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1 Introduction

Examples of central simple algebras of exponent 2 and of large index can
be obtained by taking tensor products of quaternion algebras. The first
essentially different examples have been given by Amitsur, Rowen, and Tignol
in [1]. They showed that, over certain ground fields, there exist (central)
division algebras of exponent 2 and of large index which are not decomposable
into a tensor product of two proper subalgebras. However, the problem to
decide whether decomposition is possible for division algebras of exponent 2
over a particular field is still interesting.

Over a field F of characteristic different from 2, Merkurjev’s Theorem (cf.
[17]) yields a good description of the 2-torsion part of the Brauer group of
F : any central simple algebra of exponent 2 over F is Brauer equivalent to a
tensor product of quaternion algebras. This, however, says only little about
the structure of a central simple algebra of exponent 2 itself, in particular, it
does not say whether the algebra is isomorphic –not only Brauer equivalent–
to a tensor product of quaternion algebras.
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Merkurjev actually noticed that division algebras of exponent 2 over F
decompose into tensor products of quaternion algebras provided that the
ground field F is of characteristic different from 2 and has cohomological
2-dimension cd2(F ) = 2; the argument is explained by Kahn in [11]. This
observation generalises a phenomenon known for local fields, totally imagi-
nary number fields, and function fields of surfaces over an algebraically closed
field: over those fields, any division algebra of exponent 2 is in fact itself a
quaternion algebra. On the other hand, there exist fields F with cd2(F ) = 2
and with a division algebra over F of exponent 2 and of large index; this
is a consequence of another famous result due to Merkurjev, concerning the
u-invariant of a field (cf. [18]).

In view of the hypothesis on the cohomological 2-dimension, Merkurjev’s
decomposability statement mentioned above can only apply to nonreal fields.
The main objective of this article is to investigate thoroughly the argument
in [11] and to extend the method and the result as far as possible, especially
to cover real fields as well. In (6.4) we show that, if cd2(F (

√
−1)) ≤ 2,

then any division algebra of exponent 2 over F which splits over every real
closure of F is isomorphic to a product of quaternion algebras; moreover, the
assumption on the behaviour of D over the real closures can be omitted if
every algebraic extension of F is an ED-field.

The restriction of the problem of decomposability to the case of algebras
of exponent 2 made in this article is imposed by the method, which depends
intrinsically on the use of quadratic forms and thus only applies to this case.
The bridge between the realm of central simple algebras of exponent 2 and
the realm of quadratic forms is established by the Clifford invariant. A
significant part of this article is devoted to the study of quadratic forms
over fields satisfying the condition that the third power of the fundamental
ideal in the associated Witt ring is torsion free. Over fields with this property,
quadratic forms are completely classified by their classical invariants (cf. [7]),
so at first glance they may seem to be perfectly understood. That this is an
illusion is highlighted by some striking open questions concerning quadratic
forms in this situation. Some of those problems will be formulated here and
several new results are obtained.

All fields considered in this article are assumed to have characteristic
different from 2. Analogues in characteristic 2 to most of the results are
likely to exist, but a special machinery will be necessary to deal with this
case. Several results obtained in this article are already known in the case
where the field is nonreal, so a special focus lies on real fields.
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2 Preliminaries

This article is based on three well-established theories which are related to
each other, namely the theory of central simple algebras, the theory of real
fields and their orderings, and quadratic form theory. In this section we fix
the terminology and collect some basic facts in these areas, and we obtain
some preliminary results.

Let F always denote a field of characteristic different from 2.

Central simple algebras

General references for the theory of central simple algebras are [5] and [20],
but also [24, Chap. 8] covers what will be used here.

An F -algebra A is said to be central simple if A is finite-dimensional over
F , if the center of A is F , and if A has no nontrivial two-sided ideals. By
Wedderburn’s Theorem, any such algebra is isomorphic to a matrix algebra
Mn(D) for some integer n ≥ 1 and a finite-dimensional central division al-
gebra D over F , both uniquely determined by A. Central simple algebras
without zero-divisors are referred to as division algebras, for short.

Two central simple algebras A and B over F are Brauer equivalent if
A ∼= Mm(D) and B ∼= Mn(D) for certain m, n ≥ 1 and the same division
algebra D over F . The Brauer group of F , denoted by Br(F ), is the set
of classes of central simple F -algebras modulo Brauer equivalence, endowed
with the operation given by the tensor product of algebras. This group
operation is commutative and it will be denoted here with a plus sign. The
neutral element of Br(F ) is the class consisting of the F -algebras which are
split, that is, isomorphic to Mn(F ) for some n ≥ 1.

