Generalized Bialgebras and Triples of Operads

Jean-Louis Loday

CNRS, Strasbourg

France, EU

February 2005

Classical Bialgebras

\mathbb{K} is a the ground field

Classical bialgebra: $(\mathcal{H}, *, \Delta), \mathcal{H}=\mathbb{K} 1 \oplus \overline{\mathcal{H}}$
*: $\mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}$ is associative and unital
$\Delta: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$ is coassociative and counital Hopf relation: $\Delta(x * y)=\Delta(x) * \Delta(y)$

Primitive elements:
$\operatorname{Prim} \mathcal{H}:=\{x \in \overline{\mathcal{H}} \mid \Delta(x)=x \otimes 1+1 \otimes x\}$

Observation: Prim \mathcal{H} is a Lie algebra for $[x, y]:=x * y-y * x$

Connected bialgebra: $F_{0}:=\mathbb{K} 1$,
$F_{r}:=\left\{x \in \mathcal{H} \mid \Delta(x)-x \otimes 1-1 \otimes x \in F_{r-1} \otimes F_{r-1}\right\}$ Condition to be connected: $\mathcal{H}=\bigcup_{r} F_{r}$

Hopf-Borel Theorem

THM (Hopf-Borel, 1953) $\mathbb{K}=$ char 0 field, $\mathcal{H}=$ commutative cocommutative bialgebra. TFAE:
(a) \mathcal{H} is connected
(b) $\mathcal{H} \cong S(V)$, where $V=\operatorname{Prim} \mathcal{H}$

One of the numerous different proofs involves the Eulerian idempotent

Many applications in algebraic topology and homological algebra (graded version):

$$
\begin{aligned}
& H_{*}(G, \mathbb{Q}) \cong \wedge\left(\pi_{*}(G) \otimes \mathbb{Q}\right), \text { where } G=\text { Lie group } \\
& \left.H_{*}(G L(A), \mathbb{Q}) \cong \wedge\left(K_{*}(A) \otimes \mathbb{Q}\right), \text { (Quillen }\right) \\
& H_{*}(\mathfrak{g l}(A), \mathbb{Q}) \cong \wedge\left(H C_{*-1}(A) \otimes \mathbb{Q}\right), \text { (Loday-Quillen- }
\end{aligned}
$$

Tsygan)

PBW and CMM Theorem

THM (PBW + CMM) $\mathbb{K}=$ char 0 field, $\mathcal{H}=$ cocommutative bialgebra. TFAE:
(a) \mathcal{H} is connected,
(b) $\mathcal{H} \cong U(\operatorname{Prim} \mathcal{H})$,
(c) \mathcal{H} is cofree among the connected cocommutative coalgebras.
(a) \Rightarrow (b) Cartier-Milnor-Moore (CMM) thm
(b) $\Rightarrow(c)$ Poincaré-Birkhoff-Witt (PBW) thm
$(c) \Rightarrow(a)$ is a tautology
$(a) \Rightarrow(c)$ was proved earlier by Leray (1945)
$\operatorname{COR} T(V) \cong S(\operatorname{Lie}(V)), \operatorname{Prim} T(V) \cong \operatorname{Lie}(V)$
COR Structure theorem for cofree cocommutative bialgebras

QUESTION: Can we remove the hypothesis "cocommutative" ? Several answers. One of them: Etingof-Kazhdan. Another one soon

Unital Infinitesimal Bialgebra

$(\mathcal{H}, \cdot, \Delta)=$ unital infinitesimal bialgebra if
*: $\mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}$ is associative and unital
$\Delta: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$ is coassociative and counital unital infinitesimal (u.i.) relation:
$\Delta(x \cdot y)=\Delta(x) \cdot(1 \otimes y)+(x \otimes 1) \cdot \Delta(y)-x \otimes y$
Example: $T(V)=\mathbb{K} 1 \oplus V \oplus V^{\otimes 2} \oplus \cdots \oplus V^{\otimes n} \oplus \cdots$ ($T(V), \cdot=$ concatenation, $\Delta=$ deconcatenation)
$v_{1} \ldots v_{p} \cdot v_{p+1} \ldots v_{n}:=v_{1} \ldots v_{n}$
$\Delta\left(v_{1} \ldots v_{n}\right):=\sum_{p \geq 0} v_{1} \ldots v_{p} \otimes v_{p+1} \ldots v_{n}$
THM (JLL-Ronco, 2003) $\mathcal{H}=$ u. i. bialgebra TFAE:
(a) \mathcal{H} is connected
(b) $\mathcal{H} \cong T(V)$, where $V=\operatorname{Prim} \mathcal{H}$

Cofree Bialgebra and B_{∞}-algebra

Let \mathcal{H} be a classical bialgebra, suppose it is cofree:
$\mathcal{H} \cong T^{c}(V)$ i.e. $\Delta=$ deconcatenation

Associativity of $* \Leftrightarrow$ The $M_{p q}$'s satisfy $\mathcal{R}_{i j k}$
Example: \mathcal{R}_{111} :

$$
\begin{aligned}
& M_{12}(u, v w+w v)+M_{11}\left(u, M_{11}(v, w)\right)= \\
& \quad M_{21}(u v+v u, w)+M_{11}\left(M_{11}(u, v), w\right)
\end{aligned}
$$

DEF $\left(R, M_{p q}\right)$ is a B_{∞}-algebra if the $M_{p q}$'s satisfy the relations $\mathcal{R}_{i j k}$

Claim:
$\left(R, M_{p q}\right) B_{\infty}$-alg. $\Leftrightarrow\left(T^{c}(R), *, \Delta\right)$ cofree bialg.

