References.

(1) I.Panin, S.Yagunov Rigidity for orientable functors.

Journal of Pure and Applied Algebra vol. 172, No. 1 (2002) pp. 49-77.
(2) S.Yagunov Rigidity II: non-orientable case.

Documenta Mathematicae vol. 9 (2004) pp. 29-40.
(3) I.Panin, S.Yagunov Poincaré Duality for Projective Algebraic Varieties. (submitted to Annals of Mathematics.) 24p.
(4) J.Hornbostel, S.Yagunov Rigidity for Henselian local rings and \mathbb{A}^{1}-representable theories. (submitted to Mathematische Zeitschrift.) 13p.

For us cohomology theory is a contravariant functor $E^{*}: S m^{2} / k \rightarrow \mathcal{A} b$ given on the category $S m^{2} / k$ of pairs (X, U), where X is a smooth algebraic variety over a field k and U is an open subscheme in X.

Eilenberg - Steenrod Type Axioms

(1) Localization. Let $(U, \emptyset) \xrightarrow{f}(X, \emptyset) \xrightarrow{j}(X, U)$ be morphisms in $S m^{2} / k$ such that j is induced by $X \xrightarrow{\text { id }} X$. Then we have the following long exact sequence:

$$
\cdots \xrightarrow{j^{*}} E^{*}(X) \xrightarrow{f^{*}} E^{*}(U) \xrightarrow{\partial^{*}} E^{*+1}(X, U) \xrightarrow{j^{*}} \cdots
$$

(2) Excision. Let $X \xlongequal{\supseteq} X_{0} \supseteq Z$, where X_{0} is open in X and Z is closed in X. Then the induced map $i^{*}: E^{*}(X, X-Z) \xrightarrow{\simeq} E^{*}\left(X_{0}, X_{0}-Z\right)$ is an isomorphism.
(3) Homotopy Invariance. The functor E^{*} is homotopy invariant, i.e. for every $X \in S m / k$ the map $p_{X}^{*}: E^{*}(X) \rightarrow E^{*}\left(X \times \mathbb{A}^{1}\right)$ induced by the projection $X \times \mathbb{A}^{1} \xrightarrow{p_{X}} X$ is an isomorphism.

The theory E^{*} is called orientable if it satisfies the following additional axiom:
(4) Projective Bundle Theorem. Let \mathcal{E} be a vector bundle of rank r over X. Denote by $\mathbb{P}(\mathcal{E}) \xrightarrow{p} X$ the projective bundle over X associated to \mathcal{E}. (A fiber of this bundle over a point $\{x\}$ in X is the projective space of lines in the fiber \mathcal{E}_{x}.)

Then $E^{*}(\mathbb{P}(\mathcal{E}))$ is a free $E^{*}(X)$-module with a base $1, \xi, \xi^{2}, \ldots, \xi^{r-1}$ given by powers of the first Chern class.

Moreover, if the bundle \mathcal{E} is trivial, these modules are isomorphic as rings. (In this case one has $\xi^{r}=0$.)

Transfer structure.

For a class $\mathcal{C} \subset \operatorname{Mor}\left(S m^{2} / k\right)$ we define transfer maps $f_{!}: E^{*}(X) \rightarrow E^{*}(Y)$ provided that $(X \xrightarrow{f} Y) \in \mathcal{C}$. For orientable theories we usually set \mathcal{C} to be the class induced by all projective morphisms.

(1) Functoriality.

We have: $(f \circ g)!=f_{!} \circ g!$ and $\mathrm{id}!=\mathrm{id}$.
(2) Base-change property for transversal squares.

For any Cartesian transversal square

the diagram

commutes.

(3) Finite additivity.

Let $X=X_{0} \sqcup X_{1}, j_{m}: X_{m} \hookrightarrow X(m=0,1)$ be embedding maps, and $f: X \rightarrow Y$ be a projective morphism. Setting $f_{m}=f j_{m}$, we have:

$$
f_{0,!} j_{0}^{*}+f_{1,!}!_{1}^{*}=f_{!} .
$$

There exists a nice analogies between transfers and fiberwise integration.
(1) Functoriality.

$$
(f \circ g)_{!}=f_{!} \circ g_{!} \quad \iint_{f \circ g}=\int_{f}\left(\int_{g}\right) \text { (Fubini's theorem). }
$$

(2) Base-change property for transversal squares.