Let A be a central simple algebra over F . Then
√

dimF (A) is an integer,
called the degree of A and denoted by deg(A). If D is the division algebra
over F such that A ∼= Mn(D) for some n ≥ 1, then the degree of D is called
the index of A and denoted by ind(A); we then have deg(A) = n · ind(A).
In particular, A is a division algebra if and only if ind(A) = deg(A). One
denotes by exp(A) the order of the class [A] in Br(F ). Since A⊗ind(A) is
always split, exp(A) is finite and divides ind(A). It is further known that
exp(A) and ind(A) have the same prime factors. For a field extension K/F
we denote by AK the central simple K-algebra A⊗F K. The index ind(A) is
equal to the lowest degree in which there exists a finite separable extension
K/F such that AK is split.

We say that A is decomposable if A ∼= B ⊗F C for two central simple
algebras B and C over F , both not isomorphic to F ; otherwise A is inde-
composable. If A is indecomposable, then it is a division algebra; in fact,
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A ∼= Mn(D) ∼= D ⊗F Mn(F ) gives a nontrivial decomposition as soon as
n > 1. In turn, any division algebra D over F with ind(D) = exp(D) = q is
indecomposable provided that q is a prime power.

As the exponent of any central simple algebra is finite, Br(F ) is a torsion
group. We denote by Br2(F ) the 2-torsion part of Br(F ), consisting of the
classes of central simple algebras of exponent 1 and 2.

A quaternion algebra is a central simple algebra of degree 2. Note that
a quaternion algebra over F is either a division algebra, whence of index
and exponent 2, or it is split and then isomorphic to M2(F ). Since F is
of characteristic different from 2, any quaternion algebra Q over F has an
F -basis (1, i, j, k) where i2, j2 ∈ F× and k = ij = −ji. Moreover, the algebra
Q is determined up to isomorphism by the elements a = i2 and b = j2 in F×.
In reverse, given a, b ∈ F× there exists a quaternion algebra over F with a
basis (1, i, j, k) as above where i2 = a and j2 = b. This quaternion algebra
over F is denoted by (a, b)F .

By Merkurjev’s Theorem (cf. [17]), every class in Br2(F ) is given by a
tensor product Q1⊗F

· · ·⊗
F
Qr where Q1, . . . , Qr are quaternion algebras over

F . Given a division algebra D of exponent 2 over F it is therefore natural
to ask whether D is isomorphic to a tensor product of quaternion algebras.

Albert showed that any central simple algebra of exponent 2 and degree
4 is decomposable into a product of two quaternion algebras. Such algebras
are called biquaternion algebras. This is actually the only exception to the
following phenomenon (cf. [10]): for any prime p and any integers f ≥ e ≥ 1
with (p, e, f) 6= (2, 1, 2), there exists a field F together with an indecompos-
able division algebra D over F such that exp(D) = pe and ind(D) = pf .

Real fields

For details on the theory of real fields the reader is referred to [21] and [12].

The set of non-zero sums of squares in the field F is denoted by
∑

F 2.
By definition the field F is nonreal if −1 ∈ ∑

F 2, otherwise F is real.
Recall that char(F ) 6= 2. Let X(F ) denote the set of orderings of F .

Artin-Schreier Theory yields the equality
⋂

X(F ) =
∑

F 2 ∪{0}. In particu-
lar, the field F is real if and only if it has an ordering. For any ordering P of
F we denote by FP the real closure of F at P , which is the smallest real closed
field containing F to which the ordering P extends, uniquely determined by
P up to unique F -linear order preserving isomorphism.

The set of orderings X(F ) is endowed with the topology generated by the
sets

H(a1, . . . , an) = {P ∈ X(F ) | a1, . . . , an ∈ P}
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where n ≥ 0 and a1, . . . , an ∈ F×. With this topology, X(F ) is called the
space of orderings of F . It is compact and totally disconnected (cf. [21,
(6.5)]). In particular, any open set in X(F ) is also closed and vice-versa.
The sets of the form H(a1, . . . , an) in X(F ) are called basic clopen sets.

If there is an integer s ≥ 0 such that any basic clopen set of X(F ) can
be written as H(a1, . . . , an) with a1, . . . , an ∈ F× and n ≤ s, then the least
s ≥ 0 with this property is called the stability index of F and denoted by
st(F ); if no such integer exists, then st(F ) = ∞. Note that st(F ) = 0 means
that F is either nonreal or uniquely ordered. A field F is said to have the
Strong Approximation Property (abbreviated SAP) if any open set in X(F )
is a basic clopen set. There are many equivalent characterisations for this
special situation (cf. [21, §9]); in particular a field F has SAP if and only if
st(F ) ≤ 1. In the sequel we refer to such fields as SAP-fields, for short.

