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For us cohomology theory is a contravariant functor E∗ : Sm2/k → Ab

given on the category Sm2/k of pairs (X, U), where X is a smooth algebraic

variety over a field k and U is an open subscheme in X.

Eilenberg – Steenrod Type Axioms

(1) Localization. Let (U, ∅) f→ (X, ∅) j→ (X, U) be morphisms in Sm2/k

such that j is induced by X
id→ X. Then we have the following long

exact sequence:

· · · j∗→ E∗(X)
f∗

→ E∗(U)
∂∗→ E∗+1(X, U)

j∗→ · · ·

(2) Excision. Let X
i
⊇ X0 ⊇ Z, where X0 is open in X and Z is closed

in X. Then the induced map i∗ : E∗(X, X − Z)
'→ E∗(X0, X0 − Z) is

an isomorphism.

(3) Homotopy Invariance. The functor E∗ is homotopy invariant, i.e.

for every X ∈ Sm/k the map p∗X : E∗(X) → E∗(X × A1) induced by

the projection X × A1 pX→ X is an isomorphism.

The theory E∗ is called orientable if it satisfies the following

additional axiom:

(4) Projective Bundle Theorem. Let E be a vector bundle of rank r

over X. Denote by P(E) p→ X the projective bundle over X associated

to E . (A fiber of this bundle over a point {x} in X is the projective

space of lines in the fiber Ex.)

Then E∗(P(E)) is a free E∗(X)-module with a base 1, ξ, ξ2, . . . , ξr−1

given by powers of the first Chern class.

Moreover, if the bundle E is trivial, these modules are isomorphic as

rings. (In this case one has ξr = 0.)



Transfer structure.

For a class C ⊂ Mor(Sm2/k) we define transfer maps f! : E∗(X) → E∗(Y )

provided that (X
f→ Y ) ∈ C. For orientable theories we usually set C to be

the class induced by all projective morphisms.

(1) Functoriality.

We have: (f ◦ g)! = f! ◦ g! and id! = id.

(2) Base-change property for transversal squares.

For any Cartesian transversal square

Y ′
f̄

//

ḡ
��

X ′

g
��

Y
f

// X

the diagram

E∗(Y ′)
f̄!

// E∗(X ′)

E∗(Y )

ḡ∗
OO

f!

// E∗(X)

g∗
OO

commutes.

(3) Finite additivity.

Let X = X0tX1, jm : Xm ↪→ X (m = 0, 1) be embedding maps, and

f : X → Y be a projective morphism. Setting fm = fjm, we have:

f0,!j
∗
0 + f1,!j

∗
1 = f!.



There exists a nice analogies between transfers and fiberwise integration.

(1) Functoriality.

(f ◦ g)! = f! ◦ g!
∫∫

f◦g =
∫

f(
∫

g) (Fubini’s theorem).

(2) Base-change property for transversal squares.

(3) Finite additivity.=Additivity of integrals.
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Toward transfer construction.

Let B = B(Y,X) denote the blow-up of Y × A1 with center at X × {0}.

Considering the fibers of the map B(Y,X) → Y × A1 → A1 over the points

{0} and {1} one easily obtains two embeddings: i0 : P(N ⊕ 1) ↪→ B(Y, X)

and i1 : Y ↪→ B(Y, X). The subvariety X × A1 contains the center X × {0}

of the blow-up as a divisor. Therefore, it lifts canonically to a subvariety in

B(Y,X). Since X ×A1 crosses P(N ⊕ 1) along P(1) and crosses i1(Y ) along

i1(X), one has following embeddings of the pairs:

(0.1) (N ,N −X)
i0
↪→ (B, B −X × A1)

i1←↩ (Y, Y −X)

Then:

(0.2) E∗,∗X (N ) E∗,∗X×A1(B)
i∗0

'
oo

i∗1

'
//E∗,∗X (Y )



Applications.

I. Rigidity theorems.

Theorem 0.1 (Orientable case). Let k ⊂ K be an extension of algebraically

closed fields. Let also E∗,∗ be an orientable functor vanishing after multipli-

cation by n mutually prime to Char k. Then, for any Y ∈ Sm/k, we have:

E∗,∗(Y )
'→ E∗,∗(YK).

The proof is based on the following fact:

Theorem 0.2 (The Rigidity Theorem). Let F : (Sm/k)◦ → Ab be a

contravariant homotopy invariant functor with weak transfers for the class

of finite projective morphisms. Assume that the field k is algebraically closed

and nF = 0 for some integer n relatively prime to Char k. Then for every

smooth affine variety T and for any two k-rational points t1, t2 ∈ T (k) the

induced maps t∗1, t
∗
2 : F(T )→ F(k) coincide.



Theorem 0.3 (Henselian case). Let E be such that E(P2, l)→ E(P1, l) is an

epimorphism (e.g. E = MGL, Hmot or K). Then for any smooth scheme

X over k, any P ∈ X(k) and l is coprime to Char(k), we have a natural

isomorphism:

E(X ×k Oh
X,P , l)

∼=→ E(X, l).

Theorem 0.4. Let R be a henselian local ring with a field of fractions Frac(R) =

F . Assume that E = E∗∗ is a bigraded functor on the category Sm/k (of

smooth schemes over an infinite field k) that is representable in the sta-

ble A1-homotopy category and that lE = 0 for l ∈ Z invertible in R. Let

f : M → Spec R be a smooth affine morphism of (pure) relative dimension d,

s0, s1 : Spec R→M two sections of f such that s0(p) = s1(p), where p is the

closed point of Spec R. Assume moreover that E is normalized with respect to

the field F . Then two composed maps E(M)
s∗i→ E(Spec R)→E(F ) are equal

(i = 0, 1).



