister neighbor


s = 5 and ϕ is not a ?


quasi-Pfister neighbor


Proof. Set ϕ ≃ [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ 〈c1, · · · , cs〉. By [1, Cor. 2.8], we
may exclude the case dim ϕ = s = 2, and by Theorem 1.4 we may exclude the
case where ϕ is a Pfister neighbor or a quasi-Pfister neighbor. It remains to
treat the following cases:


(1) dim ϕ = 4 and r > 0. We apply Theorem 1.6 to ϕ′ = [a1, b1] ⊥ 〈a2〉 or
[a1, b1] ⊥ 〈c1〉 according as s = 0 or s = 2.
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(2) dim ϕ = 4 and r = 0. We apply Theorem 1.5 to ϕ′ = 〈c1, c2, c3〉 since we
know that Wq(F (ϕ′)/F ) is a strong 3-Pfister group.


(3) dim ϕ = 5 and r = 1 or 2. We apply Corollary 6.2 to ϕ′ = [a1, b1] ⊥
〈c1〉. 2
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