The orthogonal *u*-invariant of a quaternion algebra

Karim Johannes Becher, Mohammad G. Mahmoudi

Abstract

In quadratic form theory over fields, a much studied field invariant is the u-invariant, defined as the supremum over the dimensions of anisotropic quadratic forms over the field. We investigate the corresponding notions of u-invariant for hermitian and for skew-hermitian forms over a division algebra with involution, with a special focus on skew-hermitian forms over a quaternion algebra. Under certain conditions on the center of the quaternion algebra, we obtain sharp bounds for this invariant.

Classification (MSC 2000): 11E04, 11E39, 11E81

Key words: hermitian form, involution, division algebra, isotropy, system of quadratic forms, discriminant, Tsen-Lang Theory, Kneser's Theorem, local field, Kaplansky field

1 Involutions and hermitian forms

Throughout this article K denotes a field of characteristic different from 2 and K^{\times} its multiplicative group. We shall employ standard terminology from quadratic form theory, as used in [9]. We say that K is *real* if K admits a field ordering, *nonreal* otherwise. By the Artin-Schreier Theorem, K is real if and only if -1 is not a sum of squares in K.

Let Δ be a division ring whose center is K and with $\dim_K(\Delta) < \infty$; we refer to such Δ as a *division algebra over* K, for short. We further assume that Δ is endowed with an *involution* σ , that is, a map $\sigma : \Delta \to \Delta$ such that $\sigma(a+b) = \sigma(a) + \sigma(b)$ and $\sigma(ab) = \sigma(b)\sigma(a)$ hold for any $a, b \in \Delta$ and such that $\sigma \circ \sigma = id_{\Delta}$. Then $\sigma|_K : K \to K$ is an involution of K, and there are two cases to be distinguished. If $\sigma|_K = id_K$, then we say that the involution σ is of the first kind. In the other case, when $\sigma|_K$ is a nontrivial automorphism of the field K, we say that σ is of the second kind. In general, we fix the subfield $k = \{x \in K \mid \sigma(x) = x\}$ and say that σ is a K/k-involution of Δ . Note that $\sigma : \Delta \to \Delta$ is k-linear. If σ is of the second kind, then K/k is a quadratic extension. Recall that involutions of the first kind on a division algebra Δ over K do exist if and only if Δ is of exponent at most 2, i.e. $\Delta \otimes_K \Delta$ is isomorphic to a matrix algebra over K. Moreover, an involution σ of the first kind over Δ is either of orthogonal or of symplectic type, depending on the dimension of the subspace $\{x \in \Delta \mid \sigma(x) = x\}$.

Let $\varepsilon \in K^{\times}$ with $\sigma(\varepsilon)\varepsilon = 1$. We are mainly interested in the cases where $\varepsilon = \pm 1$; if σ is of the first kind then these are the only possibilities for ε . An ε -hermitian form over (Δ, σ) is a pair (V, h) where V is a finite-dimensional Δ -vector space and h is a map $h: V \times V \to \Delta$ that is Δ -linear in the second argument and with $\sigma(h(x, y)) = \varepsilon \cdot h(y, x)$ for any $x, y \in V$; it follows that h is 'sesquilinear' in the sense that $h(xa, yb) = \sigma(a)h(x, y)b$ holds for any $x, y \in V$ and $a, b \in \Delta$. In this situation we may also refer to h as the ε -hermitian form and to V as the underlying vector space. We simply say that h is hermitian (resp. skew-hermitian) if h is 1-hermitian (resp. (-1)-hermitian).

In the simplest case we have $\Delta = K$, $\sigma = id_K$, and $\varepsilon = 1$. A 1-hermitian form over (K, id_K) is a symmetric bilinear form $b : V \times V \to K$ on a finite dimensional vector space V over K; by the choice of a basis it can be identified with a quadratic form over K in $n = \dim_K(V)$ variables.

An ε -hermitian form h over (Δ, σ) with underlying vector space V is said to be regular or nondegenerate if, for any $x \in V \setminus \{0\}$, the associated Δ -linear form $V \to \Delta, y \mapsto h(x, y)$ is nontrivial; if this condition fails h is said to be singular or degenerate. We say that h is isotropic if there exists a vector $x \in V \setminus \{0\}$ such that h(x, x) = 0, otherwise we say that h is anisotropic. Let h_1 and h_2 be two ε -hermitian forms over (Δ, σ) with underlying spaces V_1 and V_2 . The orthogonal sum of h_1 and h_2 is the ε -hermitian form h on the Δ -vector space $V = V_1 \times V_2$ given by $h(x, y) = h_1(x_1, y_1) + h_2(x_2, y_2)$ for $x = (x_1, x_2), y = (y_1, y_2) \in V$, and it is denoted by $h_1 \perp h_2$. An isometry between h_1 and h_2 is an isomorphism of Δ -vector spaces $\tau : V_1 \to V_2$ such that $h_1(x, y) = h_2(\tau(x), \tau(y))$ holds for all $x, y \in V_1$. If an isometry between h_1 and h_2 exists, then we say that h_1 and h_2 are isometric and write $h_1 \simeq h_2$. Witt's Cancellation Theorem [2, (6.3.4)] states that, whenever h_1, h_2 and h are ε -hermitian forms on (Δ, σ) such that $h_1 \perp h \simeq h_2 \perp h$, then also $h_1 \simeq h_2$ holds. A regular 2*n*-dimensional ε -hermitian form (V, h) is said to be *hyperbolic* if there exits an *n*-dimensional subspace W of V such that h(x, y) = 0 for all $x, y \in W$. The (up to isometry) unique isotropic 2dimensional ε -hermitian form is denoted by \mathbb{H} .

