Generalized Bialgebras and Triples of Operads

Jean-Louis Loday

CNRS, Strasbourg

France, EU

February 2005

Classical Bialgebras

 \mathbbm{K} is a the ground field

Classical bialgebra: $(\mathcal{H}, *, \Delta)$, $\mathcal{H} = \mathbb{K}1 \oplus \overline{\mathcal{H}}$

*: $\mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$ is associative and unital $\Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ is coassociative and counital Hopf relation: $\Delta(x * y) = \Delta(x) * \Delta(y)$

Primitive elements: $\operatorname{Prim} \mathcal{H} := \{ x \in \overline{\mathcal{H}} | \Delta(x) = x \otimes 1 + 1 \otimes x \}$

Observation: Prim \mathcal{H} is a Lie algebra for [x, y] := x * y - y * x

Connected bialgebra: $F_0 := \mathbb{K}1$, $F_r := \{x \in \mathcal{H} | \Delta(x) - x \otimes 1 - 1 \otimes x \in F_{r-1} \otimes F_{r-1}\}$ Condition to be connected: $\mathcal{H} = \bigcup_r F_r$

Hopf-Borel Theorem

THM (Hopf-Borel, 1953) $\mathbb{K} = char \ 0$ field, $\mathcal{H} = commutative \ cocommutative \ bialgebra.$ *TFAE:* (a) \mathcal{H} is connected

(b) $\mathcal{H} \cong S(V)$, where $V = \operatorname{Prim} \mathcal{H}$

One of the numerous different proofs involves the Eulerian idempotent

Many applications in algebraic topology and homological algebra (graded version):

 $H_*(G, \mathbb{Q}) \cong \Lambda(\pi_*(G) \otimes \mathbb{Q})$, where G = Lie group $H_*(GL(A), \mathbb{Q}) \cong \Lambda(K_*(A) \otimes \mathbb{Q})$, (Quillen) $H_*(\mathfrak{gl}(A), \mathbb{Q}) \cong \Lambda(HC_{*-1}(A) \otimes \mathbb{Q})$, (Loday-Quillen-Tsygan)

PBW and **CMM** Theorem

THM (PBW + CMM) $\mathbb{K} = char 0$ field, $\mathcal{H} = cocommutative bialgebra.$ TFAE: (a) \mathcal{H} is connected, (b) $\mathcal{H} \cong U(\operatorname{Prim} \mathcal{H})$, (c) \mathcal{H} is cofree among the connected cocommutative coalgebras.

(a) \Rightarrow (b) Cartier-Milnor-Moore (CMM) thm (b) \Rightarrow (c) Poincaré-Birkhoff-Witt (PBW) thm (c) \Rightarrow (a) is a tautology (a) \Rightarrow (c) was proved earlier by Leray (1945)

COR $T(V) \cong S(Lie(V))$, Prim $T(V) \cong Lie(V)$

COR *Structure theorem for cofree cocommutative bialgebras*

QUESTION: Can we remove the hypothesis "cocommutative" ? Several answers. One of them: Etingof-Kazhdan. Another one soon

Unital Infinitesimal Bialgebra

 $(\mathcal{H}, \cdot, \Delta) = unital infinitesimal bialgebra if$

*: $\mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$ is associative and unital $\Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ is coassociative and counital unital infinitesimal (u. i.) relation: $\Delta(x \cdot y) = \Delta(x) \cdot (1 \otimes y) + (x \otimes 1) \cdot \Delta(y) - x \otimes y$

Example: $T(V) = \mathbb{K} \mathbb{1} \oplus V \oplus V^{\otimes 2} \oplus \cdots \oplus V^{\otimes n} \oplus \cdots$ $(T(V), \cdot = \text{concatenation}, \Delta = \text{deconcatenation})$

 $v_1 \dots v_p \cdot v_{p+1} \dots v_n := v_1 \dots v_n$ $\Delta(v_1 \dots v_n) := \sum_{p \ge 0} v_1 \dots v_p \otimes v_{p+1} \dots v_n$

THM (JLL-Ronco, 2003) $\mathcal{H} = u.$ *i. bialgebra TFAE:* (a) \mathcal{H} is connected (b) $\mathcal{H} \cong T(V)$, where $V = \operatorname{Prim} \mathcal{H}$

Cofree Bialgebra and B_{∞} -algebra

Let ${\mathcal H}$ be a classical bialgebra, suppose it is cofree:

 $\mathcal{H} \cong T^c(V)$ i.e. $\Delta =$ deconcatenation

Associativity of $* \Leftrightarrow$ The M_{pq} 's satisfy \mathcal{R}_{ijk}

Example: \mathcal{R}_{111} : $M_{12}(u, vw + wv) + M_{11}(u, M_{11}(v, w)) =$ $M_{21}(uv + vu, w) + M_{11}(M_{11}(u, v), w)$

DEF (R, M_{pq}) is a B_{∞} -algebra if the M_{pq} 's satisfy the relations \mathcal{R}_{ijk}

Claim: (R, M_{pq}) B_{∞} -alg. \Leftrightarrow ($T^{c}(R), *, \Delta$) cofree bialg.

