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Abstract

Let F be a field with 2 = 0, W (F ) the Witt ring of symmetric bilinear
forms over F and Wq(F ) the W (F )-module of quadratic forms over F .
Let IF ⊂ W (F ) be the maximal ideal. We compute explicitly in I

m
F and

I
m

Wq(F ) the annihilators of n-fold bilinear and quadratic Pfister forms,
thereby answering positively, in the case 2 = 0, certain conjectures stated
by Krüskemper in [Kr].

1 Introduction

Let F be a field with 2 = 0. We denote by W (F ) the Witt ring of symmetric
non singular bilinear forms over F and by Wq(F ) the W (F )-module of non
singular quadratic forms over F (see [Sa], [Ba-1], [Ba-2]).

For ai ∈ F ∗ = F − {0} , 1 ≤ i ≤ n , we denote by 〈a1, . . . , an〉 the
bilinear form with diagonal Gramm matrix and entries ai on the diagonal.
The quadratic form x2 +xy +ay2 , a ∈ F , is denoted by [1, a]. The maximal
ideal IF of W (F ) is additively generated by the forms 〈1, a〉 =≪ a ≫,
a ∈ F ∗ , so that the powers In

F , n ≥ 1, are additively generated by the
n-fold bilinear forms ≪ a1, . . . , an ≫= 〈1, a1〉 · · · 〈1, an〉, ai ∈ F ∗. The
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submodules InWq(F ), n ≥ 1, are generated by the n-fold quadratic Pfister
forms ≪ a1, . . . , an; a|] =≪ a1, . . . , an ≫ ·[1, a], ai ∈ F ∗, a ∈ F .

We have the filtrations W (F ) ⊃ IF ⊃ I2
F ⊃ · · · and Wq(F ) ⊃ IWq(F ) ⊃

· · · . The graded objects In
F /In+1

F and InWq(F )/In+1Wq(F ) are denoted by

I
n

F resp. I
n
Wq(F ).

In this paper we will study annihilators of n-fold Pfister forms. Let x =≪
a1, . . . , an ≫ be an n-fold bilinear Pfister form. For any m ≥ 0 we set

annbm(x) = {y ∈ Im
F | xy = 0}

annqm(x) = {y ∈ ImWq(F ) | xy = 0}

annbm(x) = {y ∈ I
m

F | xy = 0}

annqm(x) = {y ∈ I
m

Wq(F ) | xy = 0}.

If x =≪ a1, . . . , an; a|] is a quadratic n-fold Pfister form, we set

annbm(x) = {y ∈ Im
F | yx = 0}

annbm(x) = {y ∈ I
m

F | yx = 0}.

The main results of this paper are contained in the following two theorems.

(1.1) Theorem. ( i ) Let x =≪ a1, . . . , an ≫ be a bilinear n-fold Pfister
form over F with x 6= 0 in W (F ). Then for any m ≥ 1

annbm(x) = annb1(x)I
m−1

F

annqm(x) = I
m

F · annq0(x) + annb1(x)I
m−1

Wq(F )

( ii ) Let x =≪ a1, . . . , an; a|] be a quadratic n-fold Pfister form over F
with x 6= 0 in Wq(F ). Then for m ≥ 1

annbm(x) = annb1(x)I
m−1

F .

and the much stronger

(1.2) Theorem. ( i ) Let x =≪ a1, . . . , an ≫ be a bilinear n-fold Pfister
form over F with x 6= 0 in W (F ). Then for any m ≥ 1

annbm(x) = annb1(x)Im−1
F

annqm(x) = Im
F · annq0(x) + annb1(x)Im−1Wq(F )
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( ii ) Let x =≪ a1, . . . , an; a|] be a quadratic n-fold Pfister form over F
with x 6= 0 in Wq(F ). Then for m ≥ 1

annbm(x) = annb1(x)Im−1
F .

These results were conjectured by M. Krüskemper in [Kr] for fields of char-
acteristic different from 2. The proof of theorem (1.1) will be given in section
4 and it is based on Kato’s correspondence between quadratic or symmetric
bilinear forms and differential forms over F . We will shortly explain this corre-
spondence en section 3 (see [Ka], [Ba-2]) and prove there some technical results
needed in the proof of (1.1). In section 2 we show that theorem (1.2) follows
from theorem (1.1).