A preordering of F is a subset T ( F which contains F×2 ∪ {0} and is
closed under addition and multiplication. If T is a preordering of F , then F is
a real field and T× = T \{0} is a subgroup of F× containing

∑

F 2. If F is real
then

∑

F 2 ∪ {0} is the smallest preordering of F . Given a preordering T on
F , we write XT (F ) = {P ∈ X(F ) | T ⊂ P} and obtain that

⋂

XT (F ) = T .

Quadratic forms

The standard references for quadratic form theory over fields are [14] and
[24]. When we speak about quadratic forms we always assume them to be
regular, and we often call them just forms.

Since F is of characteristic different from 2, every quadratic form over F
can be diagonalised. Given a1, . . . , an ∈ F×, one denotes by 〈a1, . . . , an〉 the
n-dimensional quadratic form a1X

2
1 + · · · + anX

2
n over F . If ϕ1 and ϕ2 are

quadratic forms over F we denote by ϕ1 ⊥ ϕ2 their orthogonal sum and by
ϕ1 ⊗ ϕ2 their product; we further write ϕ1

∼= ϕ2 to indicate that ϕ1 and ϕ2

are isometric. Given m ∈ N we write m × ϕ for the m-fold orthogonal sum
ϕ ⊥ . . . ⊥ ϕ of a form ϕ over F .

A quadratic form over F is said to be isotropic if it represents zero non-
trivially, otherwise anisotropic. The quadratic form 〈1,−1〉 is also denoted
by H and called the hyperbolic plane. It is the smallest quadratic form over
F which is isotropic. A quadratic form over F is said to be hyperbolic, if it
is isometric to i × H for some i ∈ N.

Let ϕ be a quadratic form over F . Then ϕ has a Witt decomposition

ϕ = ϕan ⊥ i × H

where ϕan is anisotropic and i ∈ N. Here, i and ϕan are uniquely determined
by ϕ. The integer i(ϕ) = i is called the Witt index of ϕ and ϕan is called
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the anisotropic part of ϕ. Two quadratic forms over F are said to be Witt
equivalent if their anisotropic parts are isometric. We denote by diman(ϕ) the
dimension of the anisotropic part of ϕ and call this the anisotropic dimension
of ϕ; in difference to the ordinary dimension, diman(ϕ) depends only on the
Witt equivalence class of ϕ. We denote by d±(ϕ) the discriminant in F×/F×2

of ϕ. A 6-dimensional form of trivial discriminant is called an Albert form.
We write ∆F (ϕ) for the set of non-zero elements of F which are represented
by ϕ. The form ϕ is said to be universal if ∆F (ϕ) = F×. Note that any
isotropic form is universal. Given a ∈ F× one writes aϕ = 〈a〉 ⊗ ϕ. A
form ψ over F is similar to ϕ if ψ ∼= aϕ for some a ∈ F×. The form ϕ is
said to be multiplicative if ϕ is hyperbolic or if it is anisotropic and satisfies
aϕ ∼= ϕ for every a ∈ ∆F (ϕ). Given a1, . . . , an ∈ F×, the n-fold Pfister
form 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 is denoted by 〈〈a1, . . . , an〉〉. Pfister forms are
multiplicative.

We denote by WF the Witt ring of F , by IF its fundamental ideal, and
by WtF the torsion part of WF . If F is nonreal then WF is a torsion group.
If in turn F is real then WtF is a proper ideal of WF , contained in IF . For
n ∈ N, we write InF = (IF )n and In

t F = WtF ∩ InF . We will often have
to deal with the condition that In

t F = 0, i.e. that InF is torsion free, for a
certain n ≥ 1.

A quadratic form ϕ over F is said to be weakly isotropic (resp. torsion),
if there exists n ≥ 1 such that n×ϕ is isotropic (resp. hyperbolic). Note that
ϕ is torsion if and only if its class in WF is a torsion element. Any nontrivial
torsion form is weakly isotropic. A form is said to be strongly anisotropic if it
is not weakly isotropic. Over a nonreal field every quadratic form is torsion.

2.1 Lemma. Assume that In+1
t F = 0 and let ϕ ∈ InF . Then:

(a) For every a ∈ ∑

F 2 one has aϕ ∼= ϕ.

(b) If ϕ is torsion, then aϕ ∼= ϕ for every a ∈ F× and ϕ is universal.