Cofree Hopf algebra

DEF 2-associative algebra $(A, *, \cdot)$, operations * and . associative with same unit 1.

Example: a cofree bialgebra $\mathcal{H}=\left(T^{c}(V), *, \Delta\right)$ with concatenation as .

PROP $\exists F: 2 a s$-alg $\rightarrow B_{\infty}$-alg such that Prim $\mathcal{H} \rightarrow F(\mathcal{H})$ is a morphism of B_{∞}-algebras Example: $M_{11}(u, v)=u * v+u \cdot v+v \cdot u$

DEF 2-associative bialgebra is $(\mathcal{H}, *, \cdot, \Delta)$ s.t.

- $(\mathcal{H}, *, \Delta)=$ classical bialgebra
- $(\mathcal{H}, \cdot, \Delta)=$ unital infinitesimal bialgebra

THM (JLL-Ronco) $\mathcal{H}=2 a s$-bialgebra. TFAE:
(a) \mathcal{H} is connected,
(b) $\mathcal{H} \cong U 2(\operatorname{Prim} \mathcal{H})$,
(c) \mathcal{H} is cofree among connected coalgebras.
$U 2: B_{\infty}-$ alg $\rightarrow 2 a s-$ alg left adjoint to F

COR Structure theorem for cofree Hopf alg.
COR Explicitation of free B_{∞}-algebra (trees)

Generalized bialgebra, triple of operads

Data $(\mathcal{C}, \chi, \mathcal{A} \xrightarrow{F} \mathcal{P})$ abbreviated $(\mathcal{C}, \mathcal{A}, \mathcal{P})$

- $\mathcal{C}=$ operad handling coalgebra structure
- $\mathcal{A}=$ operad handling algebra structure
- ℓ "spin relations" intertwining operations and cooperations
So ($\mathcal{C}, X, \mathcal{A}$) determines a notion of bialgebra (prop)
- $\mathcal{P}=$ operad handling algebra structure of the primitive part
- $F: \mathcal{A}-a l g \rightarrow \mathcal{P}$-alg forgetful functor s.t.

Prim $\mathcal{H} \rightarrow F(\mathcal{H})$ is a morphism of \mathcal{P}-algebras
DEF $(\mathcal{C}, \mathcal{A}, \mathcal{P})$ is called a triple of operads (triplette)
Examples:
$\begin{array}{cl}(\text { Com, } \text { Com, Vect }) & \ell=\text { Hopf relation } \\ (C o m, A s, \text { Lie) } & \ell=\text { Hopf relation } \\ (A s, A s, V e c t) & \ell=\text { u.i. relation } \\ \left(A s, 2 a s, B_{\infty}\right) & \ell=\text { Hopf and u.i. relation }\end{array}$

Good triples of operads

Let $U: \mathcal{P}$-alg $\rightarrow \mathcal{A}$-alg be left adjoint to F
$\operatorname{DEF}(\mathcal{C}, \mathcal{A}, \mathcal{P})$ is called a good triple of operads if, for any $(\mathcal{C}, \Upsilon, \mathcal{A})$ bialgebra \mathcal{H}, TFAE:
(a) \mathcal{H} is connected,
(b) $\mathcal{H} \cong U(\operatorname{Prim} \mathcal{H})$,
(c) \mathcal{H} is cofree among connected \mathcal{C}-coalgebras.
$\operatorname{COR} \mathcal{A}(V) \cong \mathcal{C}(\mathcal{P}(V))$ and $\operatorname{Prim} \mathcal{A}(V) \cong \mathcal{P}(V)$

All preceding examples are good triples.

Triples of operads: $\mathcal{C} \quad \mathcal{A} \longrightarrow \mathcal{P}$

	coalgebra	algebra	primitive
Hopf-Borel CMM+PBW	Com Com	Com As	Vect Lie
Ronco Ronco JLL-Ronco	As As As	Zinb Dend Dipt	Vect brace B_{∞}
JLL-Ronco JLL-Ronco	As As	As $2 a s$	Vect B_{∞}
JLL Holtkamp-JLL Holtkamp	Mag As Com	Mag Mag Mag	Vect Mag Fine $? ?$
Guin-Oudom	Com	\mathcal{X}	preLie
Markl-Remm	??	preLie	Lie
Goncharov	Com	As \times As	$? ?$
JLL	$2 a s$	$2 a s$	Vect
Livernet	NAperm	preLie	Vect
Foissy	Dend	Dend	Vect

\mathcal{P}	operations	relations
As	$x y$	$(x y) z=x(y z)$
Com	$x y=y x$	$(x y) z=x(y z)$
Lie	$[x y]=-[y x]$	Jacobi identity
Mag	$x y$	no relation
preLie	$x y$	$(x y) z-x(y z)=(x z) y-x(z$
Zinb	$x y$	$(x y) z=x(y z)+x(z y)$
2-as	$x \cdot y, x * y$	both associative
Dend	$\begin{aligned} & x \prec y, x \succ y \\ & x * y= \\ & x \prec y+x \succ y \end{aligned}$	$\begin{gathered} (x \prec y) \prec z=x \prec(y * z) \\ (x \succ y) \prec z=x \succ(y \prec z) \\ (x * y) \succ z=x \succ(y \succ z) \end{gathered}$
Dipt	$x * y, x \succ y$	$\begin{gathered} (x * y) * z=x *(y * z) \\ (x * y) \succ z=x \succ(y \succ z) \end{gathered}$
B_{∞}	$M_{p q}$	$\left(\mathcal{R}_{i j k}\right)$
brace	$M_{1 q}$	$\left(\mathcal{R}_{1 j k}\right)$
N Aperm	$x y$	$(x y) z=(x z) y$

Thank you for your attention !