The terminology used in this paper is standard and we refer to [Ba-2], [Mi]
and [Sa] for details on basic facts needed in the paper. In any case let us
mention that for a1, . . . , an ∈ F ∗ the form ≪ a1, . . . , an ≫ is anisotropic
over F if and only if a1, . . . , an are part of a 2-basis of F and the
subfield F 2(a1, . . . , an) of F consists of all elements of F represented by
the form ≪ a1, . . . , an ≫. The elements of F represented by the pure
part ≪ a1, . . . , an ≫′ of ≪ a1, . . . , an ≫ form a subgroup denoted by
F 2(a1, . . . , an)′. Recall that ≪ a1, . . . , an ≫′ is defined by ≪ a1, . . . , an ≫=<
1 >⊥≪ a1, . . . , an ≫′.

2 Proof of theorem (1.2)

We will assume theorem (1.1) and derive from it theorem (1.2). Recall that a
2-basis of a field F of characteristic 2 is a set B = {bi | i ∈ I} ⊂ F such that
the elements

∏

i∈I

bεi

i , εi ∈ {0, 1} and only finitely many εi 6= 0, form a basis

of F over F 2. An n-fold bilinear Pfister form ≪ a1, . . . , an ≫ over F is
6= 0 in W (F ) if and only if {a1, . . . , an} are part of a 2-basis of F (i.e.
2-independent). Moreover if F has a finite 2-basis {b1, . . . , bN} then Im

F = 0
for all m ≥ N + 1 (see [Mi]).

We will need the following

(2.1) Lemma. ( i ) Let x be an n-fold bilinear Pfister form, x 6= 0, and
z ∈ IF such that zx ∈ In+2

F , i.e. z ∈ annb1(x). Then

z = z0 + w

with z0 ∈ I, z0x = 0 and w ∈ I2
F .

( ii ) Let x be an n-fold bilinear Pfister form, x 6= 0, and z ∈ Wq(F )
with xz ∈ In+1Wq(F ). Then

z = z0 + w

with z0 ∈ Wq(F ), xz0 = 0 and w ∈ IWq(F ).
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Proof: ( i ) For any z ∈ IF we can write z =< 1, d > +w with d = det(z)
and w ∈ I2

F . Then xz ∈ In+2
F implies < 1, d > x ∈ In+2

F , and since < 1, d > x is
(n + 1)-fold Pfister form, it follows < 1, d > x = 0 in W (F ).

( ii ) Any z ∈ Wq(F ) can be written as

z = [1, d] + w

with d = Arf(z) ∈ F and w ∈ IWq(F ) (see [Sa]). From xz, xw ∈ In+1Wq(F ),
it follows x[1, d] ∈ In+1Wq(F ) and hence x[1, d] = 0. ¤

Let us now prove (1.2). We assume first that F has a finite 2-basis, i.e.
IN+1
F = 0 for some integer N . Let x 6= 0 (in W (F )) be an n-fold bilinear

Pfister form. The contentions ⊇ in ( i ) (and ( ii )) are obvious. Let y ∈
annbm(x), i.e. y ∈ Im

F , yx = 0. Hence y ∈ annbm(x) and (1.1) implies
y =

∑

ziyi,0 with zi ∈ annb1(x), yi,0 ∈ Im−1
F . Then y −

∑

ziyi,0 ∈ Im+1
F .

Using (2.1) (i) we can write zi = zi,0 +wi with zi,0 ∈ annb1(x) and wi ∈ I2
F .

Then y1 = y −
∑

ziyi,0 ∈ Im+1
F and moreover y1x = 0. The same argument

implies y1 −
∑

zi,1yi,1 ∈ Im+2
F with elements zi,1 ∈ annb1(x), yi,1 ∈ Im

F .
Iterating this process we obtain, for any k ≥ 0, elements zi,l ∈ annb1(x)
and yi,l ∈ Im+l−1

F , 0 ≤ l ≤ k such that y −
∑

i,l zi,lyi,l ∈ Im+k
F . Choosing

k ≥ N +1−m we obtain y =
∑

i,l zi,1yi,1 ∈ annb1(x)Im−1
F , since IN+1 = 0.

