
Hermitian forms and the u-invariantM. G. MahmoudiDeember 2004AbstratWe study the notion of hermitian u-invariant. We give some estimatesof the u-invariant of a division algebra with involution in terms of the
u-invariant of some subalgebras stable under the involution. We also �ndsome �niteness results for omparing the u-invariant of a division algebrawith involution and that of its entre. Some results about the values ofthis invariant are also given. A desription of the Tits index of some al-gebrai groups of lassial type over Qp(t), p 6= 2 is given as an appliation.Mathematis Subjet Classi�ation (2000): 11E39, 11E81, 11E571 IntrodutionThe u-invariant is one of the most interesting invariants in the algebrai theory ofquadrati forms. This invariant was introdued by Kaplansky over non formallyreal �elds and by Elman and Lam [2℄ over formally real �elds. (In this work wealways assume that harateristi 6= 2).Determination of this invariant for a given �eld, has been of great importanein the literature. For a wide lass of �elds, the values of this invariant are notknown and sometimes it is not lear if the u-invariant of suh �elds is �nite.Obtaining lower and upper bounds for this invariant and omparing the u-invariant of a given �eld K with the u-invariant of its sub�elds or the �eldsontaining K are good approahes to the problem.Systems of quadrati forms and exat sequenes of Witt groups are twopowerful tools used in the literature to obtain good lower and upper boundsfor the u-invariant. For example, systems of quadrati forms have been used in[8℄ by Leep to obtain the bound u(L) 6

n+1
2

u(K) for a �eld extension L/K ofdegree n.Using exat sequenes of Witt groups is however less ommon than usingsystems of quadrati forms, but one an mention an exat triangle of Wittgroups used by Elman and Lam (f. [2℄, [3℄) to ompare the u-invariant of a�eld with the u-invariant of a quadrati extension of this �eld.In this work, we try to adapt these tools in the ontext of hermitian formsover a division algebra with involution. To our best knowledge, the notion ofthe u-invariant of a division algebra with involution appears, for the �rst time,1



in P�ster's paper [13℄ in onnetion with systems of quadrati forms over aformally real �eld and with exeption of [13℄, this notion has not been furtherstudied in the literature.Our initial motivation for studying this notion was to desribe the Tits indexof some lassial groups over Qp(t), p 6= 2 for whih we would have need toobtain some information about the maximal dimension of anisotropi hermitianforms over some division algebras with involution over Qp(t), p 6= 2. The resultsonerning Tits indies are given in the last setion of this paper as appliationsof our main results. We later ome bak to this subjet.Let D be a division algebra with an involution σ and let ε be an elementof the entre of D with σ(ε)ε = 1. The u-invariant with respet to ε, is byde�nition the supremum over the dimension of anisotropi ε-hermitian formsover (D,σ). This number is denoted by u(D,σ, ε) (value ∞ is admitted also).Let E be a subdivision algebra of D stable under σ. We are interested in thefollowing questions:Question 1.1. (Going up)Under whih onditions does the �niteness of u(E, σ|E , ε) imply that of
u(D,σ, ε) and an one obtain an upper bound for u(D,σ, ε) in terms of u(E, σ|E , ε)?Question 1.2. (Going down)Under whih onditions does the �niteness of u(D,σ, ε) imply that of u(E, σ|E , ε)and an one obtain a lower bound for u(D,σ, ε) in terms of u(E, σ|E , ε)?A substantial part of this work is devoted to these questions. In ertainsituations, we are able to give preise answers. We will espeially deal with thefollowing ases:

• D/E is a quadrati extension of �elds (f. Remark 3.5, Proposition 5.1,Proposition 5.10).
• D is a quaternion algebra and E is a maximal sub�eld of D (f. Corol-lary 3.4, Remark 3.5, Corollary 5.8).
• more generally if there exist two invertible elements λ and µ in D suhthat λµ = −µλ, σ(λ) = −λ, σ(µ) = −µ and K(λ) is a quadrati extensionof K where K is the entre of D. Let E be the entralizer of K(λ) in D(f. Proposition 3.1, Remark 3.2, Proposition 5.7).
• E is the �xed �eld of the restrition of σ to the entre of D (f. Proposi-tion 3.6).
• D is the tensor produt E ⊗k L where k is the �xed �eld of σ|K , K isthe entre of D and L/k is a �eld extension (f. Proposition 3.8, Propo-sition 3.10, Remark 3.11). 2



In partiular the Question 1.1 has an a�rmative answer when E is the �xed�eld of σ|K where K is the entre of D. By ontrast, the �niteness of u(D,σ, ε)does not imply, in general, that of u(k), for example if D = (−1,−1)R is thealgebra of Hamiltonian quaternions and σ is its anonial involution we have
u(D,σ,−1) = 1 and u(R) = ∞. In fat we prove that if dimK D is a powerof 2, and if both u(D,σ, ε) and u(D,σ,−ε) are �nite then u(K,σ|K) < ∞ (f.Theorem 6.2). In partiular if σ is of the �rst kind, then u(K) is �nite if andonly if u(D,σ, 1) and u(D,σ,−1) are �nite.The prinipal ideas to prove these results are to use some exat sequenes ofWitt groups, mainly the exat sequene of Milnor-Husemoller [19, Ch.10, 1.2℄,Lewis [9℄ and Parimala-Sridharan-Suresh [1, Appendix 2℄ and to use the resultsof Leep [8℄ and P�ster [13℄ on systems of quadrati and hermitian forms. We alsouse a variation of the exat sequene of Parimala-Sridharan-Suresh disussed in[4℄. On one oasion, we need to ompare the hermitian u-invariant of a �eldwith that of some of its sub�elds. We do this by using an exat sequene ofWitt groups of biquadrati extensions. We present this exat sequene in �4,(see Theorem 4.3). This exat sequene may be regarded as a partiular ase ofa general exat sequene of L-groups and projetive Witt groups due to Raniki,see [16℄ and [17, p.242℄.Another natural question is to ask about possible values for the u-invariantfor some partiular type of division algebra with involution. We onsider thease of a quadrati extension L/K together with the nontrivial automorphism
¯ and we prove that u(L, )̄ 6= 3, 5, 7 (f. Proposition 7.3).This result is a hermitian analogue of a lassial theorem in the theory ofquadrati forms whih states that the u-invariant annot be equal to 3, 5 and 7(f. [19, Ch.2, 16.2℄). Our proof is of ourse similar to the proof of this theorem.One ould also de�ne the notion of u-invariant for entral simple algebraswith involution. But thanks to Morita theory, the problem an be translated todivision algebras with involution, so we are only interested in this situation.As David Lewis pointed out to me, one an also de�ne the notion of the
u-invariant for G-equivariant forms, i.e., the forms stable under the ation of a�nite group G and with the same ideas one an obtain some results that aresimilar to those stated here.Patrik Morandi pointed out to me that by using a version of a theorem ofSpringer for hermitian forms obtained by Larmour [7℄, one an alulate the
u-invariant of a valued division algebra over a henselian valued �eld, in termsof the u-invariant of its residue division algebra.Finally in setion �8, we give some appliations of these results to desribethe Tits index of some lassial groups over Qp(t) with p 6= 2. We reall thataording to a generalized Witt deomposition theorem ([21℄), semisimple alge-brai groups de�ned over an arbitrary �eld K are determined up to isomorphismby their Ksep lass, their anisotropi kernel and their Tits index, see Tits [21℄or Springer [20, Ch. 17℄ for these notions. Desribing the Tits index is thereforeimportant. For the groups of lassial type, these indies an be desribed interms of algebras with involution. For �nite �elds, the �eld of real numbers,3



number �elds and p-adi �elds, all possible indies are known (see [21℄). We tryto desribe these indies over Qp(t), p 6= 2 (f. �8).In onsequene of the results due to Saltman [18℄ on the struture of thegroup Br2(Qp(t)), the only division algebras over Qp(t) with an involution ofthe �rst kind are split ones, quaternions and biquaternions. For split ase, bya result due to Parimala and Suresh [12℄ we have 8 6 u(Qp(t)) 6 10 (an earlierresult due to Ho�mann and Van Geel [5℄ states that 8 6 u(Qp(t)) 6 22). Byusing these results and by examining anisotropi hermitian and skew hermitianforms over quaternion algebras and biquaternions algebras over Qp(t) we obtainsome information about possible indies.2 The u-invariant of a division algebra with in-volutionLet K be a �eld of harateristi di�erent from 2. For a division algebra D over
K, a K/k-involution σ on D is an involution where k is the �xed �eld of σ|K .Let us denote by Sε(D,σ) the semigroup of isometry lasses of ε-hermitianforms over (D,σ) and by W ε(D,σ) the Witt group of ε-hermitian forms over
(D,σ).We refer to [19℄ and [6℄ for basi notions about quadrati and hermitianforms and algebras with involution.Every division algebra over a �eld K onsidered in this paper is impliitlyassumed to be K-entral.Let D be a division algebra over a �eld K with an involution σ. Let ε ∈ Kwith εσ(ε) = 1. A system h = (h1, · · · , hr) : V × V → Dr of r, ε-hermitianforms over a right D-vetor spae V is alled anisotropi if x ∈ V , h(x, x) = 0implies that x = 0.We onsider the u-invariant in the sense of Kaplansky:De�nition 2.1. ([14, Ch. 9, De�nition 2.4℄)

ur(D,σ, ε) = sup{dimD V ; there exists an anisotropi ε-hermitian map
h : V × V → Dr}Let us simplify the notation by writing u(D,σ, ε) instead of u1(D,σ, ε) andby u(D,σ) instead of u(D,σ, 1).We reall that aording to a result due to Leep [8℄, the system u-invariant

ur = u(k) satis�es ur 6 r u1 +ur−1 and ur 6
r(r+1)