Given an ε -hermitian form (V, h) on (Δ, σ) we write

$$D(h) = \{h(x, x) \mid x \in V \setminus \{0\}\} \subseteq \Delta.$$

Note that this set contains 0 if and only if h is isotropic. We further put

$$\operatorname{Sym}^{\varepsilon}(\Delta, \sigma) = \{x \in \Delta \mid \sigma(x) = \varepsilon x\}.$$

For any ε -hermitian form h over (Δ, σ) we have $D(h) \subseteq \operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$. Given $a_1, \ldots, a_n \in \operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$, an ε -hermitian form h on the Δ -vector space $V = \Delta^n$ is given by $h(x, y) = \sigma(x_1)a_1y_1 + \cdots + \sigma(x_n)a_ny_n$ for $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \Delta^n = V$. We denote this form h by $\langle a_1, \ldots, a_n \rangle$ and observe that it is regular if and only if $a_i \neq 0$ for $1 \leq i \leq n$. As $\operatorname{char}(K) \neq 2$, any ε -hermitian form is isometric to $\langle a_1, \ldots, a_n \rangle$ for some $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$ [2, (6.2.4)].

We denote by $\operatorname{Herm}_{n}^{\varepsilon}(\Delta, \sigma)$ the set of isometry classes of regular *n*dimensional ε -hermitian forms over (Δ, σ) . Mapping $a \in \operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$ to the class of $\langle a \rangle$ yields a surjection

$$\operatorname{Sym}^{\varepsilon}(\Delta, \sigma) \setminus \{0\} \longrightarrow \operatorname{Herm}_{1}^{\varepsilon}(\Delta, \sigma).$$

Two elements $a, b \in \text{Sym}^{\varepsilon}(\Delta, \sigma)$ are *congruent* if there exists $c \in \Delta$ such that $a = \sigma(c)bc$, which is equivalent to saying that $\langle a \rangle \simeq \langle b \rangle$ over (Δ, σ) .

1.1 Remark. In the case where $\Delta = K$ and $\varepsilon = 1$, there is a natural oneto-one correspondence between $\operatorname{Herm}_1^{\varepsilon}(\Delta, \sigma)$ and $K^{\times}/K^{\times 2}$. We may then identify the two sets and thus endow $\operatorname{Herm}_1^1(\Delta, \sigma)$ with a natural group structure. One can proceed in a similar way in the two cases, first where Δ is a quaternion algebra and σ its canonical involution, and second when σ is a unitary involution on a field $\Delta = K$.

Given an ε -hermitian form h over (Δ, σ) and an element $a \in k^{\times}$ where $k = \{x \in K \mid \sigma(x) = x\}$, we define the scaled ε -hermitian form ah in the obvious way. Two ε -hermitian forms h and h' over (Δ, σ) are said to be similar, if $h' \simeq ah$ for some $a \in k^{\times}$.

2 Hermitian *u*-invariants

We keep the setting of the previous section. Following [8, Chap. 9, (2.4)] we define

 $u(\Delta, \sigma, \varepsilon) = \sup \{ \dim(h) \mid h \text{ anisotropic } \varepsilon \text{-hermitian form over } (\Delta, \sigma) \}$

in $\mathbb{N} \cup \{\infty\}$ and call this the *u*-invariant of $(\Delta, \sigma, \varepsilon)$. Then

 $u(K, id_K, 1) = \sup \{ \dim(\varphi) \mid \varphi \text{ anisotropic quadratic form over } K \}$

is the *u*-invariant of the field K, denoted by u(K). We refer to [8, Chap. 8] for an overview on this invariant for nonreal fields and for the discussion of a different definition of this definition, which is more reasonable when dealing with real fields.

To obtain upper bounds on $u(\Delta, \sigma, \varepsilon)$, one can use the theory of systems of quadratic forms. In fact, to every ε -hermitian form h over (Δ, σ) one can associate a system of quadratic forms over k in such a way that the isotropy of h is equivalent to the simultaneous isotropy of this system.

For $r \in \mathbb{N}$, one denotes by $u_r(K)$ the supremum over the $n \in \mathbb{N}$ for which there exists a system of r quadratic forms in n variables over K having no nontrivial common zero. The numbers $u_r(K)$ are called the system uinvariants of K. Note that $u_0(K) = 0$ and $u_1(K) = u(K)$. Leep proved that these system u-invariants satisfy the inequalities

$$u_r(K) \leq ru(K) + u_{r-1}(K) \leq \frac{r(r+1)}{2}u(K)$$

for any integer $r \ge 1$. Using systems of quadratic forms, he further showed that $u(L) \le \frac{[L:K]+1}{2}u(K)$ holds for an arbitrary finite field extension L/K. (See [9, Chap. 2, Sect. 16] for these and more facts on systems on quadratic forms.) In the same vein the following result was obtained in [7, (3.6)].

2.1 Proposition. Let Δ be a division algebra over K, σ an involution on Δ , and $\varepsilon \in K$ with $\varepsilon \sigma(\varepsilon) = 1$. Then

$$u(\Delta, \sigma, \varepsilon) \leqslant \frac{u_r(k)}{m^2[K:k]} \leqslant \frac{r(r+1)}{2m^2[K:k]} \cdot u(k)$$

where $k = \{x \in K \mid \sigma(x) = x\}$, $m = \deg(\Delta)$ and $r = \dim_k(\operatorname{Sym}^{\varepsilon}(\Delta, \sigma))$. In particular, if $u(k) < \infty$, then $u(\Delta, \sigma, \varepsilon) < \infty$.