Proof: Let a ∈ F×. If a ∈ ∑

F 2 or if ϕ is torsion, then 〈1,−a〉 ⊗ ϕ ∈
In+1
t F = 0, whence aϕ ∼= ϕ. Moreover, if aϕ ∼= ϕ for every a ∈ F×, then

obviously ϕ is universal. ¤

For a quadratic form ϕ over F and a field extension K/F we denote by
ϕK the quadratic form with the same coefficients considered over K.

Let K/F be a quadratic extension such that K is nonreal. It is known
that, for any n ∈ N, one has In+1K = 0 if and only if In+1

t F = 0 and
st(F ) ≤ n (cf. [9, (2.6)]).
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Signatures

Let ϕ be a quadratic form over F . Assume that F is real and let P be an
ordering of F . We denote by signP (ϕ) the signature of ϕ at P . We say
that ϕ is indefinite at P if ϕ represents nonzero elements of P and of −P , or
equivalently, if |signP (ϕ)| < dim(ϕ). The form ϕ over F is totally indefinite if
it is indefinite at every ordering of F . Every weakly isotropic form is totally
indefinite, while the converse is not true in general. In fact, every totally
indefinite form over F is weakly isotropic if and only if F is a SAP -field.

The form ϕ over F is said to be effectively diagonalisable if it has a
diagonalisation ϕ = 〈a1, . . . , an〉 where a1 . . . , an ∈ F× are such that for
every ordering P ∈ X(F ) and 1 ≤ i ≤ j ≤ n one has signP (ai) ≥ signP (aj).
It is easy to see that any effectively diagonalisable form is totally indefinite if
and only if it contains a subform 〈a,−b〉 with a, b ∈ ∑

F 2; in particular such
a form is weakly isotropic. The field F is said to have the ED-property or to
be an ED-field if every quadratic form over F is effectively diagonalisable.
Since over an ED-field any totally indefinite form is weakly isotropic, it is
clear that the ED-property implies SAP. The field Q((t)) is a SAP -field but
not an ED-field. Hence the ED-property is even more restrictive than SAP.
Examples of ED-fields are number fields and extensions of transcendence
degree one of a real closed field. Furthermore, any nonreal field as well as
any algebraic extension of a uniquely ordered field has the ED-property. ED-
fields were introduced by Prestel and Ware in [22]. There it was also shown
that, if F is an ED-field, then so is every quadratic extension of F .

2.2 Lemma. Assume that F is a real field of stability index st(F ) < ∞. For
any quadratic form ϕ over F and any r ≥ st(F ), there exists a quadratic
form ϕ′ over F such that ϕ ≡ ϕ′ mod IrF and 0 ≤ signP (ϕ′) < 2r for all
P ∈ X(F ); moreover, the form ϕ′ is unique up to Ir

t F .

Proof: Since we may add to ϕ any multiple of the form 2r × 〈1〉 without
changing its class modulo IrF , we may assume that signP (ϕ) ≥ 0 for all
P ∈ X(F ). If now signP (ϕ) < 2r for all P ∈ X(F ), then we may take
ϕ′ = ϕ. Let H denote the set of those orderings P of F where signP (ϕ) ≥ 2r

and assume now that H 6= ∅. Note that H is a clopen subset of X(F ). We
write H = H1∪ . . .∪Hm with pairwise disjoint basic clopen sets H1, . . . , Hm.
Since r ≥ st(F ), for 1 ≤ i ≤ m there is an r-fold Pfister form πi over F such
that Hi = {P ∈ X(F ) | signP (πi) = 2r}. We put ψ = π1 + · · · + πm. Then
ψ ∈ IrF and

signP (ψ) =

{

2r for P ∈ H,
0 for P ∈ X(F ) \ H.
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It follows that ϕ ⊥ −ψ ≡ ϕ mod IrF and that ϕ ⊥ −ψ has only nonnegative
signatures, while the maximal signature of ϕ ⊥ −ψ is strictly smaller than
the maximal signature of ϕ. Continuing this signature reduction process one
finds a form ϕ′ with the desired property.

Assume finally that ϕ′′ is a second form with the properties requested for
ϕ′. Then the form ϕ′ ⊥ −ϕ′′ belongs to IrF and |signP (ϕ′ ⊥ −ϕ′′)| < 2r for
every P ∈ X(F ). This implies that signP (ϕ′ ⊥ −ϕ′′) = 0 for all P ∈ X(F ).
Therefore ϕ′ ⊥ −ϕ′′ is a torsion form in IrF . ¤

Assume that F is a real field. Given a preordering T of F , we denote

IT F = {ϕ ∈ WF | signP (ϕ) = 0 for all P ∈ XT (F )} .