2
u1 . This result has beengeneralized by P�ster [13℄ to the system u-invariant of ε-hermitian forms overa division algebra with involution and also over skew �elds with involution notneessarily �nite-dimensional over their entres.As a �rst observation, we have:Proposition 2.2. Let D be a division algebra over a �eld K. Let σ and τ betwo involutions on D with the same restrition to K: σ|K = τ |K . Let ε ∈ Kwith εσ(ε) = 1. 4



(1) If σ and τ are of the seond kind and ε′ ∈ K with ε′τ(ε′) = 1 then
u(D,σ, ε) and u(D, τ, ε′) do not depend on the hoie of ε and ε′; moreover
u(D,σ, ε) = u(D, τ, ε′).(2) If σ and τ are of the �rst kind then we have: u(D,σ, ε) = u(D, τ, ε) if σand τ have the same type, otherwise we have u(D,σ, ε) = u(D, τ,−ε).Proof. For (1), there exists an element b ∈ D∗ suh that σ = Int(b) ◦ τ . Wehave bτ(b)−1 = λ ∈ K∗. We obtain then λτ(λ) = 1. Let λ′ = λ−1ε′ε−1. Wehave λ′τ(λ′) = 1. It follows from Hilbert 90 that there exists µ ∈ K∗ suh that

µτ(µ−1) = λ′.If we take c = µb, then σ = Int(b) ◦ τ = Int(c) ◦ τ . Now the orrespondene
ϕ 7→ c−1ϕ gives a bijetion between the semigroups Sε(D,σ) and Sε′

(D, τ).This bijetion preserves isometry, orthogonal sum and dimension. So we on-lude that u(D,σ, ε) = u(D, τ, ε′).For (2), we use the same argument. There exists b ∈ D∗ suh that σ =
Int (b) ◦ τ . We have λ := bτ(b)−1 ∈ K∗. Moreover λ = 1 if σ and τ are of thesame type and λ = −1 if σ and τ are of di�erent type. The orrespondene
ϕ 7→ b−1ϕ from Sε(D,σ) to Sλε(D, τ) gives u(D,σ, ε) = u(D, τ, λε).Remark 2.3. As pointed out to me by the Referee, the preeding propositionatually says that for a given division algebra D, there are three possible u-invariants, let us say a unitary, an orthogonal and a sympleti one; namely forany σ and ε, the u-invariant of (D,σ, ε) oinides with one of them, dependingon the type of σ and the value of ε. Note that for unitary ase, the preedingproposition states that for a given D, u(D,σ, ε) depends only to the restritionof σ to the entre of D. This leads us to introdue the notation u+(D) forthe orthogonal u-invariant, u−(D) for the sympleti u-invariant (this was alsosuggested to me by Karim Beher). In this way, if τ1 is a sympleti involutionand τ2 is an orthogonal involution on D we have u+(D) = u(D, τ1,−1) =
u(D, τ2, 1) and u−(D) = u(D, τ1, 1) = u(D, τ2,−1). This point of view mightlead to some simpli�ation in the presentation of some parts of this paper, f.for instane Corollary 3.4 and Proposition 3.6 or Theorem 6.2.3 Going up resultsLet D be a division algebra over a �eld K with an involution σ. We supposethat there exist two invertible elements λ and µ in D suh that λµ = −µλ,
σ(λ) = −λ, σ(µ) = −µ and K(λ) is a quadrati extension of K.Let D̃ be the entralizer of L = K(λ) in D. Aording to [1, Appendix 2℄,we have µD̃µ−1 = D̃, µ2 ∈ D̃, µ2 ∈ D̃ and D = D̃ ⊕ µD̃. On D̃ we have twonatural involutions σ1 = σ|D and σ2 = Int(µ−1)◦σ1. We have deg D̃ = 1

2 deg D.The involution σ1 is always of the seond kind. The involution σ2 is of the samekind as σ but of di�erent type if σ is of the �rst kind. See [1, �3.1℄ for moredetails. 5



Let πi : D → D̃ be the L-linear projetions π1(α+µβ) = α and π2(α+µβ) =
β. If h : V × V → D is a ε-hermitian spae over (D,σ), then hi : V × V →
D̃ is de�ned by hi(x, y) = πi(h(x, y)). It is easily veri�ed that h1 is an ε-hermitian spae over (D̃, σ1) and h2 is an −ε-hermitian spae over (D̃, σ2). See[1, Appendix 2℄ for more details.We prove the following proposition whih plays an important role in thispaper.Proposition 3.1. Let D be a division algebra over a �eld K with a K/k-involution σ. Suppose that there exist λ, µ ∈ D∗ suh that σ(λ) = −λ,
σ(µ) = −µ, λµ = −µλ and L = K(λ) is a quadrati extension of K. Let
D̃ be the entralizer of L in D, σ1 = σ| eD and σ2 = Int(µ−1) ◦ σ1 and ε ∈ Kwith εσ(ε) = 1. Then we have:

u(D,σ, ε) 6
1

2
u(D̃, σ2,−ε) + u(D̃, σ1, ε).Proof. Let π1 and π2 be the projetions from D to D̃ indued by the de-omposition D = D̃ ⊕ µD̃, i.e, πi(d1 + µd2) = di, for i = 1, 2. Let (V, h) bea nondegenerate ε-hermitian spae over (D,σ) and h1 = π1h, h2 = π2h. Wehave dim eD(h1) = dim eD(h2) = 2 dimD(h). If dim eD(h2) > u(D̃, σ2,−ε) + 2m − 1for some positive integer m > 1, then h2 ontains an orthogonal sum of mhyperboli planes. Consequently h2 is totally isotropi over a D̃-vetor sub-spae W of V of dimension m. If moreover m > u(D̃, σ1, ε) + 1 then h1 isisotropi over W . In this way, in order that h be isotropi, it is su�ient tohave 2n = dim eD(h2) > u(D̃, σ2,−ε) + 2 u(D̃, σ1, ε) + 1. This is equivalent to

u(D,σ, ε) 6
1
2

u(D̃, σ2,−ε) + u(D̃, σ1, ε).Remark 3.2. In the proof of the previous proposition, one may interhangethe role of h1 et h2, in this way we obtain:
u(D,σ, ε) 6 u(D̃, σ2,−ε) +

1

2
u(D̃, σ1, ε).Remark 3.3. One may also give an alternative proof of the previous resultby using an exat sequene of Parimala-Sridharan-Suresh. See the proof ofProposition 5.7 whih uses this idea.Corollary 3.4. Let Q = (a, b)K be a quaternion division algebra over a �eld

K. Let ¯ be the anonial involution of Q and ˆ an orthogonal involution of Qand let L = K(
√

a) ⊂ Q whih is stable under ,̄ then we have:
u(Q, )̂ = u(Q, ,̄−1) 6 min{ 1

2
u(L) + u(L, )̄,u(L) + 1

2
u(L, )̄},

u(Q, )̄ = u(Q, ,̂−1) 6
1
2

u(L, )̄.Remark 3.5. Let L/K be a quadrati extension and let ¯ be its nontrivial au-tomorphism. We have the bound u(L, )̄ 6
1
2
u(K) beause to every anisotropihermitian form over (L, )̄ of dimension n, one an assoiate an anisotropi6



quadrati form over K of dimension 2n. In the same way, if Q is a quaternionalgebra over a �eld K with the anonial involution ,̄ we have u(Q, )̄ 6
1
4

u(K).See also Proposition 3.6 whih states a more general result.Proposition 3.6. Let D be a division algebra of degree m over its entre Kwith a K/k-involution σ and let ε ∈ K with εσ(ε) = 1. Then :
u(D,σ, ε) 6

r(r + 1)

2m2[K : k]
u(k) (1)where r is the dimension of k-vetor spae of ε-hermitian elements of D. Inpartiular, if u(k) is �nite then so is u(D,σ, ε).Proof. Let (V, h) be an anisotropi ε-hermitian spae over (D,σ) of dimension

n. Take Dε the k-vetor spae of ε-hermitian elements of D, in other words:
Dε = {x ∈ D : σ(x) = εx}.It is well known that D = D+1⊕D−1 and dimk(D+1) = dimk(D−1) = m2 when

