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Abstract. In his book on compositions of quadratic forms, Shapiro asks
whether a quadratic form decomposes as a tensor product of quadratic forms

when its adjoint involution decomposes as a tensor product of involutions on
central simple algebras. We give a positive answer for quadratic forms defined
over local or global fields and produce counterexamples over fields of rational
fractions in two variables over any formally real field.

1. Introduction

Every nondegenerate symmetric or skew-symmetric bilinear form b on a finite-
dimensional vector space V induces an involution (i.e. an anti-automorphism of
period 2) on the endomorphism algebra EndV . This involution, known as the ad-
joint involution of b and denoted by adb, is characterized by the following property:

b(x, f(y)) = b(adb(f)(x), y) for x, y ∈ V and f ∈ EndV .

If the form b is the tensor product of two nondegenerate symmetric or skew-
symmetric bilinear forms, i.e.

V = V1 ⊗ V2 and b = b1 ⊗ b2,

then it is easy to see that the adjoint involution also decomposes,

EndV = (EndV1) ⊗ (EndV2) and adb = adb1 ⊗ adb2 ,

(see [12, Corollary 6.10]), which we denote

(EndV, adb) = (EndV1 ⊗ EndV2, adb1 ⊗ adb2).

In [12, p. 201], Shapiro raises the following question: if the adjoint involution has
a nontrivial decomposition of the form

(EndV, adb) ≃ (A1, σ1) ⊗ (A2, σ2)

for certain involutions σ1, σ2 on central simple algebras A1, A2, does it follow that b
decomposes nontrivially into a tensor product of bilinear forms? He showed that the
answer is positive if A1 and A2 are split, see [12, Corollary 6.10] or Proposition 3.1
below.

In this paper, we give an affirmative answer to Shapiro’s question over certain
fields of characteristic different from 2, including local and global fields, and give
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examples where the answer is negative. Our examples are involution trace forms of
central simple algebras of degree 2m, where m is an odd integer, see Subsection 3.2.

Throughout the paper, the characteristic of the base field F is assumed to be
different from 2. Therefore, symmetric bilinear forms correspond bijectively to
quadratic forms, and this correspondence is used to define the tensor product of
quadratic forms. For any (nondegenerate) quadratic form q, we write adq for the
adjoint involution of the polar form of q.

In Section 2, we collect results on factorizations of quadratic forms. In particular,
we determine the decomposable forms of dimension at most 8. The decomposition
of involutions is discussed in Section 3.

2. Decomposable quadratic forms

All the quadratic forms considered in this paper are nondegenerate. A quadratic
form q over a field F is called decomposable if there is a factorization q ≃ q1q2 where
q1 and q2 are quadratic forms with dim q1, dim q2 ≥ 2. In particular, the hyperbolic
forms of dimension n ≥ 4 are decomposable since they are isometric to

〈1,−1〉 ⊗
(

n
2 〈1〉

)

.

From the outset, note that the notion of decomposable form is not compatible with
Witt equivalence, since every quadratic form q is Witt-equivalent to the decompos-
able form q ⊗ 〈1, 1,−1〉.

After reviewing below some general properties of factorizations of quadratic
forms, we consider factorizations of forms of small dimension, and determine the
indecomposable forms over some special fields.

2.1. General properties.

Lemma 2.1. If q1, q2 are even-dimensional quadratic forms, the discriminant and
Clifford invariant of the product q1q2 satisfy

disc(q1q2) = 1 and c(q1q2) = (disc q1,disc q2)F .

Proof. For i = 1, 2, let di ∈ F× be such that disc qi = diF
×2. Since qi is even-

dimensional, we have qi ≡ 〈1,−di〉 mod I2F , hence

q1q2 ≡ 〈1 − d1〉〈1,−d2〉 mod I3F.

Therefore,
disc(q1q2) = disc(〈1,−d1〉〈1,−d2〉) = 1

and
c(q1q2) = c(〈1,−d1〉〈1,−d2〉) = (d1, d2)F .

¤

For any quadratic form q over F , let qa denote the anisotropic kernel of q, and
let

dima q = dim qa.

Lemma 2.2. If a quadratic form q satisfies dim q = n1n2 for some integers n1, n2

subject to

n1 ≡ dima q mod 2, n2 ≡ 1 mod 2,(1)

n1 ≥ dima q, n1, n2 ≥ 2,(2)

then q is decomposable.



DECOMPOSABLE QUADRATIC FORMS AND INVOLUTIONS 3

Proof. Letting k1 = 1
2 (n1 − dima q) and k2 = 1

2 (n2 − 1), we have

q = (qa ⊥ k1〈1,−1〉) ⊗ (〈1〉 ⊥ k2〈1,−1〉).

¤

Besides these (essentially trivial) factorizations, a main source of decompositions
is the following well-known result (due to Pfister):

Lemma 2.3. An anisotropic quadratic form q splits over a quadratic extension
F (

√
d) (i.e., becomes hyperbolic over F (

√
d)) if and only if q ≃ 〈1,−d〉 ⊗ q′ for

some quadratic form q′.