It is well-known that IT F is equal to the ideal in WF which is generated by
the forms 〈1,−t〉 with t ∈ T×. For T =

∑

F 2 ∪ {0} one has IT F = ItF , by
Pfister’s Local-Global Principle. Using (2.2) we retrieve a result in [13].

2.3 Corollary. Let F be a real field, T a preordering of F , and r ≥ st(F ).
Then a quadratic form ϕ over F belongs to the ideal IrF + IT F if and only
if signP (ϕ) ≡ 0 mod 2r holds for every P ∈ XT (F ).

Proof: The condition on the signatures is necessary, by the definition of
IT F and since IrF is generated by r-fold Pfister forms, which can only have
signature equal to 0 or 2r.

Assume now that ϕ satisfies the condition on the signatures. By (2.2)
there exists a form ϕ′ over F such that ϕ ≡ ϕ′ mod IrF and |signP (ϕ′)| < 2r

for any P ∈ X(F ). Since we have ϕ′ ⊥ −ϕ ∈ IrF , the necessity of the
condition shown above yields that signP (ϕ′ ⊥ −ϕ) is divisible by 2r for
any P ∈ XT (F ), and then the same holds for signP (ϕ′). This means that
signP (ϕ′) = 0 for every P ∈ XT (F ). Thus ϕ′ ∈ IT F and ϕ ∈ IrF + IT F . ¤

2.4 Remark. The equivalence formulated in (2.3) is actually valid for any
r ∈ N. It was conjectured by Marshall and is also known as Lam’s Open
Problem B. For r ≤ 2 the equivalence is easy to show. For 2 < r < st(F ),
however, the proof uses a deep result from [19]. A short explanation of how
to derive the equivalence from that result can be found in [16].

3 The Clifford invariant

The link between quadratic forms and central simple algebras of exponent 2
is established by the Clifford invariant. This connection has been fruitfully
exploited to the study of quadratic forms, in particular by Merkurjev in his
construction of a nonreal field of cohomological 2-dimension 2 and u-invariant
2k, for arbitrary k ≥ 2.
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Merkurjev’s Theorem

For the definition and the basic properties of the Clifford invariant, especially
about the interpretation in terms of the Clifford algebra, we refer to [14,
Chap. V]. Let us briefly recall what we shall need.

Recall that char(F ) 6= 2. The Clifford invariant is a map

c : WF −→ Br2(F ) .

If ϕ is of even dimension then c(ϕ) is the class of the Clifford algebra C(ϕ)
of ϕ. In general, the Clifford invariant c(ϕ) may be calculated explicitly
from any diagonalisation of ϕ by the formulas in [24, Chap. 2, §12]. Most
important for us, for a, b ∈ F× the 2-fold Pfister form 〈〈a, b〉〉 = 〈1,−a,−b, ab〉
corresponds via this map to the quaternion algebra (a, b)F . While c is not
itself a homomorphism, simple calculations show that its restriction to I2F
is a homomorphism and that it is trivial on I3F .

In 1981 Merkurjev proved the following theorem (cf. [17]).

3.1 Theorem (Merkurjev). The homomorphism c : I2F −→ Br2(F ) is
surjective and its kernel is equal to I3F .

The surjectivity can be reformulated by saying that every central simple
algebra of exponent 2 is Brauer equivalent to a tensor product of quaternion
algebras. In particular, if F is quadratically closed, then Br2(F ) is trivial.

An algebraic extension K/F is called a 2-extension if it can be embedded
into a quadratic closure of F . For any division algebra D of exponent 2 over
F , there is a finite 2-extension K/F such that DK is split. In fact (3.1)
implies that K/F can be chosen as a multiquadratic extension, i.e. a Galois
extension with Galois group (Z/2Z)r for some r ∈ N.

3.2 Question. Let D be a division algebra of exponent 2 over F . Is there a
maximal subfield K of D such that K/F is a 2-extension?

3.3 Remark. If D is of index 2m with m ≤ 3, then there is a maximal
subfield K of D such that K/F is a Galois extension with group (Z/2Z)m,
so in particular a 2-extension. This is trivial for m = 1 and follows from
Albert’s theorem about biquaternion algebras when m = 2. For m = 3 this
is a theorem due to Rowen (cf. [23, p. 279, Exercise 32]).