σ is of the seond kind and dimk(D+1) = 1
2m(m + 1) or 1

2m(m − 1) when σ isof the �rst kind. Let {e1, · · · , er} be a k-basis of Dε and {f1, · · · , fs} a k-basisof D−ε. One an write h in the form:
h(x, y) = ϕ1(x, y)e1 + · · · + ϕr(x, y)er

+ ψ1(x, y)f1 + · · · + ψs(x, y)fswhere ϕ1, · · · , ϕr are symmetri bilinear forms and ψ1, · · · , ψs are skew sym-metri bilinear forms over k (the forms ϕi (1 6 i 6 r) and ψi (1 6 i 6 s) arepossibly degenerate). So ψi(x, x) = 0 for all x ∈ V . We dedue that
h(x, x) = ϕ1(x, x)e1 + · · · + ϕr(x, x)er.As h is anisotropi, ϕ1, · · · , ϕr have no ommon isotropi vetor. Now by usinga result due to Leep (f. [14, Ch 9, 2.1℄ or [19, Ch.2, 16.5℄) we obtain:

m2[K : k]n = dimk(V ) 6 ur(k) 6
r(r + 1)

2
u(k).Therefore n 6

r(r+1)
2m2[K:k]

u(k) whih implies the laimed inequality (1).Remark 3.7. The previous result is a �niteness statement. For many situa-tions, one may have better estimates for u(D,σ, ε). For example for quadratiextensions and quaternion algebras, see Proposition 3.1, Remark 3.2, Corollary3.4, Proposition 5.1, Proposition 3.8, Proposition 3.10, Remark 3.11. Neverthe-less this bound is optimal for m = 1 or (m = 2 and σ sympleti).Proposition 3.8. Let D be a division algebra over a �eld K with a K/k-involution σ. Let L/k be an extension of degree n and suppose that D ⊗k L isalso a division algebra. Then
u(D ⊗k L, σ ⊗ id, ε) 6

n + 1

2
u(D,σ, ε). (2)In partiular the �niteness of u(D,σ, ε) implies that of u(D ⊗k L, σ ⊗ id, ε).7



Proof. Let (V, ϕ) be an ε-hermitian spae over (D ⊗k L, σ ⊗ id). We hoosea k-basis {e1, · · · , en} of L. We an write ϕ(x, y) = (ϕ1(x, y) ⊗ e1)) + · · · +
(ϕn(x, y) ⊗ en) where ϕ1, · · · , ϕn are ε-hermitian forms (possibly degenerate)over (D,σ). If ϕ is anisotropi and dim(ϕ) = m, then ϕ1, · · · , ϕn have noommon isotropi vetor, therefore mn = dim(ϕi) 6 un(D,σ, ε) so:

u(D ⊗k L, σ ⊗ id, ε) 6
1

n
un(D,σ, ε).Aording to a result due to P�ster (f. [14, Ch.9, 2.5℄ or [13℄) we have:

un(D,σ, ε) 6
n(n+1)

2 u(D,σ, ε). This implies (2).Remark 3.9. If in the previous statement we take D = k, then we retrieveLeep's estimate u(L) 6
n+1

2
u(k).Proposition 3.10. Let D be a division algebra over a �eld K with a K/k-involution σ. Let L/k be a quadrati extension and let ¯ : L −→ L be thenontrivial k-automorphism of L. Suppose that D ⊗k L is a division algebra.Then we have:

u(D ⊗k L, σ ⊗ ,̄ ε) 6
1

2
u(D,σ,−ε) + u(D,σ, ε).Proof. Let L = k(ξ) with ξ2 ∈ k and ξ̄ = −ξ. Let (V, ϕ) be an ε-hermitianspae over (D ⊗k L, σ ⊗ )̄. We an write ϕ in the form

ϕ(x, y) = ϕ1(x, y) ⊗ 1 + ϕ2(x, y) ⊗ ξ,where ϕ1 is an ε-hermitian form and ϕ2 is a −ε-hermitian form over (D,σ). Byrepeating the argument given in the proof of Proposition 3.1 we onlude theresult.Remark 3.11. In the proof of Proposition 3.10, one an interhange the roleof ϕ1 and ϕ2, in this way we obtain:
u(D ⊗k L, σ ⊗ ,̄ ε) 6 u(D,σ,−ε) +

1

2
u(D,σ, ε).4 An exat sequene of Witt groups for biquadratiextensionsLet L = K1 ⊗k K2/k be a �eld extension of degree 4 where K1/k and K2/kare two quadrati extensions with nontrivial automorphisms τ1 et τ2 (resp.).Suppose that K2 = k(λ) with λ ∈ K2, λ2 ∈ k and τ2(λ) = −λ. Every element

α of L an be uniquely written in the form α1 ⊗ 1 + α2 ⊗ λ where α1, α2 ∈ K1.We onsider two projetions:
π1 : L −→ K1 π2 : L −→ K1

α 7→ α1 α 7→ α28



For every nondegenerate hermitian spae (V, h) over (K1 ⊗k K2, τ1 ⊗ τ2) (resp.over (K1 ⊗k K2, τ1 ⊗ id)), we assoiate the hermitian spae (V, π1h) (resp.
(V, π2h)) over (K1, τ1) de�ned by

(π1h)(x, y) = π1(h(x, y)), x, y ∈ V
(π2h)(x, y) = π2(h(x, y)), x, y ∈ VIt is easy to hek that π1h and π2h are nondegenerate hermitian forms over

(K1, τ1).For every nondegenerate hermitian spae (W, f) over (K1, τ1), we assoiatethe hermitian spaes (W⊗kK2, ρ1f) over (K1⊗kK2, τ1⊗id) and (W⊗kK2, ρ2f)over (K1 ⊗k K2, τ1 ⊗ τ2) by
(ρ1f)(x ⊗ α, y ⊗ β) = f(x, y) ⊗ αβ, x, y ∈ W ; α, β ∈ K2

(ρ2f)(x ⊗ α, y ⊗ β) = f(x, y) ⊗ τ2(α)β, x, y ∈ W ; α, β ∈ K2Proposition 4.1. (1) Let (V, h) be a nondegenerate hermitian form of di-mension 1 over (K1 ⊗k K2, τ1 ⊗ τ2) with h ≃ 〈d〉 where d ∈ K1 ⊗k K2 and
(τ1 ⊗ τ2)(d) = d. Then π1h is isometri to

(
d1 d2λ

2

−d2λ
2 −d1λ

2

)where d1 = π1(d) and d2 = π2(d).(2) Let (V, h) be a nondegenerate hermitian spae of dimension 1 over (K1 ⊗k

K2, τ1 ⊗ id) with h ≃ 〈d〉 where d ∈ K1 ⊗k K2 and (τ1 ⊗ id)(d) = d. Then π2his isometri to (
d2 d1

d1 d2λ
2

)where d1 = π1(d) and d2 = π2(d).(3) For the one dimensional form f = 〈a〉 over (K1, τ1) we have
ρ1(f) ≃ 〈a ⊗ 1〉, ρ2(f) ≃ 〈a ⊗ 1〉.Proof. (1) Let 0 6= x ∈ V with h(x, x) = d. We have a basis {x, xλ} for the

K1-vetor spae V . In this basis we have:
(π1h)(x, x) = d1, (π1h)(x, xλ) = d2λ

2

(π1h)(xλ, x) = −d2λ
2 (π1h)(xλ, xλ) = −d1λ

2These relations imply the isometry we are looking for. The proof of (2) is similarand (3) is obvious.Proposition 4.2. (1) Let f be an anisotropi hermitian form over (K1, τ1) suhthat ρ1f is isotropi. Then f ontains a subform isometri to π1(〈d〉) where 〈d〉is a one dimensional form over (K1 ⊗ K2, τ1 ⊗ τ2).(2) Let h be an anisotropi hermitian form over (K1 ⊗k K2, τ1 ⊗ id) suh that
π2h is isotropi , then there exists a one dimensional form 〈a〉 over (K1, τ1)9



suh that f ontains a subform isometri to ρ1(〈a〉).(3) Let f be an isotropi hermitian form over (K1, τ1) suh that ρ2f is isotropi.Then f ontains a subform isometri to π2(〈d〉) where 〈d〉 is a one dimensionalhermitian form over (K1 ⊗k K2, τ1 ⊗ id).Proof. (1) Let v = x1 ⊗ 1 + y1 ⊗ λ 6= 0 be an isotropi vetor for ρ1(f), i.e.,
ρ1(f)(v, v) = 0. This relation implies that

{
f(x1, x1) + f(y1, y1)λ

2 = 0
f(x1, y1) + f(y1, x1) = 0

(3)The vetors x1 and y1 are linearly independent over K1. In fat if x1 = αy1 forsome α ∈ K1, the previous system gives
{

ατ1(α) + λ2 = 0
τ1(α) + α = 0whih implies that α2 = λ2 so K1 ≃ K2, ontradition beause K1 ⊗k K2 isa �eld. Now onsider the K1-vetor spae W generated by x1 and y1. For

d1 = f(y1, y1) and d2 = f(y1, x1)λ
−2, the representing matrix of f |W in thebasis {y1, x1} is (

d1 d2λ
2

−d2λ
2 −d1λ

2

)Aording to Proposition 4.1, for a hermitian element d = d1 ⊗ 1 + d2 ⊗ λ withrespet to (τ1 ⊗ τ2) we have
π1(〈d〉) ≃