Let now y ∈ annqm(x), i.e. y ∈ ImWq(F ) with xy = 0. Theorem (1.1)

implies y =
∑

yizi +
∑

ujvj with yi ∈ I
m

F , zi ∈ annq0(x), uj ∈ annb1(x),

vi ∈ I
m−1

Wq(F ). Hence y −
∑

yizi −
∑

ujvj ∈ Im+1Wq(F ). Using lemma
(2.1) we can find zi,0 ∈ annq0(x), uj,0 ∈ annb1(x) such that zi = zi,0 + wi,
wi ∈ IWq(F ) and ui = uj,0 + tj , tj ∈ I2

F . We obtain

y1 = y −
∑

yizi,0 −
∑

uj,0vj ∈ Im+1Wq(F )

with y1x = 0. Iterating this procedure we obtain after k ≥ N + 1 − m steps
that

y ∈ Im
F annq0(x) + annb1(x)Im−1Wq(F ).

The proof of part ( ii ) of (1.2) is similar and we omit the details. Thus
we have proved (1.2) in the case IN+1 = 0 for some N . Let us now consider
the general case.

Let B be a 2-basis of F , x a bilinear n-fold Pfister form over F , x 6= 0
in W (F ). Take y ∈ annbm(x), i.e. y ∈ Im

F with yx = 0. This relation
involves only finitely many elements {a1, . . . , aN} ⊂ B of the 2-basis. We
define F0 = F 2(a1, . . . , aN ) ⊂ F . Then there exist an n-fold bilinear Pfister
form x0 over F0 and y0 ∈ Im

F0
such that x = x0 ⊗ F , y = y0 ⊗ F and

y0x0 = 0 in W (F0). From the first part of the proof of (1.2) we obtain y0 ∈
annb1(x0)I

m−1
F0

and hence y ∈ annb1(x)Im−1
F . The same argument applies for

the other assertions in (1.2) and this concludes the proof of theorem (1.2). ¤
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(2.2) Remark. If x is a bilinear n-fold Pfister form over F , then one can
describe explicitely the annihilators annb1(x) ⊂ W (F ) and annq0(x) ⊂ Wq(F )
as follows

(2.3) annb1(x) =
∑

d∈DF (x)∗ W (F ) 〈1, d〉

(2.4) annq0(x) =
∑

d∈DF (x) W (F )[1, d].

Here DF (z) denotes the set in F of elements represented by the form z.
The result (2.3) is shown in [Ho] and (2.4) in [Ba-Kn]. If x denotes now a
quadratic n-fold Pfister form over F , x 6= 0 in Wq(F ), then (see [Kn])

(2.5) annb1(x) =
∑

d∈DF (x)∗ W (F ) 〈1, d〉 .

In section 4 we will give an independent proof of these facts based on Kato’s
correspondence (see 3.3) and on the arguments used in this section.

3 Quadratic, symmetric bilinear and differential
forms

In this section we will briefly describe Kato’s correspondence between quadratic,
bilinear and differential forms over a field F with 2 = 0 and prove a technical
result needed in the proof of theorem (1.1) (see [Ka], [Ba-2], [A-Ba]).

Let Ω1
F = F dF be the F -space of 1-differential forms generated over F

by the symbols d a, a ∈ F , with d(a + b) = d a + d b, d(ab) = ad b + bd a.

For any n ≥ 1 set Ωn
F =

n
∧

Ω1
F and let d : Ωn

F → Ωn+1
F be the differential

operator d(xd x1 ∧ · · · ∧ d xn) = dx ∧ dx1 ∧ · · · ∧ dxn, where ∧ denotes
exterior multiplication.

Let ℘ : Ωn
F → Ωn

F /d Ωn−1
F be the Artin-Schreier operator defined on

generators by

℘

(

x
dx1

x1
∧ · · · ∧

d xn

xn

)

=
(

x2 − x
) d x1

x1
∧ · · · ∧

d xn

xn

mod dΩn−1
F

and denote by νF (n) its kernel and by Hn+1(F ) its cokernel (see loc. cit.).
In [Ka] it is shown that there are natural isomorphisms α : νF (n) ≃ I

n

F and
β : Hn+1(F ) ≃ I

n
Wq(F ) given on generators by α(d x1

x1
∧ · · · ∧ d xn

xn
) =≪

x1, . . . , xn ≫ mod In+1
F and β

(

xd x1

x1
∧ · · · ∧ d xn

xn

)

=≪ x1, . . . , xn;x|] mod

In+1Wq(F ). The fact that νF (n) is additively generated by the pure loga-
rithmic forms d x1

x1
∧ · · · ∧ d xn

xn
follows from a result of Kato which we explain

now. Let us fix a 2-basis B of F , B = {bi | i ∈ I}, and endow I with a total
ordering. For any j ∈ I, let Fj , resp. F<j , be the subfields of F generated
over F 2 by bi, i ≤ j, resp. bi, i < j. For any n ≥ 1 let Σn be the set
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of maps α : {1, . . . , n} → I such that α(i) < α(j) whenever 1 ≤ i < j ≤ n,
and endow Σn with the lexicographic ordering.