Proof. See [11, Chapter 2, Theorem 5.2]. ¤

Corollary 2.4. Let q be a decomposable quadratic form of dimension dim q = 2p
for some odd prime number p. If disc q = 1, then q is hyperbolic. If disc q 6= 1, then
dima q ≡ 2 mod 4 and q splits over F (

√
disc q).

Proof. Let q = q1q2 be a nontrivial decomposition of q. We may assume dim q1 = 2
and dim q2 = p. Comparing discriminants, we obtain disc q = disc q1 since p is
odd. Therefore, if disc q = 1, then q1 is hyperbolic, hence q also is hyperbolic. If
disc q = dF×2 6= 1, then F (

√
d) splits q1, hence also q and qa. By Lemma 2.3, it

follows that qa ≃ 〈1,−d〉 ⊗ q′ for some quadratic form q′. If dim q′ is even, then
disc qa = 1, a contradiction since disc q = disc qa. Therefore, dima q ≡ 2 mod 4. ¤

The results above yield necessary and sufficient conditions for the decomposabil-
ity of forms q with dima q ≤ 4, as we now show.

Proposition 2.5. A quadratic form q of odd dimension is decomposable whenever
its dimension has a nontrivial factorization dim q = n1n2 with n1 ≥ dima q. In
particular, if dima q ≤ 3, then q is decomposable if and only if dim q is neither 1
nor a prime number.

Proof. If dim q is odd, then dima q is odd and the conditions (1) hold for any
factorization dim q = n1n2. The proposition follows from Lemma 2.2. ¤

Proposition 2.6. If dima q = 2, then q is indecomposable if and only if dim q is a
power of 2.

Proof. Note that dim q ≡ dima q mod 2, so the hypothesis implies dim q is even. If
it has an odd prime factor p, let n1 = (dim q)/p and n2 = p. Then n1 is even, so
q is decomposable by Lemma 2.2. Therefore, q is decomposable if dim q is not a
power of 2.

Conversely, if dim q is a power of 2, then every nontrivial factorization of q has
the form q = q1q2 with dim q1, dim q2 even. Then disc q = 1 by Lemma 2.1, which
is impossible since dima q = 2. ¤

Proposition 2.7. If dima q = 4, then q is indecomposable if and only if one of the
following conditions holds:

(a) dim q = 2p for some odd prime p,
(b) dim q is a power of 2 and disc q 6= 1.
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Proof. Since dima q = 4, it follows that dim q is even. In case (a), q is indecompos-
able by Corollary 2.4. If dim q is a power of 2, then every nontrivial factorization
of q is into a product of forms of even dimension. The existence of such a factor-
ization implies disc q = 1 by Lemma 2.1, hence q is indecomposable in case (b).
Conversely, Lemma 2.2 shows that q is decomposable whenever dim q has a factor-
ization dim q = n1n2 with n1 even, n2 odd and n1 ≥ 4, n2 ≥ 3. Since dim q is even,
such a factorization exists unless dim q is a power of 2 or of the form 2p for some
odd prime p. To prove that either (a) or (b) holds when q is indecomposable, it
only remains to show that q is decomposable if dim q is a power of 2 and disc q = 1.
In this case, qa has a diagonalization

qa = 〈a, b, c, d〉
with abcd ∈ F×2, so

qa = 〈a, b〉 ⊗ 〈1, ac〉
and, for k = 1

4 (dim q) − 1,

q = 〈a, b〉 ⊗
(

〈1, ac〉 ⊥ k〈1,−1〉
)

.

¤

2.2. Forms of small dimension. We may also use Propositions 2.6 and 2.7, to-
gether with Corollary 2.4, to discuss the decomposability of forms of dimension at
most 8. Of course, quadratic forms whose dimension is 1 or a prime number are
indecomposable. Therefore, we need to consider only forms of dimension 4, 6 or 8.

Proposition 2.8. A quadratic form q of dimension 4 is indecomposable if and only
if one of the following conditions holds:

(a) dima q = 2,
(b) dima q = 4 and disc q 6= 1.

Proof. This readily follows from Propositions 2.6 and 2.7. ¤

Proposition 2.9. A quadratic form q of dimension 6 is indecomposable if and only
if one of the following conditions holds:

(a) dima q = 4,
(b) dima q = 6 and disc q = 1,
(c) dima q = 6, disc q 6= 1 and q is not split by F (

√
disc q).

