CYCLIC ALGEBRAS AND CONSTRUCTION OF SOME
GALOIS MODULES
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ABSTRACT. Let p be a prime and suppose that K/F is a cyclic
extension of degree p" with group G. Let J be the F,G-module
K*/K*? of pth-power classes. In our previous paper we estab-
lished precise conditions for J to contain an indecomposable direct
summand of dimension not a power of p. At most one such sum-
mand exists, and its dimension must be p* + 1 for some 0 < i < n.
We show that for all primes p and all 0 < ¢ < n, there exists a field
extension K/F with a summand of dimension p® + 1.

Let p be a prime and K/F a cyclic extension of fields of degree p™
with Galois group G. Let K* be the multiplicative group of nonzero
elements of K and J = J(K/F) := K*/K*? be the group of pth-
power classes of K. We see that J is naturally an F,G-module. In
our previous paper [MSS] we established the decomposition of J into
indecomposables, as follows.

For i € N let &, denote a primitive p’th root of unity, and for 0 <
i < nlet K;/F be the subextension of degree p’, with G; = Gal(K;/F).
We adopt the convention that for all 7, {0} is a free F,G;-module.

Theorem. [MSS, Theorems 1, 2, and 3] Suppose

e I does not contain a primitive pth root of unity or
ep=2n=1 and -1 ¢ Ng/p(K*),

then .
= @ Y;
=0

where each Y; is a free F,G;-module.
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Otherwise, let

m=m(K/F) ::{

Then

—00, & € Ngyr(K™),
min{s: §, € Nx/x, (K*)} =1, & ¢ Ng/p(K™).

J= o gy
=0

where Y; is a free F,G;-module and X is an indecomposable F,G-module
of Fp-dimension p™ + 1 if m > 0 and 1 if m = —o0.

It is not difficult to show that the decomposition is unique. (See the
well-known result of Azumaya [AF, p. 144].)

From the well-known result of Albert [A] concerning embedding a
cyclic extension of degree p' to a cyclic extension of degree p*!, we
see that &, € Nk, (K)) for all s € {0,1,...,n} if m = —oo and
& € Nk, (K*) forall s € {m+1,... ,n} if m > —oo.

The submodules Y; are produced naturally using norms from dif-
ferent layers of the tower of field extensions. However, the remaining
submodule X is more mysterious, and we consider a first problem con-
cerning the classification of all F,G-modules occurring as J(K/F):

Given n > 1 and d an element of the set
{Lpo + 17 DI 7pn71 + 1}7

does there exist a cyclic extension K/F with &, € F'* such that the
exceptional summand X has dimension d?

It turns out that we may answer this question in the affirmative using
a construction of cyclic division algebras due to Brauer-Rowen. We
remark that in [MS] the full realization problem, realizing all possible
isomorphism classes for the F,G-module J(K/F'), has been solved in
the case n =1 and §, € F'*.

1. STRATEGY AND MAIN THEOREM

Our strategy is to reformulate m(K/F) in terms of cyclic algebras
and then to use the construction of Brauer-Rowen of suitable cyclic
algebras. We will prove the following theorem:

Theorem. Letn € N andt € {—00,0,1,...,n—1}. Then there exists
a cyclic extension K/F of degree p™ with €, € F* and m(K/F) = t.
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In two later sections we will examine the relations between m(K/F')
and the index of a certain cyclotomic cyclic algebra A defined over F'.
In particular, we show by example that while these two invariants of
K/F are closely related, they are not same.

Before turning to the proof of the theorem, we recall some basic facts
about cyclic algebras. If E/F is a cyclic extension of degree r > 1, with
Galois group G = Gal(FE/F) = (1), and b € F’*, then

B = (E/F,1,b)

is a central simple algebra such that

B= P vE,
0<j<r
where u™ldu = d” for all d € E and " = b. Thus B is an F-algebra
of dimension r? over F. We say that degB := r. If B = M,(D),
the matrix algebra containing matrices of size s x s over some division
algebra D, then we set ind B = /dimp D. We denote the order of [B]
in the Brauer group Br(F) by exp B. Finally, we observe the following
important connection:

[B]=0in Br(F) < be Ngp(EX).

In this case, we say that B splits. For further details on cyclic algebras
we refer the reader to [P, Chapter 15] and [R, Chapter 7].