(3) Finite additivity.=Additivity of integrals.

Toward transfer construction.
Let $B=B(Y, X)$ denote the blow-up of $Y \times \mathbb{A}^{1}$ with center at $X \times\{0\}$. Considering the fibers of the $\operatorname{map} B(Y, X) \rightarrow Y \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ over the points $\{0\}$ and $\{1\}$ one easily obtains two embeddings: $i_{0}: \mathbb{P}(\mathcal{N} \oplus \mathbf{1}) \hookrightarrow B(Y, X)$ and $i_{1}: Y \hookrightarrow B(Y, X)$. The subvariety $X \times \mathbb{A}^{1}$ contains the center $X \times\{0\}$ of the blow-up as a divisor. Therefore, it lifts canonically to a subvariety in $B(Y, X)$. Since $X \times \mathbb{A}^{1}$ crosses $\mathbb{P}(\mathcal{N} \oplus \mathbf{1})$ along $\mathbb{P}(\mathbf{1})$ and crosses $i_{1}(Y)$ along $i_{1}(X)$, one has following embeddings of the pairs:

$$
\begin{equation*}
(\mathcal{N}, \mathcal{N}-X) \stackrel{i_{0}}{\hookrightarrow}\left(B, B-X \times \mathbb{A}^{1}\right) \stackrel{i_{1}}{\longleftrightarrow}(Y, Y-X) \tag{0.1}
\end{equation*}
$$

Then:

$$
\begin{equation*}
E_{X}^{*, *}(\mathcal{N}) \stackrel{i_{0}^{*}}{\simeq} E_{X \times \mathbb{A}^{1}}^{*, *}(B) \stackrel{i_{1}^{*}}{\simeq} E_{X}^{*, *}(Y) \tag{0.2}
\end{equation*}
$$

Applications.
I. Rigidity theorems.

Theorem 0.1 (Orientable case). Let $k \subset K$ be an extension of algebraically closed fields. Let also $E^{*, *}$ be an orientable functor vanishing after multiplication by n mutually prime to Char k. Then, for any $Y \in S m / k$, we have:

$$
E^{*, *}(Y) \stackrel{\simeq}{\rightarrow} E^{*, *}\left(Y_{K}\right) .
$$

The proof is based on the following fact:

Theorem 0.2 (The Rigidity Theorem). Let $\mathcal{F}:(S m / k)^{\circ} \rightarrow \mathcal{A} b$ be a contravariant homotopy invariant functor with weak transfers for the class of finite projective morphisms. Assume that the field k is algebraically closed and $n \mathcal{F}=0$ for some integer n relatively prime to Char k. Then for every smooth affine variety T and for any two k-rational points $t_{1}, t_{2} \in T(k)$ the induced maps $t_{1}^{*}, t_{2}^{*}: \mathcal{F}(T) \rightarrow \mathcal{F}(k)$ coincide.

Theorem 0.3 (Henselian case). Let E be such that $E\left(\mathbb{P}^{2}, l\right) \rightarrow E\left(\mathbb{P}^{1}, l\right)$ is an epimorphism (e.g. $E=M G L, H_{\text {mot }}$ or K). Then for any smooth scheme X over k, any $P \in X(k)$ and l is coprime to $\operatorname{Char}(k)$, we have a natural isomorphism:

$$
E\left(X \times_{k} \mathcal{O}_{X, P}^{h}, l\right) \xrightarrow{\cong} E(X, l) .
$$

Theorem 0.4. Let R be a henselian local ring with a field of fractions $\operatorname{Frac}(R)=$ F. Assume that $E=E^{* *}$ is a bigraded functor on the category $S m / k$ (of smooth schemes over an infinite field k) that is representable in the stable \mathbb{A}^{1}-homotopy category and that $l E=0$ for $l \in \mathbb{Z}$ invertible in R. Let $f: M \rightarrow \operatorname{Spec} R$ be a smooth affine morphism of (pure) relative dimension d, s_{0}, s_{1} : Spec $R \rightarrow M$ two sections of f such that $s_{0}(p)=s_{1}(p)$, where p is the closed point of $\operatorname{Spec} R$. Assume moreover that E is normalized with respect to the field F. Then two composed maps $E(M) \xrightarrow{s_{i}^{*}} E(\operatorname{Spec} R) \rightarrow E(F)$ are equal $(i=0,1)$.