(
d1 d2λ

2

−d2λ
2 −d1λ

2

)so f ontains a subform isometri to π1(〈d〉).(2) Let x 6= 0 be an isotropi vetor for π2h, i.e., (π2h)(x, x) = 0. This relationimplies that h(x, x) = a⊗1 ∈ K1⊗k K2 for some a ∈ K1. Sine h is anisotropi,we have a 6= 0. We dedue then that h ontains a subform isometri to ρ1(〈a〉).(3) The argument is similar to that of (1). Let v = x1 ⊗ 1 + y1 ⊗ λ 6= 0 be ananisotropi vetor for ρ2h, i.e., (ρ2h)(v, v) = 0. This relation implies that
{

f(x1, x1) − f(y1, y1)λ
2 = 0

f(x1, y1) − f(y1, x1) = 0The vetors x1 and y1 are linearly independent over K1. Let W be the K1-vetor spae generated by x1 and y1. The matrix of the form f |W with respetto the basis {y1, x1} is (
d2 d1

d1 d2λ
2

)Aording to Proposition 4.1, for the one dimensional hermitian form 〈d〉 over
(K1 ⊗k K2, τ1 ⊗ id) where d = d1 ⊗ 1 + d2 ⊗ λ we have:

π2(〈d〉) ≃
(

d2 d1

d1 d2λ
2

)whih ompletes the proof. 10



Theorem 4.3. We have the following exat sequene of Witt groups:
W (K1 ⊗k K2, τ1 ⊗ τ2)

π1→ W (K1, τ1)
ρ1→ W (K1 ⊗k K2, τ1 ⊗ id)

π2→ W (K1, τ1)
ρ2→ W (K1 ⊗k K2, τ1 ⊗ τ2)Proof. Thanks to the previous proposition, it is enough to verify that thissequene is a omplex. Let 〈d〉 be a one dimensional hermitian form over (K1⊗k

K2, τ1 ⊗ τ2) where d = d1 ⊗ 1 + d2 ⊗ λ where d1, d2 ∈ K1. Aording toProposition 4.1 we have
π1(〈d〉) ≃

(
d1 d2λ

2

−d2λ
2 −d1λ

2

)
.We obtain then

ρ1π1(〈d〉) ≃
(

d1 ⊗ 1 d2λ
2 ⊗ 1

−d2λ
2 ⊗ 1 −d1λ

2 ⊗ 1

)A simple alulation shows that
v =

[
1 ⊗ 1
1 ⊗ λ−1

]is an isotropi vetor for ρ1π1(〈d〉). Consequently we have ρ1π1 = 0.In order to show that π2ρ1 = 0, we onsider a one dimensional form 〈a〉 over
(K1, τ1). We have ρ1(〈a〉) ≃ 〈a ⊗ 1〉. So

π2ρ1(〈a〉) ≃
(

0 a
a 0

)whih is a hyperboli form.In order to show that ρ2π2 = 0, we onsider a one dimensional form 〈d〉 over
(K1⊗k K2, τ1⊗ id) where d = d1⊗1+d1⊗λ is a hermitian element with respetto (τ1 ⊗ id) with d1, d2 ∈ K1. We have:

ρ2π2(〈d〉) ≃
(

d2 ⊗ 1 d1 ⊗ 1
d1 ⊗ 1 d2λ

2 ⊗ 1

)
.This form is hyperboli beause

v =

[
1 ⊗ 1
1 ⊗ λ−1

]is an isotropi vetor.5 Going down resultsProposition 5.1. Let L/K be a quadrati extension and let ¯ be its nontrivialautomorphism. Then u(L) and u(L, )̄ are �nite if and only if u(K) is �nite,moreover we have u(K) 6 2 u(L, )̄ + u(L) and u(K) 6 u(L, )̄ + 2 u(L).11



Proof. We write L = K(
√

a) where a ∈ K∗. Let q be an anisotropi form ofdimension n over K. Consider the following exat sequene of Witt groups dueto Milnor-Husemoller [19, Ch.10, 1.2℄:
0 → W (L, )̄

π→ W (K)
r∗

→ W (L)In this exat sequene, π is the transfer map indued by the projetion π : L →
K, x + y

√
a 7→ x and r∗ is the restrition map. If r∗(q) is anisotropi, then qontains a subform isometri to 〈b,−ab〉 for some b ∈ K. We an then write (byindution)

q ≃ (〈1,−a〉 ⊗ q1) ⊕ q2where q1, q2 are two nondegenerate quadrati forms over K so that r∗(q2) isanisotropi. Let ϕ be the hermitian form over (L, )̄ indued by q1. We have
π(ϕ) ≃ 〈1,−a〉 ⊗ q1. Therefore we have a Witt r∗-deomposition, i.e., thereexists an orthogonal deomposition q ≃ q′ ⊥ q′′ where q′ ≃ π(ϕ) for somenondegenerate hermitian form ϕ over (L, )̄ (in partiular r∗(q′) is hyperboli)and r∗(q′′) is anisotropi. We may suppose that ϕ is anisotropi, therefore:
dim(q) = dim(π(ϕ)) + dim(q′′) = 2 dim(ϕ) + dim(q′′) 6 2 u(L, )̄ + u(L) whihimplies the result. If we use the same argument with the following exat sequeneof Witt groups due to Lewis [9℄:

W (L)
s∗→ W (K)

r∗

→ W (L, )̄,we obtain u(K) 6 u(L, )̄ + 2 u(L). In this exat sequene, s∗ is the Sharlautransfer map and r∗ is the restrition map.Now suppose that we have u(K) < ∞. Aording to a result due to Elmanand Lam (f. [2, theorem 4.3℄) we have u(L) 6
3
2

u(K) < ∞. The �nitenessof u(L, )̄ is easy to hek. In fat if ϕ = 〈a1, · · · , an〉 is a form over (L, )̄where ai ∈ K, its trae form is isometri to ψ = 〈a1, · · · , an,−aa1, · · · ,−aan〉.Isotropy of ϕ and ψ are equivalent. The �niteness of u(K) implies thereforethat of u(L, )̄.Remark 5.2. One an regard the estimates of Proposition 5.1 as an improve-ment, in some situations, of the estimate u(K) 6 4 u(L) for a non formally real�eld K due to Elman [3, Theorem 3.1(iii)℄, beause one an �nd many exampleswhere
min{2 u(L, )̄ + u(L) , u(L, )̄ + 2 u(L)} < 4 u(L).For example if K is a p-adi �eld then u(K) = u(L) = 4 and u(L, )̄ 6 2.Our bound is independent of the formally real nature of L or K. To our bestknowledge, the going down result of Elman, is the best one for arbitrary �elds.In the sequel, we need the following lemma whih is an immediate onse-quene of a theorem of Springer.Lemma 5.3. Let L/K be a quadrati extension and let τ be its nontrivial auto-morphism. Let M/K be an extension of odd degree and let ϕ be an anisotropihermitian form over (L, τ). Then ϕ remains anisotropi over (L⊗K M, τ ⊗ id).12



Proof. For a hermitian spae (V, ϕ) over (L, τ), we denote its trae formby tr(ϕ), de�ned by tr(ϕ)(x, y) = trL/K(ϕ(x, y)) for every x, y ∈ V . We have
tr(ϕ|(L⊗KM)) ≃ tr(ϕ)|M . If ϕ|(L⊗KM) is isotropi, then tr(ϕ)|M is also isotropi.The strong version of Springer's theorem implies that tr(ϕ) is isotropi. Conse-quently ϕ is isotropi.Corollary 5.4. With the notation of the previous lemma we have:

u(L, τ) 6 u(L ⊗K M, τ ⊗ id).Let D be a division algebra over a �eld K with an involution σ. Supposethat there exist λ, µ ∈ D∗ suh that σ(λ) = −λ, σ(µ) = −µ, λµ = −µλand L = K(λ) is a quadrati extension of K. In this situation, we have thefollowing exat sequene of Witt groups due to Parimala, Sridharan and Suresh[1, Appendix 2℄:
W ε(D,σ)

πε

1→ W ε(D̃, σ1)
ρε

1→ W−ε(D,σ)
π−ε

2→ W ε(D̃, σ2) (4)In this sequene, the map πε
1 and π−ε

2 are transfers indued by the projetions
π1 and π2 de�ned in �3. The map ρε

1 is a restrition map de�ned by the multi-pliation by λ and the usual restrition map r∗:
W ε(D̃, σ1)

ρ1 //

×λ

&&NNNNNNNNNNN

W−ε(D,σ)

W−ε(D̃, σ1)

r∗

77pppppppppppSee [1, Appendix 2℄ for more details. These maps also indue homomorphismsbetween semigroups of isometry lasses of hermitian forms:
Sε(D,σ)