Proof. The form q is decomposable if dima q = 2, by Proposition 2.6, and indecom-
posable if dima q = 4, by Proposition 2.7. Therefore, it only remains to consider
the case where dima q = 6, i.e., q is anisotropic. Corollary 2.4 shows that q is
indecomposable in cases (b) and (c), and Lemma 2.3 proves that q is decomposable
if disc q 6= 1 and q is split by F (

√
disc q). ¤

Proposition 2.10. A quadratic form q of dimension 8 is indecomposable if and
only if one of the following conditions holds:

(a) dima q = 2,
(b) dima q = 4 and disc q 6= 1,
(c) dima q = 6,
(d) dima q = 8 and q is not split by any quadratic extension of F .
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Proof. If dima q = 2, then q is indecomposable by Proposition 2.6. If dima q = 4,
then q is indecomposable if and only if disc q 6= 1, by Proposition 2.7. Suppose next
dima q = 6. If disc q 6= 1, then q is not decomposable by Lemma 2.1. If disc q = 1,
then q is Witt-equivalent to an anisotropic Albert form, hence its Clifford invariant
has index 4, by [5]. On the other hand, forms which decompose into a product of
forms of even dimension have a Clifford invariant of index at most 2 by Lemma 2.1;
therefore q is indecomposable. Finally, the case where dima q = 8 follows from
Lemma 2.3. ¤

2.3. Forms over special fields. Recall from [11, Chapter 2,§16] that the u-
invariant of a field F is the supremum of the dimensions of anisotropic quadratic
forms over F .

Corollary 2.11. If u(F ) ≤ 4, a quadratic form q over F is indecomposable if and
only if one of the following conditions holds:

(a) dim q is a prime number,
(b) dima q = 2 and dim q is a power of 2,
(c) dima q = 4 and dim q = 2p for some odd prime p,
(d) dima q = 4, dim q is a power of 2 and disc q 6= 1.

In particular, every quadratic form q with dim q ≡ 0 mod 4 and disc q = 1 is de-
composable.

Proof. The hypothesis u(F ) ≤ 4 implies dima q ≤ 4. The corollary therefore readily
follows from Propositions 2.5, 2.6 and 2.7. For the last statement, observe that
dima q 6= 2 if disc q = 1. ¤

The corollary applies for instance to p-adic fields or to non-formally real number
fields. Note that case (d) does not arise for p-adic fields since every anisotropic
quadratic form of dimension 4 then has trivial discriminant.

Suppose now F is a real-closed field. Quadratic forms over F are classified by
their dimension and signature, which are related by

| sgn q| ≤ dim q and sgn q ≡ dim q mod 2.

Proposition 2.12. A quadratic form q over a real-closed field F is decomposable
if and only if dim q and sgn q have factorizations of the form

dim q = n1n2, sgn q = s1s2

with
ni ≥ 2, |si| ≤ ni and si ≡ ni mod 2 for i = 1, 2.

Proof. If q = q1q2 is a nontrivial decomposition, then

dim q = dim q1 dim q2 and sgn q = sgn q1 sgn q2

are factorizations of the required form. Conversely, given factorizations as in the
statement of the proposition, one may find quadratic forms q1, q2 over F with
dim qi = ni and sgn qi = si. The forms q and q1q2 have the same dimension and
signature, hence q = q1q2. ¤

Corollary 2.13. If a quadratic form q over a real-closed field F satisfies

dim q ≡ 0 mod 4 and disc q = 1,

then q = 〈1, 1〉 ⊗ q′ for some quadratic form q′. In particular, q is decomposable.
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Proof. Since dim q is even and disc q = 1, it follows that sgn q ≡ 0 mod 4. Therefore,
we may apply the proposition above with n1 = s1 = 2. ¤

The case of quadratic forms of dimension divisible by 4 and trivial discriminant
is particularly relevant for Shapiro’s question, see Section 3. The following result
(of which Corollary 2.13 is a special case) gives further examples where these forms
have a nontrivial decomposition.

Proposition 2.14. Suppose the field F satisfies the following properties:

• F is linked, i.e., every tensor product of quaternion F -algebras is Brauer-
equivalent to a quaternion algebra,

• every quaternion F -algebra is split by a quadratic extension K/F such that
I3K = 0.

Then every quadratic form q over F such that dim q ≡ 0 mod 4 and disc q = 1
decomposes as q = 〈1, a〉 ⊗ q′ for some a ∈ F× and some quadratic form q′. If F
is formally real, the element a may be chosen to be totally positive, i.e., a >P 0 for
every ordering P of F .

Proof. Since F is linked, the Clifford invariant c(q) is Brauer-equivalent to a quater-
nion F -algebra. Let K/F be a quadratic extension with I3K = 0 which splits c(q).
As was shown by Elman and Lam [3, Theorem 3.11], quadratic forms over K are
classified by their dimension, discriminant and Clifford invariant, hence q splits over
K. If K = F (

√
d), Lemma 2.3 yields

qa = 〈1,−d〉 ⊗ q0

for some quadratic form q0. Since disc q = disc qa = 1, it follows that dim q0 is
even, hence dim qa ≡ 0 mod 4. Therefore, the Witt index iW (q) is even. Letting
iW (q) = 2m, we have

q = qa ⊥ 2m〈1,−1〉 = 〈1,−d〉 ⊗ (q0 ⊥ m〈1,−1〉).
We obtain the required factorization with a = −d and q′ = q0 ⊥ m〈1,−1〉. Note
that the condition I3K = 0 implies K is not formally real, hence d <P 0 for every
ordering P of F (if any). ¤

Recall that the virtual cohomological 2-dimension of a field F is the cohomo-
logical 2-dimension of F (

√
−1). Fields with virtual cohomological 2-dimension at

most 1 satisfy the conditions in Proposition 2.14 since I2F (
√
−1) = 0.