The particular cyclic algebra in which we will be most interested is
the cyclotomic cyclic algebra

A= (K/F,0,§,), where G = (o).

(Recall that we assume &, € F' for our extensions K/F.)

Proof. We begin with a construction of Brauer-Rowen. (See [Br] for
the original construction and see [R, Section 7.3] and [RT, Section 6]
for some nice variations of Brauer’s construction.)

First suppose ¢t > 0. Set ¢ = p" " and let K = Q(&,)(u1,-- -, fiprn),
where ¢, is a primitive gth root of unity and the p; are indeterminates
over Q. Observe that K has an automorphism o of order p" fixing
Q(¢,) and permuting the f; cyclically.

Let F' = K be the subfield of K fixed by (¢) and, for each 1 < i <

n, K; =K <"pi>. Then K/F is a cyclic extension of degree p" satisfying
Q(&) C F, and G = (0) = Gal(K/F). Denote by & the restriction of
o to the subfield K.
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Let A = (K/F,0,§,). Now A is Brauer-equivalent to the cyclic
algebra R = (Ki1/F,0,¢,) by [P, Corollary 15.1b]. On the other
hand, the construction of Brauer-Rowen provides that R is a division
algebra of degree p'™! and of exponent p [R, Theorem 7.3.8]. Since
[A] = [R] # 0, we have &, & Ng, p(K>).

For all 0 <7 < n we have
(K/F7 g, gp) QF Kl = (K/Kivo-plué-[)

by [D, Lemma 6, p. 74]. Therefore, since K;,; is a maximal subfield of
R, K, splits A:

[A ®F KtJrl] =0¢€ BI‘(Kt+1).
Therefore &, € Ng/k,,,(K*). Hence m(K/F) <.

Suppose m = m(K/F) < t. Then [A ®p K1) = 0 € Br(Kpi1),
whence K,,,1/F splits A. But then p'*' =ind A < [K,,41 : F] < p't,
a contradiction. Hence m(K/F) = t.

Now suppose that t = —oco. Let F' be a number field containing &,.
Then the extension F°/F obtained by adjoining all pth-power roots of
unity is the cyclotomic Z,-extension of F'. Let K /F be the subextension
of degree p™ of F¢/F. Then G = Gal(K/F) is cyclic and K/F embeds
in a cyclic extension of F' of degree p"*'. Therefore &, € Ng,p(K™),
by a result of Albert [A], and hence m = —o0. O

Remark 1. Observe that the case n = 1 may be handled quite simply.
For the case m(K/F) = 0, we set F' = Q(&,)(X), where X is a transcen-

dental element over Q(¢,), and K = F(¥/X). Write G = Gal(K/F) as
(o) with o(¥/X) = £,¥/X. Then the cyclic algebra A = (K/F,0,&,) is
a symbol algebra A = (%) (See, for instance, [P, p. 284].) Further-
more,

= (52| - 1emn e B,

where £ = F(&,2) and 7(§2) = £§,2. However, it is an easy exercise
(solved in [P, p. 380]) that [(E/F, T, X)] # 0. Hence A is not split, and
m = 0 as required.

The m(K/F) = —oo case follows as in the end of the proof of the
theorem. Consider the tower

@(gp) - @(5})2) - Q<€p3)'

By Albert’s result, if F' = Q(§,) and K = Q(&,2), we have n = 1 and
m(K/F) = —oc.
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Remark 2. For extensions K/F of local fields one may then deduce
that m(K/F) € {—o0,0}, confirming [B], as follows. If [A] = 0 €
Br(F'), then m = —oo. Otherwise, since ind A = exp A for local fields
(see [P, Corollary 17.10b]), the local invariant inv A of A is s/p with
s € N,p1s. Because

invA®prE=[E: F|inv A

(see [P, Proposition 17.10]), we obtain that inv A @ K; = 0. Hence
[A®p K] =0 € Br(K;) and m(K/F) = 0, as desired.

2. THE INVARIANTS m AND ind A

The proof of the theorem turns on the fact that for the particular
extension K/F we have ind A = p™!. Tt is interesting to ask whether
this equality holds generally.

We show in this section that the answer is negative. However, we
have an inequality

ind A < p™tL,
as follows. Observe that by the definition of m(K/F),
[A®p Kpr/ry+1] = 0 € Br(Kopk/ry41)

for m # —oo. Hence the inequality holds in the case m # —oo. The
statement also holds for m = —oo, since A splits if and only if m = —oc.
In fact, in this case we obtain an equality.