πε

1→ Sε(D̃, σ1)
ρε

1→ S−ε(D,σ)
π−ε

2→ Sε(D̃, σ2) (5)Now we an reformulate the exat sequene of (4) in the following way:Proposition 5.5. Let ϕ ∈ Sε(D̃, σ1) be an anisotropi form. Then ϕ has a Witt
ρε
1-deomposition, i.e., there exists an orthogonal deomposition ϕ ≃ ϕ1 ⊕ ϕ2suh that ρε

1(ϕ1) is hyperboli and ρε
1(ϕ2) is anisotropi. Moreover there exists

ψ ∈ Sε(D,σ) suh that ϕ1 ≃ πε
1(ψ).Proof. If ρε

1(ϕ) is anisotropi, we take ϕ2 = ϕ. If ρε
1(ϕ) is isotropi then ϕontains a subform ϕ0 whih omes from Sε(D,σ), i.e., ϕ0 ≃ πε

1(ψ0) for some
ψ0 ∈ Sε(D,σ); see the proof of (4) in [1, Appendix 2℄ where this has beenimpliitly proved, see also [4, 4.4℄. We have then an orthogonal deomposition
ϕ ≃ ϕ0⊕ϕ′ for some ϕ′ ∈ Sε(D̃, σ1). As ρε

1(ϕ0) is hyperboli and dimϕ′ < dimϕwe an use indution on dim ϕ to �nish the proof.We have also the following exat sequene of Witt groups:
W−ε(D,σ)

π−ε

2→ W ε(D̃, σ2)
ρε

2→ W−ε(D,σ) (6)13



whih is a variation of the exat sequene of Parimala, Sridharan and Suresh,see [4℄. In this sequene, ρε
2 is the omposition of the multipliation by −λ andthe usual restrition map r∗ and the multipliation by −µ:

W ε(D̃, σ2)
ρ2 //

−λ

²²

W−ε(D,σ)

W ε(D̃, σ2) r∗

// W ε(D, Int(µ−1) ◦ σ)

×µ

OO

We state a Witt-deomposition-like result for the exat sequene of (6):Proposition 5.6. Let ϕ ∈ Sε(D̃, σ2) be an anisotropi form. Then ϕ has a Witt
ρε
2-deomposition, i.e., there exists an orthogonal deomposition ϕ ≃ ϕ1 ⊕ ϕ2suh that ρε

2(ϕ1) is hyperboli and ρε
2(ϕ2) is anisotropi. Moreover there exists

ψ ∈ S−ε(D,σ) suh that ϕ1 ≃ π−ε
2 (ψ).Proof. We use the same argument as in Proposition 5.5. If ρε

2(ϕ) is isotropithen ϕ ontains a subform ϕ0 whih omes from S−ε(D,σ), i.e., ϕ0 ≃ πε
2(ψ0)for some ψ0 ∈ S−ε(D,σ); see [4, 4.4℄.Proposition 5.7. Let D, D̃, σ1, σ and σ2 be as in Proposition 3.1, then wehave:(1) u(D̃, σ1, ε) 6 u(D,σ,−ε) + 2 u(D,σ, ε).(2) u(D̃, σ2, ε) 6 3 u(D,σ,−ε).Proof. (1) Let ϕ be an anisotropi ε-hermitian form over (D̃, σ1). A-ording to Proposition 5.5, there exists an ε-hermitian form ψ over (D,σ)suh that ϕ ≃ π1(ψ) ⊕ ϕ′ for some form ϕ′ over (D̃, σ1) suh that ρ(ϕ′) isanisotropi. As ϕ is anisotropi, so is ψ, therefore dim(ψ) 6 u(D,σ, ε). As

ρ(ϕ′) is anisotropi, dim(ϕ′) = dim ρ(ϕ′) 6 u(D,σ,−ε), onsequently dim(ϕ) =
dim(π1(ψ)) + dim(ϕ′) = 2 dim(ψ) + dim(ϕ′) 6 2 u(D,σ, ε) + u(D,σ,−ε) .For (2) we apply the same argument by using Proposition 5.6.Corollary 5.8. With the notation of Corollary 3.4 we have:
(1) u(L, )̄ 6 2 u(Q, )̄ + u(Q, )̂ = 2 u−(Q) + u+(Q)
(2) u(L) 6 3 u(Q, )̂ = 3 u+(Q)Proposition 5.9. With the notation of �4, let ϕ ∈ S(K1, τ1) be an anisotropiform. Then ϕ has a Witt ρ1-deomposition, i.e., there exists an orthogonal de-omposition ϕ ≃ ϕ1⊕ϕ2 suh that ρ1(ϕ1) is hyperboli and ρ1(ϕ2) is anisotropi.Moreover there exists ψ ∈ S(K1 ⊗k K2, τ1 ⊗ τ2) suh that ϕ1 ≃ π1(ψ).Proof. If ρ1(ϕ) is isotropi then aording to Proposition 4.2, ϕ ontainsa subform ϕ0 whih omes from S(K1 ⊗k K2, τ1 ⊗ τ2), i.e., ϕ0 ≃ π1(ψ0) forsome ψ0 ∈ S(K1 ⊗k K2, τ1 ⊗ τ2), we an then use an indution argument as inProposition 5.5 14



Proposition 5.10. With the notation of Theorem 4.3, we have
u(K1, τ1) 6 2 u(K1 ⊗k K2, τ1 ⊗ id) + u(K1 ⊗k K2, τ1 ⊗ τ2).Proof. The proof is similar to that of Proposition 5.7; we use Proposition 5.9.Remark 5.11. Using [4, 4.4℄, and Proposition 4.2, one an state similar Witt-deomposition-like results for other maps involved in these exat sequenes. Forexample by a Witt πε

1-deomposition result one an give an alternative proof ofProposition 3.1.6 A Finiteness resultIn the artile [1℄, one an �nd several useful results about extensions of odddegree and their onnetions with substrutures of odimension 2 of entralsimple algebras with involution, see ([1℄, Lemma 3.1.1, Lemma 3.3.1, Lemma3.3.2, Lemma 3.3.3). From these results we an derive the following propositionwhih has been proved in [11℄.Proposition 6.1. Let D be a nonommutative K-division algebra and σ a K/k-involution on D. Suppose that the degree of D is a 2-power. Then there exists anextension M/k of odd degree suh that DM = D⊗k M ontains the elements λ,
µ suh that τ(λ) = −λ and τ(µ) = −µ and λµ = −µλ and [F (λ) : F ] = 2 where
F = KM = K ⊗k M and τ is the involution σ ⊗ id when σ is of seond kind or
σ is sympleti and D is a quaternion algebra otherwise τ = Int(µ) ◦ (σ ⊗ id).Theorem 6.2. Let D be a division algebra of dimension a power of 2 over itsentre K with a K/k-involution σ. Suppose that u(D,σ, ε) < ∞ for ε = 1 and
ε = −1, then u(K,σ|K) < ∞. In partiular if both u+(D) and u−(D) are �nitethen u(K) is �nite too.Proof. We prove this result by indution on dimK(D). For dimK(D) = 1 theonlusion is evident. Suppose that dimK(D) > 1.First suppose that σ is of the seond kind. Aording to Proposition 6.1,there exists an extension M/k of odd degree suh that DM = D ⊗k M ontainsthe elements µ and λ suh that τ(λ) = −λ, τ(µ) = −µ and λµ = −µλ for
τ = σ ⊗ id and F (λ)/F is a quadrati extension where F = K ⊗k M . As
M/k is an extension of odd degree, E = DM is a division algebra. Aordingto Proposition 3.8 we have u(E, τ, ε) < ∞ and u(E, τ,−ε) < ∞. By applyingProposition 5.7 we obtain: u(Ẽ, τ1,±ε) < ∞ and u(Ẽ, τ2,±ε) < ∞ where
Ẽ = CE(F (λ)). As τ is of the seond kind, so are τ1 and τ2. By the indutionhypothesis, we have u(L, τ1|L) < ∞ and u(L, τ2|L) < ∞ where L = F (λ) is theentre of Ẽ. Let F ′ be the �xed �eld of τ2|L. We have

(L, τ1|L) ≃ (F ⊗M F ′, τ |F ⊗ τ ′)
(L, τ2|L) ≃ (F ⊗M F ′, τ |F ⊗ id)15



where τ ′ is the nontrivial automorphism of F ′/M . Proposition 5.10 implies that
u(F, τ |F ) < ∞ and from Corollary 5.4 we dedue that u(K,σ|K) 6 u(F, τ |F ) <
∞. Now onsider the ase where σ is of the �rst kind. If D is a quaternion algebraand σ is its anonial involution, then there exist λ, µ ∈ D with σ(λ) = −λ,
σ(µ) = −µ, λµ = −µλ et [K(λ) : K] = 2.Otherwise there exists an extension M/K of odd degree suh that E =
D ⊗K M ontains λ and µ with τ(λ) = −λ, τ(µ) = −µ, λµ = −µλ and
[M(λ) : M ] = 2 where τ = Int(µ) ◦ (σ ⊗ id) (f. Proposition 6.1). Theminvolution τ is of the �rst kind but of a di�erent type from that of σ. In anyase take:

τ =

{
σ dimK(D) = 4, σ symplectic
Int(µ) ◦ (σ ⊗ id) otherwiseAs M/K is an extension of odd degree, E is a division algebra. Aordingto Proposition 3.8 we have u(E, τ, ε) < ∞ and u(E, τ,−ε) < ∞ (note thataording to Proposition 2.2, the �niteness hypothesis (whih is for σ) is stillvalid for τ). By applying Proposition 5.7 we obtain: u(Ẽ, τ1,±ε) < ∞ and

u(Ẽ, τ2,±ε) < ∞ where Ẽ = CE(M(λ)). The involution τ1 is unitary andby the �rst part of the proof the ondition u(Ẽ, τ1,±ε) < ∞ implies that
u(L, τ1|L) < ∞ where L = M(λ). The involution τ2 is of the �rst kind. Theondition u(Ẽ, τ2,±ε) < ∞ states that both u−(Ẽ) and u+(Ẽ) are �nite. So weonlude by indution that u(L) = u(L, τ2|L) < ∞. Here τ1|L is the nontrivialautomorphism of L/M . Now Proposition 5.1 implies that u(M) < ∞ and fromthe strong version of Springer's theorem we dedue that u(K) 6 u(M) < ∞.Remark 6.3. Note that in preeding theorem, aording to Proposition 2.2 oneof the two hypotheses u(D,σ, ε) < ∞ and u(D,σ,−ε) < ∞ is atually enoughin the unitary ase.7 Values of the u-invariant, a partiular aseLet L/K be a quadrati extension and let ¯ be its nontrivial automorphism. Thesigned disriminant d± de�nes a map from W (L, )̄ to K∗/N(L∗). Unfortunatelythis map is not a homomorphism. But for forms ϕ and ψ of even dimensionwe have d±(ϕ ⊕ ψ) = d±(ϕ).d±(ψ). Let I(L, )̄ ⊂ W (L, )̄ be the lasses ofall nondegenerate hermitian forms over (L, )̄. The group W (L, )̄ has a naturalring struture.Proposition 7.1. (1) The map e1 : I(L, )̄ → K∗/N(L∗) de�ned by e1(ϕ) =
d±(ϕ) is a surjetive homomorphism.(2) ker e1 = I2(L, )̄.(3) Via e1, the group I/I2 is isomorphi to K∗/N(L∗).16



Proof. (1) The map e1 is surjetive beause d±(〈1,−a〉) = aN(L∗).(2) The group I = I(L, )̄ is generated by hermitian forms 〈a, b〉 where a, b ∈ K∗.Thus I2 is generated by the hermitian forms:
ϕ = 〈a, b〉 ⊗ 〈c, d〉 = 〈ac, ad, bc, bd〉We have d±(ϕ) = 1. So I2 ⊂ ker e1. Conversely suppose that ϕ ∈ I with

e1(ϕ) = 1. The form ϕ is represented by 〈a1, · · · , a2n〉 with n > 1.For n = 1, we have ϕ = 〈a1, a2〉 with −a1a2 ∈ N(L∗). So ϕ ≃ 〈a1,−a1〉,therefore ϕ is hyperboli and ϕ = 0 in W (L, )̄.Now suppose that n ≥ 2. We an write: ϕ = 〈a1, a2, a3〉 ⊕ 〈a4, · · · , a2n〉. So
ϕ ∼ 〈a1, a2, a3, a1a2a3〉 ⊕ 〈−a1a2a3, a4, · · · , a2n〉. We have

〈a1, a2, a3, a1a2a3〉 ≃ 〈a1, a2〉 ⊗ 〈1, a1a3〉 ∈ I2.The dimension of ϕ′ = 〈−a1a2a3, a4, · · · , a2n〉 is 2(n − 1) and d± ϕ′ = 1. Byindution we obtain ϕ′ ∈ I2.(3) is dedued from (1) and (2).Let D be a division algebra over a �eld K with a K/k-involution τ . Herewe all a hermitian form ϕ over (D, τ) an n-fold P�ster form if ϕ is the restri-tion of an n-fold P�ster form q over k to D. This notion appears in [10℄ forquaternion algebras. A hermitian form ϕ indued by the n-fold P�ster form
q = 〈〈a1, · · · , an〉〉, is still denoted by ϕ = 〈〈a1, · · · , an〉〉.De�nition 7.2. Let D be a division algebra over a �eld K with a K/k-involution τ and let ε be an element of K with ετ(ε) = 1. An ε-hermitianform ϕ over (D, τ) is alled universal if ϕ represents all nonzero ε-hermitianelements of D.Proposition 7.3. Let L/K be a quadrati extension and let ¯ be the nontrivialautomorphism of L/K. Then we have u(L, )̄ 6= 3, 5, 7.Proof. Suppose that u(L, )̄ < 4. Every 2-fold hermitian P�ster form 〈〈a, b〉〉is hyperboli. The hermitian form 〈1, a, b〉 is a hermitian neighbor of 〈〈a, b〉〉and therefore it is isotropi. We dedue that every hermitian form 〈a, b, c〉 ofdimension 3 over (L, )̄ is isotropi, so we have u(L, )̄ 6 2.Suppose that u(L, )̄ < 8. We onlude that every 3-fold hermitian P�sterform 〈〈a, b,−c〉〉 is hyperboli. Thus for every a, b, c ∈ K∗ we have:

〈〈a, b〉〉 ≃ c〈〈a, b〉〉Every form in I2 = I2(L, )̄ is an orthogonal sum of the forms 〈〈ai, bi〉〉. As forevery hyperboli plane IH and c ∈ K∗ we have IH ≃ cIH, the Witt anellationtheorem implies that ϕ ≃ cϕ for every ϕ ∈ I2. In partiular ϕ is universal over
(L, )̄ (in the sense of De�nition 7.2).Now suppose that u = u(L, )̄ = 5 or 7. Let ϕ be an anisotropi hermitianform of dimension u. In partiular ϕ represents its disriminant d = d±(ϕ). Wehave then ϕ = ψ ⊕ 〈d〉 where ψ is a form of dimension 4 or 6 and d±(ψ) = 1.17



As ψ ∈ I, Proposition 7.1 implies that ψ ∈ I2. We have already shown that ψis universal, onsequently ϕ is isotropi whih is a ontradition to the hoieof ϕ.Remark 7.4. In a similar way, if D = (a, b)K is a quaternion division algebrawith the anonial involution ,̄ then u(D, )̄ 6= 3, 5, 7. However the value 3 forthe u-invariant u(D, ,̄−1) is possible, for example if K is a p-adi �eld then
u(D, ,̄−1) = 3.Proposition 7.5. Let L0 be a �eld with u(L0) = n. Let L = L0((x)) be the�eld of Laurent series over L0 and let σ be the L0-automorphism of L induedby x 7→ −x. Then u(L, σ) = n.Proof. Let K be the �xed �eld of σ. We have K = L0((x

2)) so u(K) =
2n. Consequently u(L, σ) 6 n (f. Remark 3.5). Let q = 〈a1, · · · , an〉 be ananisotropi quadrati form of dimension n over L0. The restrition of q to L isanisotropi. In fat the isotropy of q|(L,σ) is equivalent to that of the quadratiform q ⊕ x2q = 〈a1, · · · , an,−x2a1, · · · ,−x2an〉 over K. The anisotropy of thisform is equivalent to that of q over L0.Remark 7.6. Proposition 7.5 state in partiular that the possible values forthe hermitian u-invariant of ommutative �elds ontain the possible values ofthe usual u-invariant.8 Classial groups over Qp(t), p 6= 2We refer to [21℄ and [20℄ for basi notions about Tits's indies. In the symbol
gXt

n,r, where X = A, B, C, D, the integers n and r are respetively the abso-lute and relative rank of the onsidered lassial group G, g denotes the order ofthe quotient of the Galois group Γ = Gal(ksep/k) whih operates e�etively onthe Dynkin diagram. In ase the diagram has no nontrivial automorphism, g isneessarily 1. If g = 1, G is alled of inner type, otherwise G is alled of outertype. The integer t is the degree of a ertain division algebra whih ours inthe de�nition of the onsidered group. If t or g are omitted in the symbol, theyare neessarily 1. Type AnLemma 8.1. Let k be a funtion �eld of a p-adi �eld with p 6= 2. Let L/k bea quadrati extension and let ¯ be the nontrivial automorphism of L/k. Then
u(L, )̄ 6 4.Proof. Let ϕ ≃ 〈a1, · · · , a5〉 be a hermitian form of dimension 5 over (L, )̄,where ai ∈ k, i = 1, · · · , 5. Then, ϕ is isotropi if and only if the quadrati form
q = 〈a1, · · · , a5,−aa1, · · · ,−aa5〉 is isotropi over k where L = k(

√
a). Butthis form is isotropi over k, beause its Hasse invariant is c(q) = (−a, d) where

d = det(ϕ), whih has index 6 2 in the Brauer group of k and aording to theTheorem 4.6 of [12℄, q is isotropi. We have in partiular u(L, )̄ 6 4.18