To obtain further examples, we use the Effective Diagonalization Property (ED),
which was characterized in various ways by Prestel and Ware [9]. For instance, a
field F is ED if and only if for every valuation v with formally real residue field
F , the group 2v(F×) has index at most 2 in v(F×), and F is euclidean when
2v(F×) 6= v(F×). This readily shows that number fields are ED.

Lemma 2.15. Every quaternion division algebra over an ED field F is split by a
non-formally real quadratic extension of F .

Proof. Let Q = (a, b)F be a quaternion division F -algebra. Since F is ED, Theo-
rem 2 of [9] shows that the form 〈1, a, b,−ab〉 is almost isotropic, which means that
for every diagonalization 〈1, a, b,−ab〉 ≃ 〈c1, c2, c3, c4〉, there is an integer n such
that n〈c1〉 ⊥ 〈c2, c3, c4〉 is isotropic. In particular, there is an integer n such that
n〈1〉 ⊥ 〈a, b,−ab〉 is isotropic, hence 〈a, b,−ab〉 represents an element u ∈ F× such
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that −u is a sum of squares. The algebra Q is then split by F (
√

u), which is a
non-formally real quadratic extension of F . ¤

Corollary 2.16. If a quadratic form q over a global field F satisfies

dim q ≡ 0 mod 4 and disc q = 1,

then q = 〈1, a〉 ⊗ q′ for some totally positive a ∈ F× and some quadratic form q′.
In particular, q is decomposable.

Proof. Global fields are linked and ED, and non-formally real global fields K satisfy
I3K = 0. Therefore, the corollary follows from Proposition 2.14 and Lemma 2.15.

¤

3. Decomposable adjoint involutions

Let q be a quadratic form on an F -vector space V and let adq be the adjoint
involution on EndF V . In this section, we consider decompositions of algebras with
involution

(3) (EndF V, adq) ≃ (A1, σ1) ⊗F (A2, σ2)

where A1, A2 are central simple F -algebras and σ1, σ2 are involutions on A1 and A2

respectively. Since EndF V represents the trivial element in the Brauer group of F ,
the Brauer classes of A1 and A2 are opposite. However, σ1 yields an isomorphism
between A1 and its opposite algebra, hence A1 and A2 are also Brauer-equivalent.
Since adq is an orthogonal involution, the involutions σ1 and σ2 must be both
orthogonal or both symplectic, by [12, Proposition 6.9] or [5, (2.23)].

In [12, p. 201], Shapiro asks whether a nontrivial decomposition as in (3) implies
that q is decomposable.

3.1. Positive results on Shapiro’s question. The case where A1 and A2 are
split and σ1, σ2 are orthogonal is discussed in Shapiro’s book [12]:

Proposition 3.1. Let q, q1, q2 be quadratic forms on F -vector spaces V , V1, V2.
The following statements are equivalent:

(a) (EndF V, adq) ≃ (EndF V1, adq1
) ⊗F (EndF V2, adq2

);
(b) there exists λ ∈ F× such that q ≃ 〈λ〉q1q2.

Proof. See [12, Corollary 6.10, p. 112]. ¤

Corollary 3.2. Suppose that one of the algebras A1, A2 in (3) is split. Then A1

and A2 are both split and the quadratic form q is decomposable if deg A1, deg A2 > 1.
Moreover, if σ1 and σ2 are symplectic, then q is hyperbolic.

Proof. The first part is clear, since A1 and A2 are Brauer-equivalent. Let A1 =
EndF V1 and A2 = EndF V2 for some F -vector spaces V1, V2. If σ1 and σ2 are
orthogonal, then there exist quadratic forms q1 on V1 and q2 on V2 such that
σ1 = adq1

and σ2 = adq2
. By Proposition 3.1, it follows from (3) that q = 〈λ〉q1q2

for some λ ∈ F×, hence q is decomposable if dim V1, dimV2 > 1, i.e. if deg A1,
deg A2 > 1.

If σ1 and σ2 are symplectic, then they are adjoint to some skew-symmetric
bilinear forms b1 on V1 and b2 on V2. By [12, Corollary 6.10], the polar form bq of
q satisfies bq ≃ λb1 ⊗ b2 for some λ ∈ F×, hence q is hyperbolic. Since hyperbolic
forms of dimension at least 4 are decomposable, the proof is complete. ¤
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We now use results from Section 2 to derive from (3) the decomposability of q
over special fields.

Proposition 3.3. Suppose the adjoint involution adq decomposes as in (3) with
deg A1, deg A2 > 1. Then the quadratic form q is decomposable if the field F
satisfies any of the following conditions:

• the Brauer group of F is trivial;
• u(F ) ≤ 4;
• F is real-closed;
• F is a global field.