We obtain a filtration of Ωn
F given by the subspaces Ωn

F,α, resp. Ωn
F,<α,

which are generated by the elements
d bβ

bβ
=

d bβ(1)

bβ(1)
∧ · · · ∧

d bβ(n)

bβ(n)
with β ≤ α,

resp. β < α. An important result of Kato, named here as Kato’s lemma, asserts

that for any α ∈ Σn, y ∈ F , if ℘
(

y d bα

bα

)

∈ Ωn
F,<α + dΩn−1

F , then there exist

v ∈ Ωn
F,<α and ai ∈ F ∗

α(i), 1 ≤ i ≤ n, such that y d bα

bα
= v + d a1

a1
∧ · · · ∧ d an

an

(see [Ka]). This implies that any u ∈ Ωn
F,α satisfying ℘(α) ∈ d Ωn−1

F , can be
written as

(3.1) u =
∑

γ≤α

d aγ(1)

aγ(1)
∧ · · · ∧

d aγ(n)

aγ(n)

with aγ(i) ∈ Fγ(i)\F<γ(i). Then the following result will be used in section 4
during the proof of theorem (1.1).

(3.2) Lemma. Let B = {bi | i ∈ I} be a 2-basis of F with a given ordering

on I. Let α ∈ Σn and
∑

γ≤α cγ
d bγ

bγ
be a differential form with cα 6= 0

such that
∑

γ≤α cγ
d bγ

bγ
∈ d Ωn−1

F . Then there exist elements Mi ∈ F<α(i),

1 ≤ i ≤ n, such that

cα = bα(1)M1 + · · · + bα(n)Mn

Proof: Let k ∈ I be the index with cα ∈ Fk\F<k. We claim that k = α(i)
for some 1 ≤ i ≤ n. Otherwise we have k > α(n) or k < α(1) or
α(j) < k < α(j + 1) for some 1 ≤ j ≤ n. From the choice of k we have
cα = bkA + B with A,B ∈ F<k, A 6= 0. Then

d t = (bkA + B)
d bα

bα

+
∑

γ<α

cγ

d bγ

bγ

and applying the differential operator to this form, we get

bkA
d bα

bα

∧
d bk

bk

+bkA
d bα

bα

∧
dA

A
+B

d bα

bα

∧
dB

B
+

∑

γ<α

∑

i∈I

biDi(cγ)
d bγ

bγ

∧
d bi

bi

= 0

where Di(cγ) is the derivative of cγ with respect to bi (see [A-Ba]). Looking
at the coefficient of d bα

bα
∧ d bk

bk
we obtain

bkA =
∑

(α,k)=(γi,i)

biDi(cγ)

where (α, k) resp. (γi, i) denotes the unique λ ∈ Σn+1 with Im(λ) =Im(α)∪
{k} resp. Im(λ) =Im(γi) ∪ {i}. Since for those i we have i > k, A ∈ F<k

and Di(Di(cγi
)) = 0, we conclude A = 0, which is a contradiction. Thus

k = α(i) for some 1 ≤ i ≤ n.
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Let cα = bα(i)Mi + B with Mi, B ∈ F<α(i). Then

d t =
(

bα(i)Mi + B
) d bα

bα

+
∑

γ<α

cγ

d bγ

bγ

.