Nonreal central simple algebras

Over real fields there are variants of Merkurjev’s Theorem in relation to pre-
orderings. The statement below was derived in [15, Theorem 4, Corollary]
from a conjecture that is settled in the meantime. For the reader’s conve-
nience we give the argument from a current point of view.
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3.4 Theorem (Marshall). Let T be a preordering of F . The kernel of the
map Br2(F ) −→ ∏

P∈XT (F ) Br2(FP ) is generated by the classes of quaternion

algebras of the form (t, u)F with t ∈ T× and u ∈ F×.

Proof: Any quaternion algebra (t, u)F with t ∈ T and u ∈ F× becomes
split over FP for any ordering P ∈ XT (F ), because T ⊂ F×2

P . Hence, such
a quaternion algebra represents an element of the kernel of the map in the
statement. Assume now that α is an element in this kernel. By Merkurjev’s
Theorem, there exists a form ϕ ∈ I2F such that α = c(ϕ). Since α lies
in the kernel of the map in the statement, for any P ∈ XT (F ) we have
c(ϕFP

) = 0, so ϕFP
∈ I3FP and therefore signP (ϕ) ≡ 0 mod 8. By (2.4) we

thus have ϕ ≡ ψ mod I3F for some form ψ in I2F such that signP (ψ) = 0
for all P ∈ XT (F ). Then c(ψ) = c(ϕ) = α. On the other hand, ψ is Witt
equivalent to ⊥r

i=1 〈〈ti, ui〉〉 for certain t1, . . . , tr ∈ T× and u1, . . . , ur ∈ F×.
Hence, the class α = c(ψ) is represented by

⊗r

i=1(ti, ui)F . ¤

We say that a central simple algebra A over F is nonreal, if its class lies
in the kernel of

Br(F ) −→
∏

P∈X(F )

Br(FP ) ,

that is, if A splits over every real closure of F . If F is nonreal then every
central simple algebra over F is nonreal. Note that, for any central simple
algebra A over F , all even powers A⊗2m (m ≥ 0) are nonreal; this is imme-
diate from the fact that the Brauer group of a real closed field is Z/2Z. Let
us reformulate (3.4) for the canonical preordering T =

∑

F 2 ∪ {0}.
3.5 Corollary. A central simple algebra of exponent at most 2 over F is non-
real if and only if it is Brauer equivalent to a product of quaternion algebras
of the form (s, u)F with s ∈ ∑

F 2 and u ∈ F×.

3.6 Remark. The proof of (3.4) made use of the solution to Lam’s Open
Problem B (2.4). It might be seen as a challenge to obtain an elementary
proof of (3.5). For the case where st(F ) ≤ 3, a complete argument is given
by (2.3).

3.7 Corollary. A central simple algebra over F of exponent 2r (r ≥ 0) is
nonreal if and only if it splits over the pythagorean closure of F .

Proof: Since the pythagorean closure of F is contained in every real closure
of F , the condition is obviously sufficient. To prove that it is necessary we
may assume that F is pythagorean. Now we have to show that every nonreal
algebra A over F of exponent a power of 2 is split. By (3.5) A cannot have
exponent 2. But if exp(A) = 2r with r > 0 then A⊗2r−1

is nonreal and of
exponent 2, which is impossible. Therefore exp(A) = 1, i.e. A is split. ¤
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3.8 Remark. Assume that I2
t F = 0 (e.g. F pythagorean). Then for any

s ∈ ∑

F 2 and t ∈ F× the quaternion algebra (s, t)F is split. It follows then
from (3.5) that there is no nonreal central simple algebra of exponent 2 over
F . This implies that there is no central simple algebra of exponent divisible
by 4. The latter statement is actually equivalent to I2

t F = 0, by [4, (3.3)].

3.9 Lemma. Assume that I3
t F = 0. Then every nonreal quaternion algebra

over F is of the form (s, u)F with s ∈ ∆F (〈1, 1〉) and u ∈ F×.

Proof: Let Q be a quaternion algebra over F and let π be its norm form.
Assuming that Q is nonreal, we have that π is a torsion form. Since I3

t F = 0,
it follows that π contains a 2-dimensional subform β such that 2 × β is
hyperbolic (cf. [3, (3.5)]). Then s = d±(β) ∈ ∆F (〈1, 1〉) and there is u ∈ F×

such that π ∼= 〈〈s, u〉〉, whence Q ∼= (s, u)F . ¤

Without any hypothesis on F , the conclusion of the lemma would be
wrong. To emphasise this, we recall a famous example from [2].