Proof. Whenever A1 and A2 are split—which is certainly the case if the Brauer
group of F is trivial—the decomposability of q follows from Corollary 3.2. We
may therefore restrict our discussion to the case where A1 and A2 are not split.
The Brauer class of A1 and A2 then has order 2, hence deg A1 and deg A2 are
even, and therefore dim q ≡ 0 mod 4. Moreover, by [12, Lemma 10.25] or [5, (7.3)],
disc q = 1. The decomposability of q follows from Corollary 2.11 if u(F ) ≤ 4, from
Corollary 2.13 if F is real-closed, and from Corollary 2.16 if F is global. ¤

The decomposability of q can also be derived from certain types of decomposi-
tions of adq:

Proposition 3.4. Suppose the adjoint involution adq decomposes as in (3) with
deg A1, deg A2 > 1. Then the quadratic form q is decomposable in each of the
following cases:

(a) A1 and A2 are Brauer-equivalent to a quaternion F -algebra Q and σ1, σ2

are symplectic;
(b) deg A1 = 2 and σ1, σ2 are orthogonal;
(c) deg A1 = 4 and σ1, σ2 are symplectic;
(d) deg A1 = 4, σ1, σ2 are orthogonal and discσ1 = 1;
(e) deg A1 = 8, σ1, σ2 are symplectic and A1 is not a division algebra;
(f) deg A1 = 8, σ1, σ2 are orthogonal, disc σ1 = 1 and one of the factors of the

Clifford algebra C(A1, σ1) is split.

Moreover, in case (a) the form q is divisible by the norm form nQ of Q, and in
case (b) it is divisible by the form 〈1,−disc σ1〉.
Proof. In case (a), we may assume Q is a division algebra, since the proposition
follows from Corollary 3.2 if A1 and A2 are split. Let γ be the conjugation involution
on Q. Since σ1 and σ2 are symplectic, it follows from [12, Proposition, p. 202] or
[1, Proposition 3.4] that there exist quadratic forms q′1, q′2 on F -vector spaces V ′

1 ,
V ′

2 such that

(A1, σ1) ≃ (Q, γ) ⊗F (EndF V ′
1 , adq′

1
), (A2, σ2) ≃ (Q, γ) ⊗F (EndF V ′

2 , adq′

2
).

On the other hand, by [5, (11.1)], we have

(Q, γ) ⊗F (Q, γ) ≃ (EndF Q, adnQ
).

Therefore, (3) implies

(EndF V, adq) ≃ (EndF Q, adnQ
) ⊗F (EndF V ′

1 , adq′

1
) ⊗F (EndF V ′

2 , adq′

2
).

It follows by [12, Corollary 6.10] that q ≃ 〈λ〉nQq′1q
′
2 for some λ ∈ F×, hence q is

decomposable if dimV ′
1 or dimV ′

2 is at least 2. If dimV ′
1 = dimV ′

2 = 1, then q is a
multiple of nQ hence it is decomposable by Proposition 2.8.
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In case (b), the quaternion algebra with involution (A1, σ1) becomes hyper-
bolic over F (

√
disc σ1), hence q also becomes hyperbolic over this extension. By

Lemma 2.3, there exists a quadratic form q′ such that

qa ≃ 〈1,−disc σ1〉 ⊗ q′.

Since disc q = 1 by [12, Lemma 10.25] or [5, (7.3)], the dimension of q′ is even.
Therefore, the Witt index iW (q) is even. Letting iW (q) = 2m, we have

q = qa ⊥ 2m〈1,−1〉 ≃ 〈1,−disc σ1〉 ⊗ (q′ ⊥ m〈1,−1〉).
Cases (c)—(f) reduce to (a) or (b) since in each case there is a decomposition of
the form

(A1, σ1) ≃ (Q,σ) ⊗F (A′, σ′)

for some quaternion F -algebra Q: see [12, Proposition 10.21] for case (c), [12,
Proposition 10.26] for case (d), [2, Theorem 7] for case (e) and [5, (42.11)] for
case (f). ¤

3.2. Negative results on Shapiro’s question. For any central simple algebra
with orthogonal or symplectic involution (A, σ) over a field F , the involution trace
form Tσ : A → F is defined by

Tσ = TrdA(σ(x)x),

where TrdA is the reduced trace. By [5, (11.1)], the map σ∗ : A ⊗F A → EndF A
defined by σ∗(a ⊗ b)(x) = axσ(b) for a, b, x ∈ A carries the involution σ ⊗ σ on
A ⊗F A to the adjoint involution of Tσ, so

(EndF A, adTσ
) ≃ (A, σ) ⊗ (A, σ).

Therefore, adTσ
is decomposable if deg A > 1. However, we show in this subsection

that the quadratic form Tσ is indecomposable for certain orthogonal involutions
σ on central simple algebras A of degree deg A ≡ 2 mod 4, providing a negative
solution to Shapiro’s question.