But

bα(i)Mi

d bα

bα

= bα(i)Mi

d bα(1)

bα(1)
∧ · · · ∧

d bα(i)

bα(i)
∧ · · · ∧

d bα(n)

bα(n)

= d(bα(i)Mi) ∧
d bα(1)

bα(1)
∧ · · · ∧

d bα(i−1)

bα(i−1)
∧

d bα(i+1)

bα(i+1)
∧ · · · ∧

d bα(n)

bα(n)

+ bα(i)Mi

d bα(1)

bα(1)
∧ · · · ∧

dMi

Mi

∧ · · · ∧
d bα(n)

bα(n)

so that replacing t by t′ = t+bα(i)Mi
d bα(1)

bα(1)
∧· · ·∧

d bα(i−1)

bα(i−1)
∧

d bα(i+1)

bα(i+1)
∧· · ·∧

d bα(n)

bα(n)
,

and since bα(i)Mi
d bα(1)

bα(1)
∧ · · · ∧ d Mi

Mi
∧ · · · ∧

d bα(n)

bα(n)
∈ Ωn

<α, we get

d t′ = B
d bα

bα

+
∑

γ<α

c′γ
d bγ

bγ

with certain c′γ ∈ F and B ∈ F<α(i). We proceed again as before with B
instead of cα and the lemma follows by induction. ¤

An immediate generalization of (3.2) is

(3.3) Proposition. Let

∑

γ≤α

cγ

d bγ

bγ

= d(t) + ℘(w)

with cα 6= 0, where B = {bi | i ∈ I} is a given 2-basis of F (and a fixed
ordering in I ) and t ∈ Ωn−1

F , w ∈ Ωn
F . Then there exist elements u ∈ F ,

Mi ∈ F<α(i), 1 ≤ i ≤ n, such that

cα = ℘u + bα(1)M1 + · · · + bα(n)Mn.

4 Annihilators of differential forms in νF (m) and
H

m+1(F )

The groups νF (m) act on the groups Hn+1(F ) through exterior multiplication

∧ : νF (m) × Hn+1(F ) −→ Hm+n+1(F )

∧ : νF (m) × νF (n) −→ νF (m + n)
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and we can define for any x ∈ νF (n) the annihilators

annbm(x) = {y ∈ νF (m) |xy = 0 in νF (m + n)}

annqm(x) = {y ∈ Hm+1(F ) |xy = 0 in Hn+m+1(F )}.

Also if x ∈ Hn+1(F ), we define

annbm(x) = {y ∈ νF (m) | yx = 0 in Hn+m+1(F )}.

Through Kato’s isomorphisms (see § 3) these annihilators are isomorphic to
the corresponding graded annihilators of bilinear and quadratic forms, namely,
if x ∈ νF (n)

α : annbm(x) ≃ annbm(α(x))

β : annqm(x) ≃ annqm(α(x))

and if x ∈ Hn+1(F ),

α : annbm(x) ≃ annbm(β(x)).

Thus, theorem (1.1) is equivalent to the following

(4.1) Theorem. (i) Let x = d a1

a1
∧ · · · ∧ d an

an
∈ νF (n) be a pure logarithmic

differential form, x 6= 0. Then for any m ≥ 1

annbm(x) = annb1(x) ∧ νF (m − 1)

annqm(x) = νF (m) ∧ annq0(x) + annb1(x) ∧ Hm(F ).

(ii) If x = ad a1

a1
∧ · · · ∧ d an

an
6= 0 in Hn+1(F ), then in νF (m)

annbm(x) = annb1(x) ∧ νF (m − 1).

Proof: Let B = {bi | i ∈ I} be a 2-basis of F such that a1, . . . , an ∈ B are
the first elements in some ordering of I. Let y ∈annbm(x). Using Kato’s
lemma we can write

y =
∑

γ∈Σm

εγ

d aγ(1)

aγ(1)
∧ · · · ∧

d aγ(m)

aγ(m)

with aγ(i) ∈ Fγ(i)\F<γ(i), εγ ∈ {0, 1}. Let α ∈ Σm be maximal with εα 6= 0.
Then

y ≡
d aα

aα

mod Ωm
F,<α.
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The assumption xy = 0 means
(

d a1

a1
∧ · · · ∧

d an

an

)

∧
d aα

aα

+

(

d a1

a1
∧ · · · ∧

d an

an

)

∧
∑

γ<α

εγ

d aγ

aγ

= 0.

Assume first α(1) > n and define δ = (1, . . . , n, α(1), . . . , α(m)) ∈ Σn+m. It
follows δ > (1, . . . , n, γ) for all γ ∈ Σm with γ < α. From the last relation
we conclude

d a1 ∧ · · · ∧ d an ∧ d aα(1) ∧ · · · ∧ d aα(m) = 0

which is a contradiction to the fact that a1, . . . , an, aα(1), . . . , aα(m) are 2-

independent. Thus we have α(1) ≤ n, and this implies x ∧
d aα(1)

aα(1)
= 0, i.e.

d aα(1)

aα(1)
∈ annb1(x). Hence y− d aα

aα
∈ annbm(x) and moreover y− d aα

aα
∈ Ωm

F,<α.