Products in (Co-)Homology

E is a ring-spectrum: $E \wedge E \xrightarrow{\mu} E$.
$\tau_{i j}$ is the $i j$-permutation morphism.
S is the sphere spectrum.

$$
E^{*}(X)=[X \rightarrow E] \quad E_{*}(X)=[S \rightarrow X \wedge E]
$$

$$
\begin{gathered}
E^{*}(X) \otimes E^{*}(Y) \xrightarrow{\bar{区}} E^{*}(X \wedge Y) \\
{[X \xrightarrow{\alpha} E] \overline{\times}[Y \xrightarrow{\beta} E]=[X \wedge Y \xrightarrow{\alpha \wedge \beta} E \wedge E \xrightarrow{\mu} E]}
\end{gathered}
$$

$$
E_{*}(X) \otimes E_{*}(Y) \stackrel{\times}{\Rightarrow} E_{*}(X \wedge Y)
$$

$$
[S \xrightarrow{a} X \wedge E] \times[S \xrightarrow{b} Y \wedge E]=
$$

$$
\left[S \xrightarrow{\Delta} S \wedge S \xrightarrow{a \wedge b}(X \wedge E) \wedge(Y \wedge E) \xrightarrow{(1 \wedge 1 \wedge \mu) \sigma_{23}} X \wedge Y \wedge E\right]
$$

$$
E^{*}(X \wedge Y) \otimes E_{*}(Y) \xrightarrow{\prime} E^{*}(X)
$$

$$
\begin{gathered}
{[X \wedge Y \xrightarrow{\alpha} E] /[S \xrightarrow{a} Y \wedge E]=[X \rightarrow X \wedge S \xrightarrow{1 \wedge a}(X \wedge Y) \wedge E \xrightarrow{\alpha \wedge 1} E \wedge E \xrightarrow{\mu} E]} \\
E^{*}(X) \otimes E_{*}(X \wedge Y) \xrightarrow{\longrightarrow} E_{*}(Y) \\
{[X \xrightarrow{\alpha} E] \backslash[S \xrightarrow{a} X \wedge Y \wedge E]=} \\
{\left[S \xrightarrow{a} X \wedge Y \wedge E \xrightarrow{\alpha \wedge \wedge 1} E \wedge Y \wedge E \xrightarrow{(1 \wedge \wedge \wedge \mu) \circ \tau_{12}} Y \wedge E\right]}
\end{gathered}
$$

Consider a category $S m / k$ of smooth algebraic varieties over a field k. Let E^{*} and E_{*} be functors (cohomology and homology pretheories)

$$
E^{*}:(S m / k)^{\mathrm{op}} \rightarrow \mathbb{Z} / 2-\mathcal{A} b
$$

and

$$
E_{*}: S m / k \rightarrow \mathbb{Z} / 2-\mathcal{A} b
$$

taking their values in the category of $\mathbb{Z} / 2$-graded abelian groups.
Definition. Let functors E^{*} and E_{*} (cotravariant and covariant, respectively), be endowed with a product structure consisting of two cross-products

$$
\begin{aligned}
& \underline{x}: E_{p}(X) \otimes E_{q}(Y) \rightarrow E_{p+q}(X \times Y) \\
& \overline{\times}: E^{p}(X) \otimes E^{q}(Y) \rightarrow E^{p+q}(X \times Y)
\end{aligned}
$$

and two slant-products

$$
\begin{aligned}
& /: E^{p}(X \times Y) \otimes E_{q}(Y) \rightarrow E^{p-q}(X) \\
& \backslash: E^{p}(X) \otimes E_{q}(X \times Y) \rightarrow E_{q-p}(Y) .
\end{aligned}
$$