In this article, we are mainly concerned with the *u*-invariant of an involution of the first kind. Assume that σ is an involution of the first kind on the division algebra Δ over K. In this case $\Delta \otimes_K \Delta$ is isomorphic to a matrix algebra and $\varepsilon = \pm 1$. In [7] it is explained that $u(\Delta, \sigma, \varepsilon)$ only depends on ε and on the type of σ , i.e., whether it is orthogonal or symplectic. More precisely, given two involutions of the first kind σ and τ on Δ one has $u(\Delta, \sigma, \varepsilon) = u(\Delta, \tau, \varepsilon)$ if σ and τ are of same type and $u(\Delta, \sigma, \varepsilon) = u(\Delta, \tau, -\varepsilon)$ if they are of opposite type. We define

$$u^+(\Delta) = u(\Delta, \sigma, +1)$$
 and $u^-(\Delta) = u(\Delta, \sigma, -1)$

with respect to an arbitrary orthogonal involution σ on Δ , as these numbers do not depend on the choice of σ . We call $u^+(\Delta)$ the orthogonal and $u^-(\Delta)$ the symplectic u-invariant of Δ . By the previous, for any symplectic involution τ on Δ one has $u(\Delta, \tau, \varepsilon) = u^{-\varepsilon}(\Delta)$.

Let us briefly turn to the case of an involution σ of the second kind. It turns out that $u(\Delta, \sigma, \varepsilon)$ depends only on the field $k = \{x \in K \mid \sigma(x) = x\}$, and in particular it does not depend on ε at all.

Let $i \in \mathbb{N}$. Using (2.1) one can obtain estimates for the *u*-invariants of division algebras with involution over a C_i -field. We recall some facts from Tsen-Lang Theory, following [9, Chap. 2, Sect. 15]. A field K is called a C_i -field if every homogeneous polynomial over K of degree d in more than d^i variables has a nontrivial zero. The natural examples of C_i -fields are extensions of transcendence degree i of an arbitrary algebraically closed field and (for i > 0) extensions of transcendence degree i - 1 of a finite field. A result due to Lang and Nagata states that if K is a C_i -field then $u_r(K) \leq r \cdot 2^i$ for any $r \in \mathbb{N}$ (cf. [9, Chap. 2, (15.8)]). In [8, Chap. 5], variations of the C_i -property and open problems in this context are discussed.

2.2 Corollary. Let K be a C_i -field and let Δ be a division algebra of exponent 2 and of degree m over K. Then $u^+(\Delta) \leq 2^{i-1} \cdot \frac{m+1}{m}$ and $u^-(\Delta) \leq 2^{i-1} \cdot \frac{m-1}{m}$.

Proof: We use (2.1) and the fact that $u_r(k) \leq 2^i r$.

2.3 Corollary. Let K be a C_i -field. Let Δ be a quaternion division algebra over K. Then $u^+(\Delta) \leq 3 \cdot 2^{i-2}$ and $u^-(\Delta) \leq 2^{i-2}$.

Example (5.4) will show that the first bound in (2.3) is sharp. For the second bound, we leave this as an easy exercise. In fact, determining the symplectic u-invariant of a quaternion algebra is a pure quadratic form theoretic

problem in view of Jacobson's Theorem [9, Chap. 10, (1.1)], which relates skew-hermitian forms over a quaternion algebra with canonical involution to quadratic forms over the center. This is why our investigation for quaternion algebras concentrates on the orthogonal *u*-invariant.

3 Kneser's Theorem

In this section, we give an upper bound on the u-invariant of a division algebra with involution in terms of the number of 1-dimensional (skew-)hermitian forms, under a condition on the levels of certain subalgebras. This extends an observation due to Kneser [4, Chap. XI, (6.4)] on the commutative case.

From [6] we recall the definition of the level of an involution. Let σ be an involution on a central simple algebra Δ over K. The *level of* σ is defined as

$$s(\Delta, \sigma) = \sup \{ m \in \mathbb{N} \mid m \times \langle 1 \rangle \text{ is anisotropic over } (\Delta, \sigma) \}$$

in $\mathbb{N} \cup \{\infty\}$. Whenever $s(\Delta, \sigma)$ is finite, it is equal to the smallest number m for which -1 can be written as a sum of m hermitian squares over (Δ, σ) .

3.1 Theorem. Let Δ be a division algebra over K equipped with an involution σ . Let $\varepsilon \in K$ be such that $\sigma(\varepsilon)\varepsilon = 1$. Let ψ be an ε -hermitian form over (Δ, σ) and let $\alpha \in D^{\times}$ be such that $\sigma(\alpha) = \varepsilon \alpha$. Let $C_D(\alpha)$ be the centralizer of $K(\alpha)$ in Δ . Suppose that $s(C_{\Delta}(\alpha), \sigma|_{C_{\Delta}(\alpha)}) < \infty$. If $\varphi = \psi \perp \langle \alpha \rangle$ is anisotropic then $D(\psi) \subsetneq D(\varphi)$.

Proof: We write $0 = \sigma(d_0)d_0 + \cdots + \sigma(d_s)d_s$ with $s = s(C_{\Delta}(\alpha), \sigma|_{C_{\Delta}(\alpha)})$ and $d_0, \ldots, d_s \in C_{\Delta}(\alpha) \setminus \{0\}$. We suppose that $D(\psi) = D(\varphi)$ and want to conclude that φ is isotropic. We claim that $\alpha \cdot (\sigma(d_0)d_0 + \cdots + \sigma(d_i)d_i) \in D(\varphi)$ for any $0 \leq i \leq s$. For i = s this yields that φ is isotropic.

For i = 0, the elements α and $\alpha \sigma(d_0)d_0$ are indeed represented by φ . Let now $1 \leq i \leq s$ and assume that the claim is established for i - 1. With $\alpha(\sigma(d_0)d_0 + \cdots + \sigma(d_{i-1})d_{i-1}) \in D(\varphi) = D(\psi)$, we obtain readily that $\alpha(\sigma(d_0)d_0 + \cdots + \sigma(d_{i-1})d_{i-1}) + \alpha\sigma(d_i)d_i \in D(\varphi)$, finishing the argument. \Box

3.2 Corollary. Assume that $s(C_{\Delta}(K(\alpha)), \sigma) < \infty$ for every $\alpha \in \text{Sym}^{\varepsilon}(\Delta, \sigma)$. Then $u(\Delta, \sigma, \varepsilon) \leq |\text{Herm}_{1}^{\varepsilon}(\Delta, \sigma)|$.