We show that equality does not always hold by considering the fol-
lowing example in the number field case. Recall first that for number
fields exp A = ind A. (See, for instance, [P, Theorem 18.6].) Therefore
ind A is either 1 or p since the exponent of A divides p:

[®@PA] = [(K/F,0,1)] =0 € Br(F).
Hence it is enough to produce a case when m(K/F) > 0.

Let p=2,c€4Z\ {0}, a=1+c*¢ Z? and d € {1,—1} such that
d(a++/a) is not a sum of two squares in Q. (For example, take a = 17
and d = —1.) It is well-known that then

F=Q< K= QA < K= @ il + V)

is a tower of fields with K5/ F' cyclic of order 4. (See [JLY, p. 33].)
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Let K;, i = 1,2, denote the completion of K; with respect to any
valuation v on K; which extends the 2-adic valuation on Q. Since
8 | a — 1, we have K; = Q9 and then we may and do assume that
K, =Q; C K.

Since d(a + /a) is not a sum of two squares in Q, the quaternion
algebra (d(a + /a),—1)g, is nonsplit. Hence —1 ¢ NRQ/QZ(KQ) and
therefore —1 ¢ Ny, k, (K5). (See [P, p. 353].) We obtain then that
m(K/F) = 1.

3. WHEN A 1S A DIVISION ALGEBRA

Observe that if A is a division algebra, then ind A = p™ and the
chain of inequalities

pn:inASperl Spn

force the equality ind A = p™*!. In this section we show how a natu-

ral construction gives additional field extensions L,,/F,, with ind A =
p" 1t = pF for every k < n. More precisely:

Proposition. Suppose that A is a division algebra. Set F; = F(&,)
and L; = K(&y) for each i =1,2,...,n. Further set A; = A®p F,.

Then

ind A; = pmEe/F)tl — pr=itl - — 1 9 n.

Proof. We proceed by induction on 7. The base ¢ = 1 is simply the case
K,/F, = K/F, which follows from the observation at the beginning of
the section. Hence we assume that A is a division algebra and, for
some i € {1,2,...,n— 1}, we have [L; : F}] = p", ind 4; = p" !, and
m(L;/F;) =n —i.

We claim that §,i+1 ¢ L;. Otherwise, since Fj(&yi+1)/F; is an ex-
tension of degree 1 or p, we deduce that &,+1 € F}, where F] is the
subfield of L;/F; with [L; : F{] = p*. Without loss of generality we
may assume that 5;’;1 = &p. Then §, = N,/ (§pi+1), and we obtain
m(L;/F;) <n —i—1, a contradiction.

Hence L;/F; and F; ./ F; are linearly disjoint Galois extensions. There-
fore L;y1/F;11 is a Galois extension of degree p" and

G = Gal(LZ/E) = Gal(Li+1/E+1).
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Now let 0,41 € Gal(L;y1/F;+1) such that the restriction of ;41 to
L; is 0;. (We assume that o; is already defined by induction, where
o1 = 0.) Then by [D, Lemma 7, p. 74] we see that

Ai1 = Ai ®F, Fipr & (Liva/Fia, 0041, &)
We therefore obtain from [P, Proposition 13.4v] that
ind Al .

n—i

ind A; 41 >

On the other hand, we show that p"(Li+1/Fir)+1 < pn—i a5 follows.
Since &,i+1 € F}};, we have

51’ < NLz‘H/F{H (Lz'><+1)7

where ;11 C F/,; C Liyq and [Ligq : F},]) = p'. Hence m(Ly1/Fii1)
n—1—1.

IN

Putting these last two equalities together with the equality of the
second section, we reach the following chain:

ind Ay < pmEn/ Tt < pn=t <ind Ay,

We obtain m(Liy1/Fiy1) = n — (i + 1) and p™Ei/Fa)l — ind A, 4,
as desired. 0

To include m = —oo in the proposition, it is sufficient to continue the
induction one step further. Set F,11 = F({n+1) and L, 41 = K(§n+1).
Then again L,.1/F,11 is a cyclic extension of degree p™ and A, =
A ®p F, 11 splits. We conclude that m(Ly,41/F,11) = —00.
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