Proceeding by induction on α we get the first assertion in ( i ).
Take now y ∈ annqm(x) ⊂ Hm+1(F ). Then

y ≡
∑

γ∈Σm

cγ

d bγ

bγ

mod ℘Ωm
F + dΩm−1

F

with x ∧ y ∈ ℘Ωm+n
F + d Ωm+n−1

F , i.e.

(4.2)
∑

γ∈Σm

cγ

d a1

a1
∧ · · · ∧

d an

an

∧
d bγ

bγ

∈ ℘Ωm+n
F + d Ωm+n−1

F .

(Here the elements bγ(i) belong to B). Let α ∈ Σm be maximal with

cα 6= 0. If α(1) ≤ n, then
d bα(1)

bα(1)
∈ annb1(x) and cα

d bα

bα
=

d bα(1)

bα(1)
∧cα

d bα(2)

bα(2)
∧

· · · ∧
d bα(m)

bα(m)
∈ annb1(x) ∧ Hm(F ), and y − cα

d bα

bα
∈ Ωm

F,<α. Hence we may

proceed by induction on α. Thus we can assume α(1) > n and we define
δ = (1, . . . , n, α(1), . . . , α(m)) ∈ Σn+m. We see in (4.2) that δ is the maximal
multi-index with coefficient cα 6= 0. Using now proposition (3.3), we conclude
from (4.2) that

cα = ℘(u) + Eα

with Eα =
∑n

i=1 aiMi +
∑m

j=1 bα(j)Mα(j) and Mk ∈ F<k. Here we have
chosen the ordering of B such that a1, . . . , an are the first elements.

Inserting cα in y we get

y ≡ cα

d bα

bα

mod ℘Ωm
F + dΩm−1

F + Ωm
F,<α

y ≡



℘(u) +

n
∑

i=1

aiMi +

m
∑

j=1

bα(j)Mα(j)





d bα

bα

y ≡

[

n
∑

i=1

aiMi

]

d bα

bα

+





m
∑

j=1

bα(j)Mα(j)





d bα

bα

.
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Since Mk ∈ F<k, we have aiMi
d bα

bα
∈ νF (m)∧ annq0(x) because aiMi

d a1

a1
∧

· · · ∧ d an

an
= d

(

aiMi
d a1

a1
∧ · · ·

i
∧ · · · ∧ d an

an

)

∈ d Ωn−1
F implies aiMi ∈ annq0(x)

(we have used dMi∧x = 0). The same argument shows, since Mα(j) ∈ F<α(j),
that

bα(j)Mα(j)

d bα(j)

bα(j)
= d

(

bα(j)Mα(j)

)

+ bα(j)Mα(j)

dMα(j)

Mα(j)
∈ dF + Ω1

F,<α(j)

and hence




m
∑

j=1

bα(j)Mα(j)





d bα

bα

∈ d Ωm−1
F + Ωm

F,<α.

Thus we have
y = y′ + z mod ℘Ωm

F + d Ωm−1
F

with y′ ∈ Ωm
F,<α, y′ ∈ annqm(x) and z ∈ νF (m)∧ annq0(x). Applying now

the above procedure to y′ we get our second assertion by induction on α.
This proves ( i ).

( ii ) Let x = ad a1

a1
∧ · · · ∧ d an

an
∈ Hn+1(F ) be a pure element, x 6= 0.

We fix as before a 2-basis B = {bi | i ∈ I} of F such that a1, . . . , an are
the first elements in B in some ordering of I. Let y ∈ annbm(x) ⊂ νF (m).

From Kato’s lemma we have y =
∑

γ∈Σm
εγ

d aγ

aγ
with εγ ∈ {0, 1} and

aγ(i) ∈ Fγ(i)\F<γ(i), 1 ≤ i ≤ m. We write

y =
∑

γ∈Σm
γ(1)≤n

εγ

d aγ

aγ

+
∑

γ∈Σm
γ(1)>n

εγ

d aγ

aγ

.