Proof: Let $h \simeq \langle a_1, \ldots, a_n \rangle$ be an anisotropic ε -hermitian form of dimension n over (Δ, σ) . Let $h_i = \langle a_1, \ldots, a_i \rangle$ for $i = 1, \ldots, n$. By (3.1) we have

 $D(h_1) \subsetneq D(h_2) \subsetneq \cdots \subsetneq D(h_n) = D(h)$. We conclude that h represents at least n pairwise incongruent elements of $\operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$, i.e. $|\operatorname{Herm}_1^{\varepsilon}(\Delta, \sigma)| \ge n$. Therefore we have $|\operatorname{Herm}_1^{\varepsilon}(\Delta, \sigma)| \ge u(\Delta, \sigma, \varepsilon)$.

3.3 Remark. The hypothesis of (3.2) is trivially satisfied if the subfield of K consisting of the elements fixed by σ is nonreal; this is for example the case whenever σ is of the first kind and K is a nonreal field.

3.4 Example. Let p be a prime number different from 2 and let Q denote the unique quaternion division algebra over \mathbb{Q}_p . Then it follows from [9, Chap. 10, (3.6)] that $u^+(Q) = |\operatorname{Herm}_1^{-1}(Q,\gamma)| = 3$ (see also (4.9), below). Let now m be a positive integer and $K = \mathbb{Q}_p((t_1)) \dots ((t_m))$. Then Q_K is a quaternion division algebra over K and $u^+(Q_K) = |\operatorname{Herm}_1^{-1}(Q_K,\gamma)| = 3 \cdot 2^m$. This follows from the fact that the u-invariant(s) and the number of 1-dimensional ε -hermitian forms over a division algebra defined over a field K both double when the center is extended from K to K((t)).

The upper bound on the *u*-invariant obtained in (3.2) motivates to look for criteria for the finiteness of $\operatorname{Herm}_1^{\varepsilon}(\Delta, \sigma)$ where Δ is a division algebra over K, σ an involution on Δ , and $\varepsilon = \pm 1$. We conjecture that $|\operatorname{Herm}_1^{\varepsilon}(\Delta, \sigma)| < \infty$ is equivalent to $|K^{\times}/K^{\times 2}| < \infty$. In the next section we shall confirm this in the case of skew-hermitian forms over a quaternion division algebra.

4 Congruence of pure quaternions

From this section on we consider a quaternion division algebra Q over K. Let γ denote the canonical involution of Q, π the norm form of Q and π' its pure part, so that $\pi = \langle 1 \rangle \perp \pi'$. By a *skew-hermitian form over* Q we always mean a regular skew-hermitian form over (Q, γ) . In this section we want to describe $\operatorname{Herm}_{1}^{-1}(Q, \gamma)$.

Following [10] the discriminant of a skew-hermitian form h over Q is defined as the square class disc $(h) = (-1)^n \operatorname{Nrd}((h(x_i, x_j)))K^{\times 2}$ in $K^{\times}/K^{\times 2}$ where (x_1, \ldots, x_n) is an arbitrary Δ -basis of the underlying vector space and where $\operatorname{Nrd}: M_n(\Delta) \to K$ denotes the reduced norm.

4.1 Remark. For $a \in K^{\times}$, there exists a skew-hermitian form of dimension 1 and discriminant a over Q if and only if -a is represented by the pure part of the norm form of Q. In particular, any 1-dimensional skew-hermitian form over Q has nontrivial discriminant.

4.2 Proposition. Skew-hermitian forms of dimension 1 over Q are classified up to similarity by their discriminants.

Proof: More generally, similar skew-hermitian forms over Q have the same discriminant. Assume now that $z_1, z_2 \in Q^{\times}$ are pure quaternions such that the discriminants of the skew-hermitian forms $\langle z_1 \rangle$ and $\langle z_2 \rangle$ coincide. Hence there exists $d \in K^{\times}$ such that $z_2^2 = d^2 z_1^2 = (dz_1)^2$. Therefore the pure quaternions z_2 and dz_1 are congruent in Q, i.e. there exists $\alpha \in Q^{\times}$ such that $dz_1 = \alpha^{-1} z_2 \alpha$. Multiplying this equality with $\operatorname{Nrd}(\alpha) = \gamma(\alpha)\alpha$, if follows that $(\operatorname{Nrd}(\alpha)d)z_1 = \gamma(\alpha)z_2\alpha$. With $c = (\operatorname{Nrd}(\alpha)d) \in K^{\times}$ we obtain that $\langle cz_1 \rangle \simeq \langle z_2 \rangle$, so $\langle z_1 \rangle$ and $\langle z_2 \rangle$ are similar.

4.3 Remark. A closer look at the above argument yields the following refinement. Let G be a subgroup of K^{\times} containing $\operatorname{Nrd}(Q^{\times})$. Two 1-dimensional skew-hermitian forms are obtained one from each other by scaling with an element of G if and only if their discriminants coincide in K^{\times}/G^2 .

4.4 Lemma (Scharlau). Let $\lambda, \mu \in Q^{\times}$ be anticommuting elements, in particular $Q = (a, b)_K$ for $a = \lambda^2, b = \mu^2 \in K^{\times}$. Let $c \in K^{\times}$. The skew-hermitian forms $\langle \lambda \rangle$ and $\langle c\lambda \rangle$ over Q are isometric if and only if c is represented over K by one of the quadratic forms $\langle 1, -a \rangle$ and $\langle b, -ab \rangle$ over K.

Proof: See [9, Chap. 10, (3.4)].