3.10 Example (Arason–Pfister). We consider Q = (X, 1 + Y 2 − 3X)F over
the field F = Q(X, Y ). This quaternion algebra is not isomorphic to (s, u)F

for any s ∈ ∑

F 2 and u ∈ F× (cf. [2]). However, Q is Brauer equivalent to
(3, 1 + Y 2 − 3X)F ⊗F (1 + Y 2, 3X(1 + Y 2 − 3X))F and therefore splits over
every real closure of F .

Associated forms

So far we collected results on central simple algebras describing them up to
Brauer equivalence. However, one aim of this article is to understand their
intrinsic structure. The results that will be obtained depend on hypotheses
on the base field F by conditions on I3F .

Let A be a central simple algebra over F . We say that a quadratic
form ϕ and a central simple F -algebra A are associated with each other if
ϕ ∈ I2F and if the Clifford algebra C(ϕ) is Brauer equivalent to A. By
Merkurjev’s Theorem, every central simple algebra A over F of exponent 1
or 2 is associated with some quadratic form in I2F .

3.11 Proposition. A central simple algebra A of exponent 1 or 2 over F is
nonreal if and only if A is associated with some form in I2

t F .

Proof: If A is associated with a form ϕ ∈ I2
t F , then clearly A is nonreal.

The converse implication follows from (3.5), since for any s ∈ ∑

F 2 and any
u ∈ F× the quaternion algebra (s, u)F is associated with 〈〈s, u〉〉 ∈ I2

t F and
since c : I2F −→ Br2(F ) is a homomorphism. ¤
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The following statements are well-known. Statement (b) has been a vital
ingredient of Merkurjev’s u-invariant construction.

3.12 Lemma. Let ϕ ∈ I2F with dim(ϕ) ≥ 4. Let m ≥ 1 be such that
dim(ϕ) = 2m+2 and let A be the central simple F -algebra of degree 2m such
that C(ϕ) ∼= M2(A). Then the following hold:

(a) A is decomposable into a product of m quaternion algebras.

(b) If A is a division algebra, then ϕ is anisotropic.

(c) If ϕ ∼= 〈a, b, c〉 ⊥ ψ with a, b, c ∈ F× and a form ψ of dimension 2m−1
over F , then A ∼= (−ab,−ac) ⊗ B where B is the central simple F -
algebra such that M2(B) ∼= C(ψ ⊥ 〈−abc〉). Furthermore, the form
ψ ⊥ 〈−abc〉 ∈ I2F is associated with B.

Proof: Part (c) follows from the results in [14, Chap. V, Sect. 3], and it
immediately yields (a) and (b). ¤

3.13 Corollary. Let D be a division algebra of exponent 2 over F and let
m ≥ 1 such that ind(D) = 2m. Then any form ϕ ∈ I2F associated with D
satisfies diman(ϕ) ≥ 2m+2. Furthermore, D is decomposable into a product
of quaternion algebras if and only if there exists a form ϕ ∈ I2F associated
with D such that dim(ϕ) = 2m + 2.

Proof: This is immediate from (3.12). ¤

3.14 Lemma. Assume that st(F ) ≤ 3. Then any central simple algebra
A of exponent 1 or 2 over F is associated with a form ϕ ∈ I2F such that
signP (ϕ) ∈ {0, 4} for any P ∈ X(F ). Moreover, ϕ is determined by A up to
I3
t F , and for any P ∈ X(F ) one has

signP (ϕ) =

{

0 if AFP
is split,

4 otherwise.

Proof: Let ϕ ∈ I2F be a form associated with A. Then ϕ ≡ ϕ′ mod I3F
for some form ϕ′ ∈ I2F with 0 ≤ signP (ϕ′) < 8 for all P ∈ X(F ). We now
can replace ϕ by ϕ′ and conclude that all the signatures of this form are 0
or 4. The second part of the statement is obvious. ¤
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4 Witt index and quadratic extensions

Some statements on quadratic forms can be proven by induction on the
dimension of a form by applying the induction hypothesis to the anisotropic
part over a quadratic extension of the ground field. To apply this method we
need some control on the Witt index of a form over a quadratic extension.
In this section a couple of statements serving this purpose are collected. The
results in this section depend vitally on the condition that I3

t F = 0.

4.1 Lemma. Let ϕ be an anisotropic form over F and K = F (
√

d) where
d ∈ F× \ F×2. Then:

(a) ϕK is isotropic if and only if ϕ has a subform 〈a,−ad〉 for some a ∈ F×.

(b) i(ϕK) ≥ 2 if and only if ϕ has a subform similar to a 2-fold Pfister
form which is split over K.

Proof: See [24, (2.5.1)] for (a). Part (b) follows from (a). ¤

A quadratic extension K/F is said to be totally positive if K = F (
√

d)
for some d ∈ ∑

F 2.