For γ ∈ Σm with γ(1) ≤ n we have
d aγ

aγ
∈ annb1(x) since aγ(1) ∈

Fn = F 2(a1, . . . , an) and hence the first summand in this decomposition is in
annb1(x) ∧ νF (m − 1). Thus the second summand is in annbm(x) and we

can assume y =
∑

γ∈Σm
εγ

d aγ

aγ
with all γ such that γ(1) > n. Let α

be maximal in this sum with εα 6= 0. We can replace B by a new 2-basis
B′ = {ci | i ∈ I} such that cα(j) = aα(j), 1 ≤ j ≤ m and ci = bi for all
i /∈ {α(1), . . . , α(m)}. Let δ = (1, . . . , n, α(1), . . . , α(m)) ∈ Σn+m. Hence

0 ≡ y ∧ x ≡ a
d cδ

cδ

mod ℘Ωn+m
F + d Ωn+m−1

F + Ωn+m
F,<δ .

Then proposition (3.3) implies

a = ℘(u) +

n
∑

i=1

ciMi +

m
∑

j=1

cα(j)Mα(j)
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with Mk ∈ F<k. Let s ∈ {1, . . . ,m} be maximal with Mα(s) 6= 0 and
set Q = a + ℘u +

∑n
i=1 ciMi i.e. Q =

∑m
j=1 cα(j)Mα(j). Then cα(s) =

M−1
α(s)

(

Q +
∑s−1

j=1 cα(j)Mα(j)

)

. Inserting in y we get modulo νF,<α(m)

y ≡
d cα(1)

cα(1)
∧ · · · ∧

d cα(s)

cα(s)
∧ · · · ∧

d cα(m)

cα(m)
mod νF,<α(m)

≡
d cα(1)

cα(1)
∧ · · · ∧

dM−1
α(s)

(

Q +
∑s−1

j=1 cα(j)Mα(j)

)

M−1
α(s)

(

Q +
∑s−1

j=1 cα(j)Mα(j)

) ∧ · · · ∧
d cα(m)

cα(m)

≡
d

(

cα(1)Mα(1)

)

(

cα(1)Mα(1)

) ∧ · · · ∧
d

(

Q +
∑s−1

j=1 cα(j)Mα(j)

)

Q +
∑s−1

j=1 cα(j)Mα(j)

∧ · · · ∧
d cα(m)

cα(m)
.

Here we have inserted Mα(j) whenever it is 6= 0, without altering the con-

gruence modulo νF,<α(m). Use now the relation d a
a

∧ d b
b

= d(ab)
ab

∧ d(a+b)
a+b

to
conclude

y ≡
d

(

cα(1)Mα(1)

)

(

cα(1)Mα(1)

) ∧ · · · ∧
d

(

Q +
∑s−1

j=1 cα(j)Mα(j)

)

Q +
∑s−1

j=1 cα(j)Mα(j)

∧ · · · ∧
d cα(m)

cα(m)
mod νF,<α(m)

≡
d f1

f1
∧ · · · ∧

d Q

Q
∧ · · · ∧

d cα(m)

cα(m)

with certain f1, . . . , fs−1 ∈ F . Since d Q
Q

∈ annb1(x) (we can assume a ∈ F 2

without restriction), we get d f1

f1
∧· · ·∧ d Q

Q
∧· · ·∧

d cα(m)

cα(m)
∈ annb1(x)∧νF (m−1).

Thus we have shown y ∈ annb1(x) ∧ νF (m − 1) + νF,<α(m). We apply now
induction on α to conclude the proof of ( ii ). ¤

Let us briefly compute the annihilators annb1(x) and annq0(x) for x =
d a1

a1
∧ · · · ∧ d an

an
∈ νF (n) and annb1(x) for x = ad a1

a1
∧ · · · ∧ d an

an
∈ Hn+1(F ).

(4.3) Proposition. ( i ) Let x = d a1

a1
∧ · · · ∧ d an

an
∈ νF (n), x 6= 0. Then

annb1(x) =

{

d z

z
| z ∈ F 2(a1, . . . , an)∗

}

annq0(x) =
{

z ∈ F/℘F | z ∈ F 2(a1, . . . , an)′
}

where F 2(a1, . . . , an)′ are the pure elements in F 2(a1, . . . , an) (notice that
H1(F ) = F/℘F ).

( ii ) Let x = ad a1

a1
∧ · · · ∧ d an

an
∈ Hn+1(F ), x 6= 0. Then

annb1(x) =

{

d z

z
| z ∈ DF (≪ a1, . . . , an; |])∗

}
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where DF (q) denotes the elements represented in F by the quadratic form q.