Proposition 8.2. Let k = Qp(t) with p 6= 2. The index 1A
(d)
n,r ours over kfor every positive integers d, r and n satisfying rd = n + 1.Proof. Aording to [21℄ or [20, 17.1.3℄, 1A

(d)
n,r ours over k if and only if thereexists a division algebra D over k of degree d with rd = n + 1. The existene ofsuh algebras omes from the fat that there exist division algebras of arbitrarydegree over Qp.Proposition 8.3. Let k = Qp(t) with p 6= 2.(1) If the index 2A

(1)
n,r ours over k, then n + 1 − 2r ∈ {0, 1, 2, 3, 4}. All theanisotropi indies 2A

(1)
1,0, 2A

(1)
2,0

2A
(1)
3,0 and 2A

(1)
4,0 our over k.(2) If the index 2A

(2)
n,r ours over k then n + 1 − 4r ∈ {0, 2, 4, 6}.Proof. Aording to [21℄ or [20, 17.1.6℄, 2A

(d)
n,r ours over k if and onlyif there exist a quadrati extension E/k, a division algebra D over E and aninvolution σ on D of the seond kind suh that k is the �xed �eld of σ|E anda nondegenerate hermitian form h over (D,σ) of dimension d−1(n + 1) and ofWitt index r.(1) For d = 1, D = E. Aording to Lemma 8.1 we have u(E, σ) 6 4. Weonlude that 0 6 n + 1 − 2r 6 4. As for E = Qp(t)(

√
t), we have u(E, σ) = 4,the indies 2A

(1)
1,0, 2A

(1)
2,0

2A
(1)
3,0 and 2A

(1)
4,0 our over k.(2) For d = 2, D is a quaternion algebra over E. Thank to Proposition 3.6we have u(D,σ) 6 3. We have then 0 6

n+1
2 − 2r 6 3.Type BnProposition 8.4. Let k = Qp(t) with p 6= 2. If the index Bn,r ours over kthen we have: n − 4 6 r 6 n.Proof. Aording to [21℄ or [20, 17.2.3℄, Bn,r an our over k if and only ifthere exists a nondegenerate quadrati form q of dimension 2n + 1 and of Wittindex r. Let qa be the unique anisotropi part of q up to isometry. We have:

dim qa = 2n + 1 − 2r (7)Aording to [12℄, the dimension of qa annot exeed 10. We obtain then 0 6

2n − 2r + 1 6 10 and so n − 4 6 r 6 n.Proposition 8.5. The anisotropi indies B1,0, B2,0 and B3,0 an our over
k = Qp(t) with p 6= 2.Proof. Aording to (7), it is enough to �nd anisotropi quadrati forms ofdimension 3, 5 and 7 (resp.), whih is possible beause u(Qp(t)) > 8.Remark 8.6. Aording to (7), the existene of B4,0 over Qp(t) is equivalentto u(Qp(t)) > 9. Aording to a onjeture, one believes that u(Qp(t)) = 8 (f.[14, Chapter 5, 2.5℄, [5℄ and [12℄). 19



Type CnProposition 8.7. Let k = Qp(t) with p 6= 2. If the index C
(d)
n,r ours over

k then we have d ∈ {1, 2, 4}. For d = 1 we have n = r. For d = 2 we have
n − 2r ∈ {0, 1, 2}. For d = 4, we have n − 4r ∈ {0, 2, 4, 6, 8, 10}.Proof. Aording to [21℄ or [20, 17.2.10℄, C

(d)
n,r an our over k if and only ifthere exists a division algebra D over k of degree d with an orthogonal involution

σ and a skew hermitian form h over (D,σ) of dimension 2d−1n and of Witt index
r. As D has an involution of the �rst kind, D lies in the 2-torsion of the Brauergroup Br2(k) (f. [19, Ch. 8, 8.4℄). Aording to a result due to Saltman [18℄,we know that d ∈ {1, 2, 4}. Let ha be the anisotropi part of h. We have

dim ha = 2d−1n − 2r (8)If d = 1, h is alternating and in this ase we have r = n.If d = 2, D is a quaternion algebra over k. Aording to Corollary 3.4and Lemma 8.1 we have u(D,σ,−1) = u(D, )̄ 6
1
2
u(L, )̄ 6 2 where ¯ is theanonial involution of D and L is a maximal sub�eld of D stable under .̄ Wededue that 0 6 dim ha 6 2. Now (8) implies that n − 2r ∈ {0, 1, 2}.If d = 4, aording to a result due to Albert (f. [6, 16.1℄), D is isomorphi toa biquaternion algebra. We write D = D1⊗D2 where D1 and D2 are quaternionalgebras. Aording to Proposition 2.2 we have u(D,σ,−1) = u(D1 ⊗ D2,¯⊗

,̄−1) where ¯ (resp. )̄ is the anonial involution of D1 (resp. D2). Let L bea maximal sub�eld of D2 stable under .̄ Thanks to Proposition 3.1 we have:
u(D1 ⊗ D2,¯⊗¯− 1) 6 u(D1 ⊗ L,¯⊗ id) + 1

2
u(D1 ⊗ L,¯⊗ ,̄−1)Thanks to Proposition 3.6 we have u(D1 ⊗ L,¯⊗ id) 6

1
4

u(L). Aordingto [12℄, u(L) 6 10. We onlude then u(D1 ⊗ L,¯⊗ id) 6 2. Now by usingProposition 3.10 and Proposition 3.1 we obtain
u(D1 ⊗ L,¯⊗ ,̄−1) 6 6.We obtain then u(D1 ⊗ D2,¯⊗ ,̄−1) 6 5. We onlude that 0 6 dimha 6 5and (8) implies that n/2 − 2r ∈ {0, 1, · · · , 5}.Proposition 8.8. The anisotropi indies C

(2)
1,0 , C

(2)
2,0 and C

(4)
2,0 our over k =

Qp(t) with p 6= 2.Proof. Aording to (8), it is enough to �nd a skew hermitian form of di-mension 2 over (D,σ) where D is a suitable quaternion division algebra over
Qp(t) and σ is an orthogonal involution of D. This hoie is possible beause
u(D,σ,−1) = 2 for D = (−p, u)Qp(t) where u ∈ Z∗

p\Z∗
p
2. In fat by Proposi-tion 3.6, u(D,σ,−1) 6

1
4

u(Qp(t)). We obtain then u(D,σ,−1) 6 2, beause
u(Qp(t)) 6 10 aording to [12℄. So it is enough to onstrut an anisotropiskew hermitian form of dimension 2 over (D,σ) or equivalently an anisotropihermitian form of dimension 2 over (D, )̄ where ¯ is the anonial involution of
D. We may take for example the hermitian form 〈1, t〉.20



Type Dn innerLemma 8.9. Let D be a division algebra over a �eld K with a K/k-involu-tion σ. Consider the division algebra D(t) = k(t) ⊗k D with the involution
σ̂ = id⊗σ. Let (V, hV ) and (W,hW ) be two anisotropi ε-hermitian spaes over
(D,σ). Let V (t) = k(t)⊗k V , W (t) = k(t)⊗k W , ĥV and ĥW the restritions of
hV and hW (resp.) to D(t). Then the hermitian form ĥV ⊕ tĥW is anisotropiover (D(t), σ̂). In partiular u(D(t), σ̂, ε) > 2 u(D,σ, ε) where ε ∈ K satis�es
εσ(ε) = 1.Proof. Let x1⊕x2 ∈ V (t)⊕W (t) be a nonzero anisotropi vetor for ĥV ⊕tĥW ,i.e., ĥV ⊕ tĥW (x1 ⊕ x2, x1 ⊕ x2) = 0. This relation implies that:

ĥV (x1, x1) + tĥW (x2, x2) = 0 (9)By using the embedding V (t) ⊂ V ((t)) we may suppose that x1 = Σ∞
i=Nvit

iand x2 = Σ∞
i=Mwit

i where vi ∈ V , wi ∈ W , vN 6= 0 and wM 6= 0. We onsidertwo ases: N 6 M and N > M . If N 6 M , (9) implies that hV (vM , vM ) = 0whih is a ontradition beause hV is anisotropi. If N > M , (9) implies that
hW (wN , wN ) = 0 whih is a ontradition beause hW is anisotropi.Proposition 8.10. Let k = Qp(t) with p 6= 2. Then if the index 1D

(d)
n,r oursover k then d ∈ {1, 2, 4}. Moreover:(1) For d = 1 we have n − r ∈ {0, 2, 3, 4, 5}(2) For d = 2 we have n − 2r ∈ {0, 2, 3, 4, 5, 6, 7, 8, 9}(3) For d = 4 we have n − 4r ∈ {0, 2, 4, · · · , 20}.Proof. Aording to [21℄ or [20, 17.3.13℄, 1D