The following result was obtained in [5], in slightly different terms.

4.5 Proposition (Lewis). Let $\lambda \in Q^{\times}$ be a pure quaternion. We consider $\operatorname{Herm}_{1}^{-1}(Q, \gamma)$ as a pointed set with the isometry class of $\langle \lambda \rangle$ as distinguished point. With $L = K(\lambda)$ and $a = \lambda^{2} \in K^{\times}$, one obtains an exact sequence

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow K^{\times}/N_{L/K}(L^{\times}) \xrightarrow{\cdot \lambda} \operatorname{Herm}_{1}^{-1}(Q,\gamma) \xrightarrow{(-a)\operatorname{Nrd}} K^{\times}/K^{\times 2}$$

Proof: Let $b \in K^{\times}$ be such that $Q = (a, b)_K$. By (4.4) the group of elements $x \in K^{\times}$ such that $\langle x\lambda \rangle \simeq \langle \lambda \rangle$ coincides with $N_{L/K}(L^{\times}) \cup bN_{L/K}(L^{\times})$. This proves the exactness in the first two terms. The exactness at $\operatorname{Herm}_1^{-1}(Q, \gamma)$ follows from (4.2).

4.6 Remark. We sketch an alternative, cohomological argument for the exact sequence in (4.5), which has been pointed out to us by J.-P. Tignol. Let $\rho = Int(\lambda) \circ \gamma$. First note that $\operatorname{Herm}_{1}^{-1}(Q, \gamma)$ can be identified with

Herm¹₁(Q, ρ) = $H^1(K, O(\rho))$ where $O(\rho) = \{x \in Q \mid \rho(x)x = 1\}$. By [3, Chap. VII, §29], there is an exact sequence $1 \to O^+(\rho) \to O(\rho) \to \mu_2 \to 1$. Moreover, we have $O^+(\rho) = L^1 = \{x \in L \mid N_{L/K}(x) = 1\}$. This yields the exact sequence $1 \to \mu_2 \to H^1(K, L^1) \to H^1(K, O(\rho)) \to K^{\times}/K^{\times 2}$. Using that $H^1(K, L^1) \simeq K^{\times}/N_{L/K}(L^{\times})$ we obtain the sequence in (4.5).

4.7 Proposition. Let $S = \{aK^{\times 2} \mid a \in D(\pi')\} \subseteq K^{\times}/K^{\times 2}$. For $\alpha \in S$ let $H_{\alpha} = \{h \in \operatorname{Herm}_{1}^{-1}(Q, \gamma) \mid \operatorname{disc}(h) = \alpha\}$. Then $\operatorname{Herm}_{1}^{-1}(Q, \gamma) = \bigcup_{\alpha \in S} H_{\alpha}$, in particular $|\operatorname{Herm}_{1}^{-1}(Q, \gamma)| = \sum_{\alpha \in S} |H_{\alpha}|$. Moreover, for any $\alpha = aK^{\times 2} \in S$ one has $|H_{\alpha}| \leq \frac{1}{2} |K^{\times}/N_{L/K}(L^{\times})|$ with $L = K(\sqrt{-a})$.

Proof: The first part is clear. For $\alpha \in S$, there is a pure quaternion $\lambda \in Q^{\times}$ with disc $(\langle \lambda \rangle) = -\alpha$, and (4.5) applied to $L = K(\lambda)$ yields the last part. \Box

4.8 Corollary. Let $S = \{aK^{\times 2} \mid a \in D(\pi')\}$ and let \mathcal{L} be the set of maximal subfields of Q. Then

$$\left|\operatorname{Herm}_{1}^{-1}(Q,\gamma)\right| \leq \frac{1}{2} \sup_{L \in \mathcal{L}} \left|K^{\times}/N_{L/K}(L^{\times})\right| \cdot |S|$$

Proof: This is immediate from (4.7).

4.9 Remark. We keep the notation of (4.8). Kaplansky showed in [1] that Q is the unique quaternion division algebra over K if and only if

$$\sup_{L \in \mathcal{L}} \left| K^{\times} / N_{L/K}(L^{\times}) \right| = 2.$$

If this condition holds, then (4.8) yields $|\operatorname{Herm}_{1}^{-1}(Q,\gamma)| \leq |S|$, and as the converse inequality follows from (4.7), we obtain that $|\operatorname{Herm}_{1}^{-1}(Q,\gamma)| = |S|$. This applies in particular to any local field. Moreover, if K is a non-dyadic local field, then $|K^{\times}/K^{\times 2}| = 4$ and |S| = 3, so that we obtain immediately that $u^{+}(Q) = |\operatorname{Herm}_{1}^{-1}(Q,\gamma)| = |S| = 3$.

4.10 Theorem. Herm₁⁻¹(Q, γ) is finite if and only if $K^{\times}/K^{\times 2}$ is finite.

Proof: Let $S = \{aK^{\times 2} \mid a \in D(\pi')\}$. We fix a pure quaternion λ in Q and put $L = K(\lambda)$.

Assume that $K^{\times}/K^{\times 2}$ is finite. Then S is finite. For $\alpha = aK^{\times 2}$, there is a surjection from H_{α} to the group $K^{\times}/N_{L/K}(L^{\times})$, where $L = K(\sqrt{-a})$, and this group is a quotient of $K^{\times}/K^{\times 2}$. Therefore H_{α} is finite for any $\alpha \in S$. Since S is also finite, it follows that $\operatorname{Herm}_{1}^{-1}(Q, \gamma) = \bigcup_{\alpha \in S} H_{\alpha}$ is finite.