Proof: ( i ) Let x = d a1

a1
∧· · ·∧ d an

an
6= 0 in νF (n). If d z

z
∈ annb1(x) ⊂ νF (1),

then
d a1

a1
∧ · · · ∧

d an

an

∧
d z

z
= 0

in νF (n + 1), which means that a1, . . . , an, z are 2-dependent, and since
a1, . . . , an are 2-independent, this means z ∈ F 2(a1, . . . , an)∗ (which is the
set in F ∗ of elements represented by the n-fold Pfister form ≪ a1, . . . , an ≫).

Let now y ∈ H1(F ) = F/℘F be in annq0(x). Then y d a1

a1
∧ · · · ∧ d an

an
= 0

in Hn+1(F ), and this means

y
d a1

a1
∧ · · · ∧

d an

an

∈ ℘Ωn
F + dΩn−1

F .

Taking a 2-basis of F so that a1, . . . , an are the first elements of it (in some
ordering), we conclude from proposition (3.3)

y = ℘u + b

with u ∈ F and b ∈ F 2(a1, . . . , an)′. This proves ( i ).

( ii ) Let x = ad a1

a1
∧ · · · ∧ d an

an
∈ Hn+1(F ), x 6= 0 and take d z

z
∈

annb1(x) ⊂ νF (1). This means

a
d a1

a1
∧ · · · ∧

d an

an

∧
d z

z
∈ ℘Ωn+1

F + dΩn
F .

If d a1

a1
∧ · · · ∧ d an

an
∧ d z

z
= 0, then we get as before z ∈ F 2(a1, . . . , an)∗ ⊂

DF (≪ a1, . . . , an; |])∗. Assume d a1

a1
∧ · · · ∧ d an

an
∧ d z

z
6= 0. Then we can

assume that a1, . . . , an, z are the first elements of some 2-basis of F (in
some ordering), and applying now proposition (3.3) we obtain a = ℘u + b
with b ∈ F 2(a1, . . . , an, z)′, i.e. b = z · h + g with h ∈ F 2(a1, . . . , an)∗ and
g ∈ F 2(a1, . . . , an)′.

Thus z = h−1 (℘u + a + g) ∈ DF (≪ a1, . . . , an; |])∗. This proves ( ii ). ¤

The isomorphisms νF (m) ≃ I
m

F and Hm+1(F ) ≃ I
m

Wq(F ) enable us to
translate this result into the language of bilinear and quadratic forms.

Let x =≪ a1, . . . , an ≫ be a bilinear anisotropic n-fold Pfister form. Then
we have

annb1(x) =
{

≪ z ≫| z ∈ DF (x)
∗
}

annq0(x) =
{

z ∈ F/℘F | z ∈ DF (x′)
∗}

where we identify I
0
Wq(F ) with F/℘F through the Arf-invariant.
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If x =≪ a1, . . . , an; a|] is a quadratic anisotropic n-fold Pfister form, then

annb1(x) =
{

≪ z ≫| z ∈ DF (x)
∗
}

Now the technique used in section 2 enables us to compute the full an-
nihilators annb1(x), annq0(x) if x =≪ a1, . . . , an ≫ and annb1(x) if
x =≪ a1, . . . , an; a|], thereby obtaining the results (2.3), (2.4) and (2.5).
Let us prove for example (2.3) (the others cases are left as exercises). Let
x =≪ a1, . . . , an ≫ and take y ∈ annb1(x) ⊂ IF . Then y ∈ annb1(x)
and hence y = ≪ z ≫ for some z ∈ DF (x)

∗
. Thus y− ≪ z ≫∈ I2

and (y− ≪ z ≫) x = 0 i.e. y− ≪ z ≫∈ annb2(x) = annb1(x) · IF . Write
y− ≪ z ≫=

∑

yivi with yi ∈ annb1(x), vi ∈ IF . Then yi− ≪ zi ≫∈ I2
F

for some zi ∈ DF (x)
∗

and hence

y− ≪ z ≫ −
∑

≪ zi ≫ vi ∈ I3
F .

Iterating this procedure and assuming IN+1
F = 0 for some N , we get (2.3).

The general case can be reduced to the assumption IN+1
F = 0 using the trick

of section 2. This proves (2.3). The same argument applies for (2.4) and (2.5).
Thus we have a complete description of the annihilators of Pfister forms over a
field F with 2 = 0.
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