(d)
n,r ours over k if and only if thereexist a division algebra D over k of degree d with an orthogonal involution σ anda nondegenerate hermitian form h of dimension 2nd−1 with trivial disriminantand of Witt index r, and moreover d > 1, rd 6 n and n 6= rd + 1. As D has aninvolution of the �rst kind, aording to a result of Albert (f. [19, Ch. 8, 8.4℄),

D lies in the 2-torsion of Br(k). By using a result of Saltman [18℄, we obtain
d ∈ {1, 2, 4}. Let ha be the anisotropi part of h. We have:

dim ha = 2d−1n − 2r, d± ha = 1 (10)(1) If d = 1, we have D = k and ha is a symmetri bilinear form over k and
dim ha is even. By using a result due to Parimala-Suresh [12℄ the dimension of
ha annot exeed 10, we obtain then 2n − 2r = dimha ∈ {0, 2, 4, 6, 8, 10}.The ase dimha = 2 is impossible beause in this ase d± ha = 1 implies theisotropy of ha. Consequently 2n − 2r = 2 is impossible.The ase dimha = 4 is possible, we an take the anisotropi form ha =
〈1, p,−u,−pu〉 whih has trivial disriminant where u ∈ Zp

∗\Zp
∗2. This formis anisotropi over Qp(t). The ase 2n − 2r = 4 is then possible.21



The ase dimha = 6 is possible. Consider the biquaternion division algebra
(u, t)⊗k (t + 1, p). The fat that this algebra is a division algebra an be foundin an appendix of the Saltman's paper [18℄ due to W. Jaob and J.-P. Tignol.Let ha = 〈u, t,−ut,−(t + 1),−p, (t + 1)p〉 be the Albert form of this algebra.This form is anisotropi and has trivial disriminant. Consequently 2n−2r = 6is possible.The ase dimha = 8 is also possible. We an take the anisotropi form
ha = 〈1, t〉 ⊗ 〈1, p,−u,−pu〉. The anisotropy of ha an be dedued for examplefrom Lemma 8.9.(2) If d = 2, D is a quaternion division algebra over k. Now (10) impliesthat d± h = d± ha = 1. We write D = (a, b)k, the quaternion division algebraover k generated by i, j with i2 = a ∈ k∗, j2 = b ∈ k∗, ij = −ji. Let
L = k(i) = k(

√
a) ⊂ D. Aording to Proposition 2.2, u(D,σ) = u(D, ,̄−1)where ¯ is the anonial involution of D.As L is the funtion �eld of a p-adi �eld (p 6= 2), we have u(L) 6 10 (f. [12,4.5℄). Aording to Lemma 8.1, u(L, |̄L) 6 4. Now by applying Corollary 3.4we obtain:

u(D, ,̄−1) 6
10 + 8

2
= 9.Consequently dimha 6 9. We have then n − 2r ∈ {0, 1, 2, · · · , 9}.The ase dim ha = 1 is impossible beause the disriminant of every skewhermitian form over D of dimension 1 is di�erent from 1. Consequently the ase

n − 2r = 1 is impossible.The ase dimha = 2 is possible. To onstrut, onsider an arbitrary nonde-generate skew hermitian form h0 of dimension 1 over (D0, σ0) where D0 is theunique quaternion division algebra over Qp and σ0 is its anonial involution.Consider the skew hermitian form
h = h0 ⊕ th0 (11)Aording to Lemma 8.9, h is anisotropi, moreover its disriminant is trivial.We onlude that the ase n − 2r = 2 is possible.It is well known that, there exists an anisotropi skew hermitian form ofdimension 3 over D0 (f. [19, Ch. 10, 3.6℄, [15℄ or [22℄). The restrition of thisform to (D,σ) is anisotropi. Consequently the ase dimha = 3 or n − 2r = 3is possible.The ases dim ha = 4 or 6 are similar; we take an anisotropi skew hermitianform h0 over (D0, σ0) of dimension 2 or 3 and we onsider the anisotropi form

h de�ned in (11).For the ase dim ha = 5, we �rst onsider a subform of dimension 5 of theanisotropi skew hermitian form of dimension 6 over (D,σ) that we onstrutedabove. By multiplying this form by its disriminant, we obtain an anisotropiform of dimension 5 with trivial disriminant. Therefore n− 2r = 5 is possible.(3) If d = 4, D is a biquaternion algebra. We write D = D1 ⊗ D2 where D1and D2 are two quaternion algebras. We have u(D,σ) = u(D1⊗D2,¯⊗ )̄ where
¯ (resp. )̄ is the anonial involution of D1 (resp. D2). Let L be a maximal22



sub�eld of D2 stable under .̄ Aording to Proposition 3.1 and Proposition 3.10we have
u(D1 ⊗ D2,¯⊗ )̄ 6

1
2

u(D1 ⊗ L,¯⊗ id,−1) + u(D1 ⊗ L,¯⊗ )̄

6
9
2 + 6 = 21

2 ,We obtain then u(D,σ) 6 10. Now (10) implies that 0 6 n/2 − 2r 6 10.Corollary 8.11. The anisotropi indies 1D
(1)
n,0 for 2 6 n 6 4 and 1D

(2)
n,0 for

2 6 n 6 6 our over k = Qp(t) with p 6= 2.Type Dn outerProposition 8.12. Let k = Qp(t) with p 6= 2. If the index 2D
(d)
n,r ours over kthen d ∈ {1, 2, 4}. Moreover:(1) For d = 1 we have n − r ∈ {0, 1, 2, 3, 4, 5}(2) For d = 2 we have n − 2r ∈ {0, 1, 2, 3, 5, 6, 7, 8, 9}(3) For d = 4 we have n − 4r ∈ {0, 2, · · · , 20}.Proof. We use the notation of the proof of Proposition 8.10. The riterionfor the existene of 2D

(d)
n,r is the same as for 1D

(d)
n,r exept d± h 6= 1 (f. [21℄).Therefore we have d ∈ {1, 2, 4}.(1) For d = 1, dim ha = 2 is possible; it is enough to hoose the anisotropiform 〈1, p〉. Consequently n − r = 1 is possible.The ase dimha = 4 is possible. In fat it is enough to hoose a subformof dimension 4 of the anisotropi form 〈1, t〉 ⊗ 〈1, p,−u,−pu〉 with nontrivialdisriminant. We an hoose for example 〈p,−u,−pu, t〉. Consequently n−r = 2is possible.For dim ha = 6 we an hoose 〈p,−u,−pu, tp,−tu,−tpu〉. Consequently

n − r = 3 is possible.(2) For d = 2, D is a quaternion algebra over k. We have that dimha 6 9as in the proof of Proposition 8.10.For the ase dim ha = 1, it is enough to onsider a skew hermitian form ofdimension 1 whih has neessarily nontrivial disriminant. Consequently thease n − 2r = 1 is possible.For the ase dim ha = 2, we onsider two arbitrary skew symmetri elementsof D0 = (−p, u)Qp
with di�erent redued norm modulo Qp

∗2. We denote theseelements by a and b. Now onsider the skew hermitian form h = 〈a, tb〉 over
D = D0⊗Qp

Qp(t). The form h is anisotropi form with nontrivial disriminant.Consequently n − 2r = 2 is possible.The ase dimha = 3 is possible. In fat, there exists a skew hermitian form
h0 of dimension 2 with disriminant equal to c 6= 1 ∈ Qp

∗/Qp
∗2 (f. [19, Ch.10, 3.6℄, [15℄ or [22℄). We also onsider a skew hermitian form h′
0 over (D0, σ0)of dimension 1 and with the disriminant equal to c′ 6= 1 ∈ Qp

∗/Qp
∗2. We23



may suppose that c′ 6= c (this hoie is possible beause Card(Qp
∗/Qp

∗2
) = 4).Thanks to Lemma 8.9, the form ha = h0 ⊕ th′

0 is an anisotropi skew hermitianform over (D,σ) of dimension 3 and with nontrivial disriminant. Consequently
n − 2r = 3 is also possible.For dimha = 5, we onsider an anisotropi skew hermitian form h0 over
(D0, σ0) of dimension 3 and with trivial disriminant and an anisotropi skewhermitian form h′

0 over (D0, σ0) of dimension 2 and with nontrivial disriminant(Aording to [19, Ch. 10, 3.6℄, [15℄ or [22℄ these hoies are possible). Nowonsider the form h = h0 ⊕ th′
0 over (D,σ) whih is of dimension 5 and withnontrivial disriminant Consequently n − 2r = 5 is possible.Suppose that h ≃ 〈a1, a2, · · · , a5〉 is an anisotropi skew hermitian form ofdimension 5 and with nontrivial disriminant onstruted as in the preedingparagraph. At least one of the forms 〈ai1 , · · · , ai4〉 has nontrivial disriminantwhere 1 6 i1 < i2 < i3 < i4 6 5. Consequently dim ha = n − 2r = 4 is possible.(3) For d = 4, D is a biquaternion algebra. As in the proof of Proposition 8.10(3), we obtain n/2 − 2r 6 10.Corollary 8.13. The anisotropi indies 2D

(1)
n,0 for 2 6 n 6 3 and 2D

(2)
n,0 for
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