Suppose now that $\operatorname{Herm}_{1}^{-1}(Q, \gamma)$ is finite. Then $K^{\times}/N_{L/K}(L^{\times})$ is finite by (4.5). As $K^{\times}/\operatorname{Nrd}(Q^{\times})$ is a quotient of this group, it is also finite. Moreover, the image of disc : $\operatorname{Herm}_{1}^{-1}(Q, \gamma) \longrightarrow K^{\times}/K^{\times 2}$ is finite, which means that S is finite. Since the group of reduced norms $\operatorname{Nrd}(Q^{\times})$ is generated by the elements of $D(\pi')$, it follows that $\operatorname{Nrd}(Q^{\times})/K^{\times 2}$ is finite. Hence, $K^{\times}/K^{\times 2}$ is finite. \Box

5 Anisotropic forms of dimension three

We keep the setting of the previous section. In this section we show that 3-dimensional anisotropic skew-hermitian forms over Q do exist except for a few exceptional cases.

5.1 Lemma. Let $x, y, z \in Q^{\times}$ be pure quaternions. If $\operatorname{Nrd}(xyz) \notin D(\pi')$, then the skew-hermitian form $\langle x, y, z \rangle$ over Q is anisotropic.

Proof: If $\langle x, y, z \rangle$ is isotropic, then $\langle x, y, z \rangle \simeq \mathbb{H} \perp \langle w \rangle$ for some pure quaternion $w \in Q^{\times}$ and it follows that $\operatorname{Nrd}(xyz) = \operatorname{Nrd}(w) \in D(\pi')$.

Recall that a *preordering* of a field K is a subset $T \subseteq K$ that is closed under addition and under multiplication and contains all squares in K.

5.2 Theorem. The following are equivalent:

- (1) $D(\pi') \cup \{0\}$ is a preordering of K.
- (2) $D(\pi')$ is closed under multiplication.
- (3) $D(\pi') = D(\pi)$.
- (4) For any $a, b, c \in D(\pi')$ one has $abc \in D(\pi')$.

If any of these conditions holds, then K is a real field and $Q_{K(\sqrt{-1})}$ is split.

Proof: By the definition of a preordering, (1) implies (2). Since any element of Q is a product of two pure quaternions, the group of nonzero norms $D(\pi)$ is generated by the elements of $D(\pi')$. Therefore (2) implies (3). Since $D(\pi)$ is always a group, it is clear that (3) implies (4).

Assume now that (4) holds. Take a diagonalisation $\pi' \simeq \langle a, b, c \rangle$. Then $a, b, c \in D(\pi')$, so (4) yields that $abc \in D(\pi')$. Since π' has determinant 1, we have $abc \in K^{\times 2}$ and conclude that $1 \in D(\pi')$. Fixing $c = 1 \in D(\pi')$ we conclude from (4) that $D(\pi')$ is closed under multiplication. Hence (2) and (3) are satisfied. For $a, b \in D(\pi')$, we have $a^{-1}b \in D(\pi')$, whence $1 + a^{-1}b \in D(\pi) = D(\pi')$ by (3) and $a + b = a(1 + a^{-1}b) \in D(\pi')$ by (2). Hence $D(\pi')$ is closed under addition. Therefore $D(\pi') \cup \{0\}$ is a preordering, showing (1). Since $\pi = \langle 1 \rangle \perp \pi'$ is anisotropic, this preordering does not contain -1, so K is real. Moreover, $Q_{K(\sqrt{-1})}$ is split because $1 \in D(\pi')$.

5.3 Corollary. If K is nonreal or if $Q_{K(\sqrt{-1})}$ is a division algebra or if $D(\pi) \neq D(\pi')$, then $u^+(Q) \ge 3$.

Proof: By (5.2), in each case there are $a, b, c \in D(\pi')$ with $abc \notin D(\pi')$. With pure quaternions $x, y, z \in Q$ such that Nrd(x) = a, Nrd(y) = b, and Nrd(z) = c, the skew-hermitian form $\langle x, y, z \rangle$ is anisotropic by (5.1).

5.4 Example. Let $k = \mathbb{C}(X_1, X_2)$, $Q = (X_1, X_2)$, and $K = \mathbb{C}(X_1, \ldots, X_n)$ for some $n \ge 2$. Then Q_K is a division algebra and $u^+(Q_K) \le 3 \cdot 2^{n-2}$ by (2.3), because K is a \mathcal{C}_n -field. By (5.3), there is an anisotropic 3-dimensional skew-hermitian form h over Q. Multiplying this form h with the quadratic form $\langle 1, X_3 \rangle \otimes \cdots \otimes \langle 1, X_n \rangle$ over K, we obtain a skew-hermitian form of dimension $3 \cdot 2^{n-2}$ over Q_K . Therefore $u^+(Q_K) = 3 \cdot 2^{n-2}$.

6 Kaplansky fields

Kaplansky [1] noticed that most statements about quadratic over local fields remain valid over what he called 'generalized Hilbert fields', which are called 'pre-Hilbert fields' in [4, Chap. XII, Sect. 6]. As the relation to Hilbert's work is vague (based on the notion of 'Hilbert symbol' for a local field), we use the term 'Kaplansky field' instead. To be precise, K is called a *Kaplansky field* if there is a unique quaternion division algebra over K (up to isomorphism). Natural examples of such fields are local fields and real closed fields. For the construction of other examples we refer to [4, Chap. XII, Sect. 7].

Tsukamoto [10] obtained a classification for skew-hermitian forms over the unique quaternion division algebra over a field K that is either real closed or a local number field. As observed in [10], the same result holds more generally under the condition that the field K satisfies 'local class field theory'. In this section we show that Tsukamoto's classification for skewhermitian forms over a quaternion division algebra Q over K is valid whenever K is a Kaplansky field, which is a strictly weaker condition. The proof is adapted from [10] and [9, Chap. 10, (3.6)].

6.1 Lemma. Let K be a Kaplansky field and let Q be the unique quaternion division algebra over K. For any pure quaternion $\lambda \in Q^{\times}$ and any $d \in K^{\times}$ we have $\langle \lambda \rangle \simeq \langle d\lambda \rangle$ as skew-hermitian forms over Q.