Remark. If the base field F is a global field (or a real-closed field, or satisfies
u(F ) ≤ 4), Proposition 3.3 shows that the form Tσ is decomposable when deg A > 1,
since its adjoint involution is decomposable.

We start our construction of examples where Tσ is indecomposable with a lemma
from elementary number theory.

Lemma 3.5. Suppose m, k, l, r, s ≥ 1 are integers such that

m2 = kl, (m − 1)2 = rs,(4)

k ≥ r ≥ 1, l ≥ s ≥ 1.(5)

If m ≡ s ≡ 1 mod 2, then l = 1.

Proof. The hypotheses show that l is odd. Let k − r = a and l − s = 2b. By (5),
we have k > a ≥ 0 and l > 2b ≥ 0, hence, by the first equation in (4),

(6) m2 > 2ab ≥ 0.

By definition of a and b,

2ab = (k − r)(l − s) = (k − r)l + k(l − s) + rs − kl,

hence, by (4),
2ab = al + 2bk + (m − 1)2 − m2.
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It follows that
al + 2bk = 2m − 1 + 2ab,

hence, using the first equation in (4),

(al − 2bk)2 = (al + 2bk)2 − 8abkl = (2m − 1 + 2ab)2 − 8abm2.

This equation shows that

(2m − 1 + 2ab)2 ≥ 8abm2,

hence

(7) (2ab − 1)(2ab − 1 + 4m − 4m2) ≥ 0.

By (6) we have

2ab − 1 + 4m − 4m2 < 4m − 1 − 3m2,

and the right side is easily seen to be nonpositive for all m ≥ 1. Therefore, (7)
yields 2ab ≤ 1, hence a = 0 or b = 0 since a and b are nonnegative integers. If
a = 0, then (4) yields

m2 = kl and (m − 1)2 = ks.

Since m2 and (m − 1)2 are relatively prime, it follows that k = 1, hence s =
(m − 1)2 ≡ 0 mod 2, a contradiction. Therefore, b = 0 and (4) implies l = 1 since
m2 and (m − 1)2 are relatively prime. ¤

Theorem 3.6. Let Q be a quaternion algebra over a field F and let m be an odd
integer. If an orthogonal involution σ on the matrix algebra Mm(Q) satisfies the
following conditions:

(a) the biquaternion algebra Q ⊗F (disc σ,−1)F is division,
(b) there is an ordering P on F such that sgnP Tσ = 4(m − 1)2,

then Tσ is an indecomposable form.

Proof. Suppose Tσ = q1q2 for some quadratic forms q1, q2. We use condition (a) to
show that dim q1 and dim q2 cannot be both even, and condition (b) to show that
the decomposition is trivial if one of dim q1, dim q2 is odd.

Suppose first dim q1 ≡ dim q2 ≡ 0 mod 2. By Lemma 2.1, the Clifford invariant
c(q1q2) has index at most 2. On the other hand, the Hasse invariant of Tσ was
computed by Lewis in [6] and Quéguiner in [10]. From their computation, and from
the relations between the Hasse and the Clifford invariant (see [11, p. 81]), it follows
that c(Tσ) is represented by the biquaternion algebra Q⊗F (disc σ,−1)F , which has
index 4 if condition (a) holds. Therefore, this case leads to a contradiction.

Suppose next that dim q2 is odd. Since dimTσ = 4m2, the dimension of q1 is a
multiple of 4. Let dim q1 = 4k and dim q2 = l, so

m2 = kl, k, l,m ≥ 1 and m ≡ 1 mod 2.

Comparing signatures at P , we also have

sgnP Tσ = 4(m − 1)2 = sgnP q1 sgnP q2,

with sgnP q1 ≡ dim q1 ≡ 0 mod 2 and sgnP q2 ≡ dim q2 ≡ 1 mod 2. Therefore,
sgnP q1 is a multiple of 4. Letting | sgnP q1| = 4r and | sgnP q2| = s, we have

(m − 1)2 = rs, r, s ≥ 1 and s ≡ 1 mod 2.

Lemma 3.5 shows that l = 1, so the decomposition Tσ = q1q2 is trivial. ¤
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Let be the conjugation involution on a quaternion division F -algebra Q. For
x ∈ Mm(Q), we define x by letting act on each entry of x, so the map x 7→ xt

is a symplectic involution on Mm(Q). To obtain orthogonal involutions, consider
diagonal matrices of pure quaternions

∆ = diag(α1, . . . , αm)

with αi = −αi 6= 0 for i = 1, . . . , m, and define σ∆ : Mm(Q) → Mm(Q) by

(8) σ∆(x) = ∆−1 · xt · ∆ for x ∈ Mm(Q).

Since ∆
t

= −∆, the map σ∆ is an orthogonal involution, see [5, (2.7)]. More-
over, since every orthogonal involution on the endomorphism algebra of a finite-
dimensional Q-vector space is adjoint to some skew-hermitian form with respect
to (see [5, (4.2)]), every orthogonal involution on Mm(Q) is conjugate to an
involution σ∆ for some ∆ as above.