Define two inner products

$$
\begin{aligned}
& \smile: E^{p}(X) \otimes E^{q}(X) \rightarrow E^{p+q}(X) \\
& \frown: E^{p}(X) \otimes E_{q}(X) \rightarrow E_{q-p}(X),
\end{aligned}
$$

as $\alpha \smile \beta=\Delta^{*}(\alpha \overline{\times} \beta)$ and $\alpha \frown a=\alpha \backslash \Delta_{*}(a)$. We say that functors E^{*} and E_{*} make a multiplicative pair $\left(E^{*}, E_{*}\right)$ if the mentioned products satisfy the following five axioms.
(A.1) The cup-product makes the group $E^{*}(X)$ an associative skew-commutative $\mathbb{Z} / 2$-graded unitary ring and this structure is functorial.
(A.2) The cap-product makes the group $E_{*}(X)$ a unital $E^{*}(X)$-module (we have $1 \frown a=a$ for every $\left.a \in E_{*}(X)\right)$ and this structure is functorial in the sense that

$$
\alpha \frown f_{*}(a)=f_{*}\left(f^{*}(\alpha) \frown a\right)
$$

(A.3) Associativity relations. For $\alpha \in E^{*}(X \times Y), \beta \in E^{*}(Y), \gamma \in E^{*}(X)$, $a \in E_{*}(Y)$, and $b \in E_{*}(X)$, we have:
(i) $\alpha /(\beta \frown a)=\left(\alpha \smile p_{Y}^{*}(\beta)\right) / a$
(ii) $\gamma \smile(\alpha / a)=\left(p_{X}^{*}(\gamma) \smile \alpha\right) / a$
(iii) $(\alpha / a) \frown b=p_{*}^{X}((\alpha \frown(a \times b))$,
where morphisms p_{X} and p_{Y} are corresponding projections.
(A.4) Functoriality for slant-product: For morphisms $f: X \rightarrow X^{\prime}, g: Y \rightarrow$ Y^{\prime}, and elements
$\alpha \in E^{*}\left(X^{\prime} \times Y^{\prime}\right)$ and $a \in E_{*}(Y)$, one has:

$$
(f \times g)^{*}(\alpha) / a=f^{*}\left(\alpha / g_{*}(a)\right)
$$

(A.5) In the homology group of the final object pt we are given an element $[\mathrm{pt}] \in E_{0}(\mathrm{pt})$ such that for every $\alpha \in E^{*}(\mathrm{pt})$, one has:

$$
\alpha /[\mathrm{pt}]=\alpha
$$

We would also need a transfer structure in homology, which is an analogue of the cohomological one. These two structures are compatible in the following sense:
For a line bundle \mathcal{L} over X we set $e(\mathcal{L}) \stackrel{\text { def }}{=} z^{*} z_{!}(1)$, where $z: X \rightarrow \mathcal{L}$ is the zero-section. Let \mathcal{L} be a line bundle over X. Then, for the zero-section $z: X \rightarrow \mathcal{L}$ the relation $z^{!} \circ z_{*}=e(\mathcal{L}) \frown: E_{*}(X) \rightarrow E_{*}(X)$ holds.

II.Poincaré Duality Theorem

Definition 0.5. Let \mathcal{E} be an oriented pseudo-representable theory and $X \in$ $S m / k$ projective variety with structure morphism $\pi: X \rightarrow \mathrm{pt}$. Then, we call an element $\pi^{!}(1) \in E_{0}(X)$ the fundamental class of X and denote it by [X].

Theorem 0.6 (Poincaré Duality). Let \mathcal{E} be an oriented pseudo-representable theory. For every projective $X \in S m / k$, denote by $\mathcal{D}^{\bullet}: E^{*}(X) \rightarrow E_{*}(X)$ the map $\mathcal{D}^{\bullet}(\alpha)=\alpha \frown[X]$ and by $\mathcal{D}_{\bullet}: E_{*}(X) \rightarrow E^{*}(X)$ the map $\mathcal{D}_{\bullet}(a)=$ $\Delta_{!}(1) / a$, where $\Delta: X \rightarrow X \times X$ is the diagonal morphism. Then, the maps \mathcal{D}^{\bullet} and \mathcal{D}. are mutually inverse isomorphisms.

One can extract the following nice consequence of the Poincaré Duality theorem, which enables us to interpret trace maps in a way topologists like to.

Corollary 0.7. For projective $X, Y \in S m / k$ and a morphism $f: X \rightarrow Y$, one has:

$$
\begin{array}{r}
f_{!}=\mathcal{D}_{\bullet}^{Y} f_{*} \mathcal{D}_{X}^{\bullet} \\
f^{!}=\mathcal{D}_{X}^{\bullet} f^{*} \mathcal{D}_{\bullet}^{Y},
\end{array}
$$

where \mathcal{D}_{X} and \mathcal{D}_{Y} are introduced above duality operators for varieties X and Y, respectively.