Proof: Let $\mu \in Q^{\times}$ be such that $\mu \lambda = -\lambda \mu$. Then $Q \simeq (a, b)_K$ for $a = \lambda^2$ and $b = \mu^2$. Assume that there exists $d \in K^{\times}$ with $\langle \lambda \rangle \not\simeq \langle d\lambda \rangle$. By (4.4), none of the forms $\langle 1, -a \rangle$ and $\langle b, -ab \rangle$ represents d. Then $(a, d)_K$ is a quaternion division algebra and not isomorphic to Q, contradicting the hypothesis. \Box

6.2 Theorem (Tsukamoto). Let K be a Kaplansky field and let Q be the unique quaternion division algebra over K.

- (a) Any skew-hermitian form of dimension at least 4 over Q is isotropic.
- (b) Skew-hermitian forms over Q are classified by their dimension and discriminant.
- (c) A 2-dimensional skew-hermitian form over Q is isotropic if and only if it has trivial discriminant.
- (d) Any 3-dimensional skew-hermitian form over Q with trivial discriminant is anisotropic.

Proof: Let γ denote the canonical involution on Q. We first show that 1dimensional skew-hermitian forms over Q are classified by the discriminant. Let $z_1, z_2 \in \text{Sym}^-(Q, \gamma)$ and assume that the skew-hermitian forms $\langle z_1 \rangle$ and $\langle z_2 \rangle$ over Q have the same discriminant. According to (4.2), then $\langle z_1 \rangle \simeq \langle cz_2 \rangle$ for some $c \in K$. Since also $\langle z_2 \rangle \simeq \langle cz_2 \rangle$ by (6.1), we obtain that $\langle z_1 \rangle \simeq \langle z_2 \rangle$.

(a) Let $z_1, z_2 \in \text{Sym}^-(Q, \gamma)$ be such that the skew-hermitian form $\langle z_1, z_2 \rangle$ over Q has trivial discriminant. Then $\text{Nrd}(z_1)$ and $\text{Nrd}(z_2)$ represent the same class in $K^{\times}/K^{\times 2}$. This means that the 1-dimensional forms $\langle z_1 \rangle$ and $\langle -z_2 \rangle$ have the same discriminant, whence $\langle z_1 \rangle \simeq \langle -z_2 \rangle$ by what we showed above.

(b) Let φ be a 3-dimensional skew-hermitian form over Q. If φ is isotropic, then $\varphi \simeq \mathbb{H} \perp \langle a \rangle$ where $a \in \text{Sym}^-(Q, \gamma)$, and it follows that φ has the same discriminant as $\langle a \rangle$, which cannot be trivial by part (a).

(c) Let φ be a 4-dimensional skew-hermitian form over Q. There exist $a_1, \ldots, a_4 \in \operatorname{Sym}^-(Q, \gamma)$ with $\varphi \simeq \langle a_1, a_2, a_3, a_4 \rangle$. As $\dim_K(\operatorname{Sym}^-(Q, \gamma)) = 3$, there exist $c_1, \ldots, c_4 \in K$, not all zero, such that $c_1a_1 + c_2a_2 + c_3a_3 + c_4a_4 = 0$. By the first paragraph of the proof, for $1 \leq i \leq 4$ there is some $d_i \in Q$ with $c_i a_i = \gamma(d_i) a_i d_i$. Then $\sum_{i=1}^4 \gamma(d_i) a_i d_i = 0$ and thus φ is isotropic.

(d) Let φ and ψ be two *n*-dimensional skew-hermitian forms over Q for some $n \ge 1$, and assume that both forms have the same discriminant. By (b), the 2*n*-dimensional form $\varphi \perp -\psi$ then splits off n-1 hyperbolic planes. The remaining 2-dimensional form has trivial discriminant and thus is hyperbolic by (a). Therefore $\varphi \perp -\psi$ is hyperbolic, which means that $\varphi \simeq \psi$.

6.3 Corollary. Let Q be a quaternion division algebra over K. Skewhermitian forms over Q are classified by dimension and discriminant if and only if K is a Kaplansky field.

Proof: By (6.2) the condition is sufficient. To show its necessity, suppose that Q is not the unique quaternion division algebra over K. By (4.9), there exists $\lambda \in Q \setminus K$ such that, for the field $L = K(\lambda) \subseteq Q$, the index of $N_{L/K}(L^{\times})$ in K^{\times} is at least 4. Let $a, b \in K^{\times}$ be such that $\lambda^2 = a$ and $Q \simeq (a, b)_K$. Now, there exists $c \in K^{\times}$ such that neither c nor bc is a norm of L/K. Then the two 1-dimensional skew-hermitian forms $\langle \lambda \rangle$ and $\langle c\lambda \rangle$ over Q have the same discriminant, but they are not isometric by (4.4).

6.4 Corollary. Let K be a nonreal Kaplansky field and let Q be the unique quaternion division algebra over K. Then $u^+(Q) = 3$.

Proof: we have $u^+(Q) \leq 3$ by (6.2) and $u^+(Q) \geq 3$ by (5.3).

The field K is said to be *euclidean* if $K^{\times 2} \cup \{0\}$ is an ordering of K, or equivalently, if K is real and $K^{\times} = K^{\times 2} \cup -K^{\times 2}$ (cf. [4, Chap. VIII, (4.2)]). If K is euclidean, then $(-1, -1)_K$ is the unique quaternion division algebra over K, in particular K is a Kaplansky field.

6.5 Proposition. Let Q be a quaternion division algebra over K and γ its canonical involution. The following are equivalent:

- (1) $u^+(Q) = 1.$
- (2) $|\operatorname{Herm}_{1}^{-1}(Q, \gamma)| = 1.$
- (3) K is euclidean and $Q \simeq (-1, -1)_K$.