Proposition 3.7. The discriminant of σ∆ and the signature of Tσ∆
at an ordering

P of F are determined as follows:

(a) disc σ∆ = α2
1 . . . α2

mF×2 ∈ F×/F×2.
(b) Let FP be a real closure of F at P . If Q is not split by FP , then

sgnP Tσ∆
= 0.

If Q is split by FP , choose a pure quaternion β ∈ Q× such that β2 <P 0, let
m1 be the number of indices i such that α2

i <P 0 and TrdQ(αiβ) >P 0, and
let m2 be the number of indices i such that α2

i <P 0 and TrdQ(αiβ) <P 0;
then

sgnP Tσ∆
= 4(m1 − m2)

2.

Proof. The arguments1 in the proof of [5, (7.3)(2)] show that

disc σ∆ = (−1)m NrdMm(Q)(∆)F×2 = (−1)m NrdQ(α1) . . . NrdQ(αm)F×2.

Part (a) follows, since α2
i = −NrdQ(αi).

If Q is not split by FP , then sgnP Tσ∆
= 0 by [7, Theorem 1] (or [5, (11.11)]).

For the rest of the proof, suppose Q is split by FP . For x = (xij)1≤i,j≤m ∈ Mm(Q)
we have σ∆(x) = (x′

ij)1≤i,j≤m where

x′
ij = α−1

i xjiαj .

Therefore,

Tσ∆
(x) =

m
∑

i,j=1

TrdQ(α−1
i xjiαjxji).

Letting Tij : Q → F denote the quadratic form

Tij(x) = TrdQ(α−1
i xαjx),

we thus have

Tσ∆
=

⊥
⊕

1≤i,j≤m

Tij ,

1There is a misprint in the statement of [5, Proposition (7.3)(2)]: the formula given there yields
det(Int(u) ◦ σ) instead of disc(Int(u) ◦ σ).
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hence

sgnP Tσ∆
=

m
∑

i,j=1

sgnP Tij .

If αi and αj anticommute, then 1 and αi span a totally isotropic subspace of Q for
Tij , so Tij is hyperbolic and sgnP Tij = 0. Note that in this case we have either
α2

i >P 0 or α2
j >P 0 since Q splits over FP . If αi and αj do not anticommute,

pick a nonzero quaternion α′ which anticommutes with αi. Computation shows
that (1, αi, αjα

′, αjαiα
′) is an orthogonal basis of Q for Tij , and that Tij has the

following diagonalization in this basis:

Tij = 〈T (α−1
i αj)〉〈1,−α2

i ,−α2
jα

′2, α2
i α

2
jα

′2〉.
Note that α′2 >P 0 if α2

i <P 0 since Q splits over FP . It follows that sgnP Tij = 0
unless α2

i <P 0 and α2
j <P 0; in this case, sgnP Tij = ±4. Therefore, letting

tij =











0 if α2
i >P 0 or α2

j >P 0,

1 if α2
i <P 0, α2

j <P 0 and TrdQ(α−1
i αj) >P 0,

−1 if α2
i <P 0, α2

j <P 0 and TrdQ(α−1
i αj) <P 0,

we have

sgnP Tσ∆
= 4

m
∑

i,j=1

tij .

Now, let β ∈ Q× be a pure quaternion such that β2 <P 0. If a pure quaternion
α ∈ Q satisfies TrdQ(αβ) = 0, then β anticommutes with α, hence α2 >P 0 since
Q splits over FP . For i = 1, . . . , m, let

si =











0 if α2
i >P 0,

1 if α2
i <P 0 and TrdQ(αiβ) >P 0,

−1 if α2
i <P 0 and TrdQ(αiβ) <P 0,

so that
m

∑

i=1

si = m1 − m2.

To complete the proof, we have to show
m

∑

i,j=1

tij =
(

m
∑

i=1

si

)2

.

It clearly suffices to prove tij = sisj for i, j = 1, . . . , m, which amounts to

showing that if α2
i <P 0 and α2

j <P 0, then TrdQ(α−1
i αj) >P 0 if and only

if TrdQ(αiβ) and TrdQ(αjβ) have the same sign. Since α2
i = −NrdQ(αi) and

TrdQ(αiαj) = α2
i TrdQ(α−1

i αj), it is equivalent to show that if NrdQ(αi) >P 0 and
NrdQ(αj) >P 0, then

TrdQ(αiβ)TrdQ(αjβ)TrdQ(αiαj) <P 0.

To check this statement, we may extend scalars to a real closure of F at P . We may
therefore substitute for Q a matrix algebra over a real-closed field. The following
lemma completes the proof:

Lemma 3.8. Let K be an ordered field and let α, α′, β ∈ M2(K) be matrices with
trace zero. If det α, det α′, det β > 0, then tr(αα′) tr(αβ) tr(α′β) < 0.
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Proof. Since tr(α) = tr(β) = 0,

tr(αβ) = αβ + βα.