Cofree Hopf algebra

DEF 2-associative algebra $(A, *, \cdot)$, operations * and \cdot associative with same unit 1. Example: a cofree bialgebra $\mathcal{H} = (T^c(V), *, \Delta)$ with concatenation as \cdot

PROP \exists F : $2as-alg \rightarrow B_{\infty}-alg$ such that Prim $\mathcal{H} \rightarrow F(\mathcal{H})$ is a morphism of B_{∞} -algebras Example: $M_{11}(u, v) = u * v + u \cdot v + v \cdot u$

DEF 2-associative bialgebra is $(\mathcal{H}, *, \cdot, \Delta)$ s.t.

- $(\mathcal{H}, *, \Delta)$ = classical bialgebra
- $(\mathcal{H}, \cdot, \Delta)$ = unital infinitesimal bialgebra

THM (JLL-Ronco) $\mathcal{H} = 2as$ -bialgebra. TFAE: (a) \mathcal{H} is connected, (b) $\mathcal{H} \cong U2(\operatorname{Prim} \mathcal{H})$, (c) \mathcal{H} is cofree among connected coalgebras. $U2: B_{\infty} - \operatorname{alg} \rightarrow 2as - \operatorname{alg}$ left adjoint to F

COR Structure theorem for cofree Hopf alg. **COR** Explicitation of free B_{∞} -algebra (trees)

Generalized bialgebra, triple of operads

Data $(\mathcal{C}, \emptyset, \mathcal{A} \xrightarrow{F} \mathcal{P})$ abbreviated $(\mathcal{C}, \mathcal{A}, \mathcal{P})$

- C = operad handling coalgebra structure
- $\mathcal{A} =$ operad handling algebra structure
- \bullet () "spin relations" intertwining operations and cooperations

So $(\mathcal{C}, \emptyset, \mathcal{A})$ determines a notion of bialgebra (prop)

- $\mathcal{P} =$ operad handling algebra structure of the primitive part
- $F : \mathcal{A} alg \rightarrow \mathcal{P} alg$ forgetful functor s.t.
- $\operatorname{Prim} \mathcal{H} \to F(\mathcal{H})$ is a morphism of \mathcal{P} -algebras

DEF (C, A, P) is called a *triple of operads* (triplette)

Examples:

 $\begin{array}{ll} (Com, Com, {\sf Vect}) & \emptyset = {\sf Hopf relation} \\ (Com, As, Lie) & \emptyset = {\sf Hopf relation} \\ (As, As, {\sf Vect}) & \emptyset = {\sf u.i. relation} \\ (As, 2as, B_{\infty}) & \emptyset = {\sf Hopf and u.i. relation} \end{array}$

Good triples of operads

Let $U: \mathcal{P}-\operatorname{alg} \to \mathcal{A}-\operatorname{alg}$ be left adjoint to F

DEF (C, A, P) is called a *good* triple of operads if, for any (C, \emptyset, A) bialgebra H, TFAE:

(a) \mathcal{H} is connected,

(b) $\mathcal{H} \cong U(\operatorname{Prim} \mathcal{H})$,

(c) \mathcal{H} is cofree among connected C-coalgebras.

COR $\mathcal{A}(V) \cong \mathcal{C}(\mathcal{P}(V))$ and $\operatorname{Prim} \mathcal{A}(V) \cong \mathcal{P}(V)$

All preceding examples are good triples.

Triples of operads: $\mathcal{C} \land \mathcal{A} \longrightarrow \mathcal{P}$				
	coalgebra	algebra	primitive	
Hopf-Borel CMM+PBW	$Com \ Com$	$Com \\ As$	Vect Lie	
Ronco Ronco JLL-Ronco	$egin{array}{c} As \ As \ As \end{array}$	$Zinb \\ Dend \\ Dipt$	$Vect\ brace\ B_{\infty}$	
JLL-Ronco JLL-Ronco	$As \\ As$	As 2as	$Vect \ B_{\infty}$	
JLL Holtkamp-JLL Holtkamp	$Mag \\ As \\ Com$	Mag Mag Mag Mag	$Vect \\ Mag_{Fine} \\ \red{Pine}$	
Guin-Oudom	Com	${\mathcal X}$	preLie	
Markl-Remm	??	preLie	Lie	
Goncharov	Com	$As \times As$??	
JLL	2as	2as	Vect	
Livernet	NA perm	preLie	Vect	
Foissy	Dend	Dend	Vect	

\mathcal{P}	operations	relations
As	xy	(xy)z = x(yz)
Com	xy = yx	(xy)z = x(yz)
Lie	[xy] = -[yx]	Jacobi identity
Mag	xy	no relation
preLie	xy	(xy)z - x(yz) = (xz)y - x(z)
Zinb	xy	(xy)z = x(yz) + x(zy)
2- <i>as</i>	$x \cdot y, x st y$	both associative
Dend	$ \begin{array}{l} x \prec y, \ x \succ y \\ x \ast y = \\ x \prec y + x \succ y \end{array} $	$(x \prec y) \prec z = x \prec (y \ast z)$ $(x \succ y) \prec z = x \succ (y \prec z)$ $(x \ast y) \succ z = x \succ (y \succ z)$
Dipt	$x \ast y, x \succ y$	$(x * y) * z = x * (y * z)$ $(x * y) \succ z = x \succ (y \succ z)$
B_{∞}	M_{pq}	(\mathcal{R}_{ijk})
brace	M_{1q}	(\mathcal{R}_{1jk})
NA perm	xy	(xy)z = (xz)y

Thank you for your attention !