Proof: The equivalence of (1) and (2) is clear. If (3) holds, then K is a Kaplansky field and any 1-dimensional skew-hermitian form over Q has trivial discriminant, and by (6.2) this implies (2).

Suppose that (1) and (2) hold. From (2) it follows that $D(\pi') = K^{\times 2}$, whence $\pi' \simeq \langle 1, 1, 1 \rangle$ and $\sum K^{\times 2} = K^{\times 2}$. Therefore $Q \simeq (-1, -1)_K$ and $-1 \notin K^{\times 2} = \sum K^{\times 2}$ as Q is not split. So K is real. To prove (3), it remains to show that $K^{\times} = K^{\times 2} \cup -K^{\times 2}$. We fix $i \in Q$ with $i^2 = -1$ and L = K(i). For any $a \in K^{\times}$, the skew-hermitian form $\langle i, -ai \rangle$ over Q is isotropic by (1), whence $a \in N_{L/K}(L^{\times}) \cup -N_{L/K}(L^{\times}) = K^{\times 2} \cup -K^{\times 2}$ by (4.4). \Box

6.6 Proposition. Let K be a real Kaplansky field and let $Q = (-1, -1)_K$. Then $u^+(Q) \leq 2$.

Proof: Let *i* be a pure quaternion in Q with $i^2 = -1$. By (6.2), the skewhermitian form $\langle i, i \rangle$ over Q is isotropic. We claim that every 2-dimensional skew-hermitian form over Q is isometric to $\langle i, z \rangle$ for some pure quaternion $z \in Q^{\times}$. Once this is shown, it follows that every 3-dimensional skew-hermitian form over Q contains $\langle i, i \rangle$ and therefore is isotropic.

Let h be a 2-dimensional skew-hermitian form over Q. We write $\operatorname{disc}(h) = aK^{\times 2}$ with $a \in K^{\times}$. Then $a \in \operatorname{Nrd}(Q^{\times})$ and a is a sum of four squares in K. Since K is a real Kaplansky field, the quaternion algebra $(-1, a)_K$ is split, because it is not isomorphic to $(-1, -1)_K$. Therefore a is a sum of two squares in K. It follows that there is a pure quaternion z in Q with $\operatorname{Nrd}(z) = a$. Then the skew-hermitian form $\langle i, z \rangle$ over Q has discriminant a and is therefore isometric to h, by (6.2).

6.7 Example. Let K be a maximal subfield of \mathbb{R} with $2 \notin K^{\times 2}$. Then K is a real field with four square classes represented by $\pm 1, \pm 2$, and $Q = (-1, -1)_K$ is the unique quaternion division algebra over K. Since $Q \simeq (-1, -2)_K$, there are anticommuting pure quaternions $\alpha, \beta \in Q$ with $\alpha^2 = 1$ and $\beta^2 = 2$. Then the skew-hermitian form $\langle \alpha, \beta \rangle$ over Q has nontrivial discriminant $2K^{\times 2}$, so it is anisotropic. This together with (6.6) shows that $u^+(Q) = 2$.

6.8 Theorem. Let K be a Kaplansky field and let Q be the unique quaternion division algebra over Q. Then

$$u^{+}(Q) = \begin{cases} 1 & if K is real euclidean, \\ 2 & if K is real non-euclidean, \\ 3 & if K is nonreal. \end{cases}$$

Proof: This follows from (6.2), (6.5), (6.6), and (5.3).

Acknowledgements

We wish to express our gratitude to David Lewis and to Jean-Pierre Tignol for inspiring discussions on the subject of this work. We further wish to acknowledge financial support provided by the European RTN Network 'Algebraic K-Theory, Linear Algebraic Groups and Related Structures' (HPRN CT-2002-00287), the Swiss National Science Foundation (Grant No. 200020-100229/1), the Irish Research Council for Science (Basic Research Grant SC/02/265), and the Research Council of Sharif University of Technology.

References

- I. Kaplansky. Fröhlich's local quadratic forms. J. Reine Angew. Math. 239/240 (1969): 74–77.
- [2] M.-A. Knus. Quadratic and Hermitian forms over rings. Grundlehren der Mathematischen Wissenschaften, 294. Springer-Verlag, Berlin, 1991.
- [3] M.-A. Knus, S. A. Merkurjev, M. Rost, J.-P. Tignol. *The Book of Involutions*. American Mathematical Society Colloquium Publications, 44. Providence, RI, 1998.
- [4] T. Y. Lam, Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics, 67. American Mathematical Society, Providence, RI, 2005.
- [5] D. W. Lewis. Quadratic forms, quaternion algebras and Hilbert's theorem 90. Preprint (1979).
- [6] D. W. Lewis. Sums of Hermitian Squares. J. Algebra 115 (1988): 466– 480.
- [7] M. G. Mahmoudi. Hermitian forms and the *u*-invariant. Manuscripta Math. 116 (2005): 493–516.
- [8] A. Pfister. Quadratic forms with applications to algebraic geometry and topology. London Mathematical Society Lecture Note Series, 217. Cambridge University Press, Cambridge, 1995.

- [9] W. Scharlau. Quadratic and Hermitian forms. Grundlehren der Mathematischen Wissenschaften, 270. Springer-Verlag, Berlin, 1985.
- [10] T. Tsukamoto. On the local theory of quaternionic anti-hermitian forms.
 J. Math. Soc. Japan 13 (1961): 387–400.

Karim Johannes Becher, Fachbereich Mathematik und Statistik, D203, Universität Konstanz, 78457 Konstanz, Germany. Email: becher@maths.ucd.ie

Mohammad Gholamzadeh Mahmoudi, Department of Mathematical Sciences, Sharif University of Technology, P.O. Box: 11155-9415, Tehran, Iran. Email: mmahmoudi@sharif.ir

27 February 2008