Products in (Co-)Homology

E is a ring-spectrum: E ∧ E
µ→ E.

τij is the ij−permutation morphism.

S is the sphere spectrum.

E∗(X) = [X → E] E∗(X) = [S → X ∧ E]

E∗(X)⊗ E∗(Y )
×→ E∗(X ∧ Y )

[X
α→ E]×[Y

β→ E] = [X ∧ Y
α∧β→ E ∧ E

µ→ E]

E∗(X)⊗ E∗(Y )
×→ E∗(X ∧ Y )

[S
a→ X ∧ E]×[S

b→ Y ∧ E] =

[S
∆→ S ∧ S

a∧b→ (X ∧ E) ∧ (Y ∧ E)
(1∧1∧µ)◦τ23→ X ∧ Y ∧ E]

E∗(X ∧ Y )⊗ E∗(Y )
/→ E∗(X)

[X ∧ Y
α→ E]/[S

a→ Y ∧ E] = [X → X ∧ S
1∧a→ (X ∧ Y ) ∧ E

α∧1→ E ∧ E
µ→ E]

E∗(X)⊗ E∗(X ∧ Y )
\→ E∗(Y )

[X
α→ E]\[S a→ X ∧ Y ∧ E] =

[S
a→ X ∧ Y ∧ E

α∧1∧1→ E ∧ Y ∧ E
(1∧1∧µ)◦τ12→ Y ∧ E]



Consider a category Sm/k of smooth algebraic varieties over a field k. Let

E∗ and E∗ be functors (cohomology and homology pretheories)

E∗ : (Sm/k)op → Z/2-Ab

and

E∗ : Sm/k → Z/2-Ab

taking their values in the category of Z/2-graded abelian groups.

Definition. Let functors E∗ and E∗ (cotravariant and covariant, respec-

tively), be endowed with a product structure consisting of two cross-products

× : Ep(X)⊗ Eq(Y )→ Ep+q(X × Y )

× : Ep(X)⊗ Eq(Y )→ Ep+q(X × Y )

and two slant-products

/ : Ep(X × Y )⊗ Eq(Y )→ Ep−q(X)

\ : Ep(X)⊗ Eq(X × Y )→ Eq−p(Y ).

Define two inner products

`: Ep(X)⊗ Eq(X)→ Ep+q(X)

a: Ep(X)⊗ Eq(X)→ Eq−p(X),

as α ` β = ∆∗(α×β) and α a a = α\∆∗(a). We say that functors E∗ and

E∗ make a multiplicative pair (E∗, E∗) if the mentioned products satisfy

the following five axioms.



(A.1) The cup-product makes the group E∗(X) an associative skew-commutative

Z/2-graded unitary ring and this structure is functorial.

(A.2) The cap-product makes the group E∗(X) a unital E∗(X)-module (we

have 1 a a = a for every a ∈ E∗(X)) and this structure is functorial in

the sense that

α a f∗(a) = f∗(f
∗(α) a a)

(A.3) Associativity relations. For α ∈ E∗(X × Y ), β ∈ E∗(Y ), γ ∈ E∗(X),

a ∈ E∗(Y ), and b ∈ E∗(X), we have:

(i) α/(β a a) = (α ` p∗Y (β))/a

(ii) γ ` (α/a) = (p∗X(γ) ` α)/a

(iii) (α/a) a b = pX
∗ ((α a (a×b)),

where morphisms pX and pY are corresponding projections.

(A.4) Functoriality for slant-product: For morphisms f : X → X ′, g : Y →

Y ′, and elements

α ∈ E∗(X ′ × Y ′) and a ∈ E∗(Y ), one has:

(f × g)∗(α)/a = f ∗(α/g∗(a))

(A.5) In the homology group of the final object pt we are given an element

[pt] ∈ E0(pt) such that for every α ∈ E∗(pt), one has:

α/[pt] = α



We would also need a transfer structure in homology, which is an ana-

logue of the cohomological one. These two structures are compatible in the

following sense:

For a line bundle L over X we set e(L)
def
= z∗z!(1), where z : X → L is

the zero-section. Let L be a line bundle over X. Then, for the zero-section

z : X → L the relation z! ◦ z∗ = e(L) a : E∗(X)→ E∗(X) holds.



II.Poincaré Duality Theorem

Definition 0.5. Let E be an oriented pseudo-representable theory and X ∈

Sm/k projective variety with structure morphism π : X → pt. Then, we call

an element π!(1) ∈ E0(X) the fundamental class of X and denote it by

[X].

Theorem 0.6 (Poincaré Duality). Let E be an oriented pseudo-representa-

ble theory. For every projective X ∈ Sm/k, denote by D• : E∗(X) → E∗(X)

the map D•(α) = α a [X] and by D• : E∗(X) → E∗(X) the map D•(a) =

∆!(1)/a, where ∆: X → X ×X is the diagonal morphism. Then, the maps

D• and D• are mutually inverse isomorphisms.

One can extract the following nice consequence of the Poincaré Duality

theorem, which enables us to interpret trace maps in a way topologists like

to.

Corollary 0.7. For projective X, Y ∈ Sm/k and a morphism f : X → Y ,

one has:

f! = DY
• f∗D•X

f ! = D•Xf ∗DY
• ,

where DX and DY are introduced above duality operators for varieties X and

Y , respectively.