Therefore, letting α0 = α − βαβ−1, we have

(9) 2α = tr(αβ)β−1 + α0 and tr(α0β
−1) = 0.

The condition detα > 0 then yields

(10) tr(αβ)2 det β−1 + detα0 > 0.

Similarly, letting α′
0 = α′ − βα′β−1,

(11) 2α′ = tr(α′β)β−1 + α′
0, tr(α′

0β
−1) = 0,

and

(12) tr(α′β)2 det β−1 + detα′
0 > 0.

By (9) and (11),

4 tr(αα′) = tr(α0α
′
0) + tr(αβ) tr(α′β) tr(β−2).

Since tr(β) = 0, we have β2 = −det β, hence the preceding equation, together with
(10) and (12), yields

4 tr(αα′) tr(αβ) tr(α′β) = tr(α0α
′
0) tr(αβ) tr(α′β) − 2 tr(αβ)2 tr(α′β)2 det β−1

< tr(α0α
′
0) tr(αβ) tr(α′β) + tr(αβ)2 det α′

0

+ tr(α′β)2 det α0.

Since tr(α0) = tr(α′
0) = 0, the right side of the last inequality is

det(tr(αβ)α′
0 − tr(α′β)α0).

To conclude the proof, it suffices to observe that the determinant of any matrix
which anticommutes with β is negative, otherwise M2(K) would be generated by
two anticommuting matrices with negative square, i.e. (−1,−1)K ≃ M2(K). ¤

Remark. It follows from [7, Theorem 1] that the signature of the involution trace
form Tσ is a square for any orthogonal or symplectic involution σ on a central simple
algebra A. In the terminology of [7] (see also [5, (11.10)]), Proposition 3.7(b) states
that if Q is split by FP , then

sgnP σ∆ = |m1 − m2|.
We proceed to give examples satisfying the hypotheses of Theorem 3.6, for any

odd integer m ≥ 3.
Let F0 be an arbitrary ordered field and let F = F0(x, y), the field of rational

fractions in two indeterminates over F0. The following classical construction (see
[8, p. 75]) extends the ordering on F0 to an ordering P on F such that x <P 0 and
0 <P y <P 1: consider the (x, y)-adic valuation on F defined on F0[x, y] \ {0} by

v
(

∑

i,j

aijx
iyj

)

= min{(i, j) | aij 6= 0},

where the minimum is for the lexicographic order on Z
2. If f ∈ F× satisfies v(f) =

(m,n), then v((−x)−my−nf) = 0 and we may consider the residue (−x)−my−nf ∈
F0. Set

(13) f >P 0 if and only if (−x)−my−nf > 0 in F0.
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Then −x >P 0, y >P 0 and 1 − y >P 0, so x <P 0 and 0 <P y <P 1.
Consider the quaternion F -algebra Q = (x, y)F . For any odd integer m ≥ 3,

consider the following pure quaternions in Q:

α1 = i + k, α2 = j, α3 = · · · = αm = i,

and let σ∆ be the involution on Mm(Q) defined as in (8). Since y >P 0, the
algebra Q is split by any real closure of F at P . To compute sgnP Tσ∆

, we use
Proposition 3.7 with β = i. Since

α2
1 = x(1 − y) <P 0, α2

2 = y >P 0 and TrdQ(i(i + k)) = TrdQ(i2) = 2x <P 0,

we have, in the notation of Proposition 3.7, m1 = 0 and m2 = m − 1, so

sgnP Tσ∆
= 4(m − 1)2.

By Proposition 3.7, we also have

disc σ∆ = α2
1 . . . α2

mF×2 = (x − xy)yxm−2F×2 = (1 − y)yF×2.

To see that the hypotheses of Theorem 3.6 hold, it remains to prove that the tensor
product

(x, y)F ⊗F (y(1 − y),−1)F

is a division algebra, or, equivalently by a theorem of Albert (see [5, (16.5)]), that
an associated Albert form such as

q = 〈x, y,−xy, y(y − 1), y(y − 1), 1〉
is anisotropic. Since

q = 〈1, y, y(y − 1), y(y − 1)〉 ⊥ 〈x〉〈1,−y〉,
a degree argument (see for instance [4, Lemma 1.4(i)]) shows that q is isotropic over
F if and only if one of the forms 〈1, y, y(y − 1), y(y − 1)〉, 〈1,−y〉 is isotropic over
F0(y). The latter is clearly anisotropic since y /∈ F0(y)×2. Using the (y − 1)-adic
valuation on F0(y), one may construct as above (see (13)) an ordering P0 on F0(y)
such that y >P0

1. Then

sgnP0
〈1, y, y(y − 1), y(y − 1)〉 = 4,

so 〈1, y, y(y − 1), y(y − 1)〉 is anisotropic over F0(y).
Thus, Theorem 3.6 shows that the quadratic form Tσ∆

is indecomposable, even
though its adjoint involution is decomposable, as it is isomorphic to σ∆ ⊗ σ∆.
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