4.2 Proposition. Assume that I3
t F = 0 and let K/F be a totally positive

quadratic extension. Let ϕ be an anisotropic form over F , not equal to a
2-fold Pfister form. Then i(ϕK) ≤ 1.

Proof: Suppose that i(ϕK) ≥ 2. By (4.1, b) ϕ contains a form π over
F which is similar to a 2-fold Pfister form and such that πK is split. Then
π ∈ I2F and, as K/F is totally positive, π is torsion. Using (2.1, b) it follows
that π is universal and itself a 2-fold Pfister form. Since ϕ is anisotropic we
obtain that ϕ ∼= π. This contradicts the hypothesis on ϕ. ¤

The following statement is partially contained in [9, (2.3)].

4.3 Proposition. Assume that I3
t F = 0. Let K/F be a quadratic extension

and ϕ an anisotropic torsion form over F , not equal to a 2-fold Pfister form.
Then i(ϕK) ≤ 1.

Proof: Suppose that i(ϕK) ≥ 2. Then ϕ ∼= ψ ⊥ π for two forms ψ and
π over F where π is similar to a 2-fold Pfister form such that πK is split.
By the same arguments as in the last proof, π is not torsion. Using that
I3
t F = 0 and [3, (3.5)], we decompose ψ ∼= β ⊥ γ with a torsion form β and

a strongly anisotropic form γ over F . Since π and γ are strongly anisotropic
while π ⊥ γ is torsion, we have dim(γ) = dim(π) = 4. We pick an element
a ∈ ∆F (γ). Then π ⊥ 〈a〉 is a 5-dimensional subform of the 8-dimensional
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torsion form π ⊥ γ. A dimension argument shows that π ⊥ 〈a〉 is weakly
isotropic. But π ⊥ 〈a〉 is similar to a subform of a 3-fold Pfister form ρ. As
π ⊥ 〈a〉 is weakly isotropic, we obtain that ρ ∈ I3

t F = 0. Now a dimension
argument yields that π ⊥ 〈a〉 is isotropic. This is in contradiction to π ⊥ 〈a〉
being a subform of the anisotropic form ϕ. ¤

There is an application of (4.3) to the study of the u-invariant. Recall
that the u-invariant of the field F is defined as

u(F ) = sup {dim(ϕ) | ϕ anisotropic torsion form over F} .

4.4 Corollary. Assume that I3
t F = 0. Then for any quadratic extension

K/F one has u(K) ≥ u(F ) − 2.

Proof: We may assume that 4 < u(F ) < ∞. Let ϕ be an anisotropic torsion
form over F with dim(ϕ) = u(F ). Since i(ϕK) ≤ 1 by (4.3), we obtain that
u(K) ≥ diman(ϕK) ≥ dim(ϕ) − 2 = u(F ) − 2. ¤

4.5 Remark. In [9], it was shown that if I3K = 0 for K = F (
√
−1), then

u(F ) ≤ 4λ(K) + 2, where λ(K) is the symbol length of K. Note that the
condition that I3K = 0 implies on the one hand that I3

t F = 0, on the other
hand that u(K) = 2λ(K) + 2 (except in the case where u(K) = 1). Hence
u(F ) ≤ u(K) + 2, by (4.4), and thus u(F ) ≤ 2λ(K) + 4.

Over ED-fields the conclusion in the last proposition is valid not only for
torsion forms but more generally for totally indefinite forms. While in some
disguise, the following statement is contained in [9, (2.3)].

4.6 Proposition (Hoffmann). Assume that F has the ED-property and
I3
t F = 0. Let ϕ be an anisotropic, totally indefinite form over F , not equal

to a 2-fold Pfister form. Then i(ϕK) ≤ 1 for any quadratic extension K/F .

Proof: Suppose that K/F is a quadratic extension with i(ϕK) ≥ 2. Then ϕ
contains a form π similar to a 2-fold Pfister form. Let ϑ be the complement of
π in ϕ, i.e. ϕ ∼= π ⊥ ϑ. As seen before, π is strongly anisotropic. Since ϕ is
totally indefinite it is weakly isotropic, because F is an ED-field. Thus there
exists an integer m ≥ 1 such that m × π and m × (−ϑ) represent a nonzero
element c in common. Since −c is represented by m × ϑ, it follows from the
ED-property of F that −tc ∈ ∆F (ϑ) for some t ∈ ∑

F 2. Then π ⊥ 〈−tc〉
is a subform of ϕ. From the choice of c and t it follows that π ⊥ 〈−tc〉 is
weakly isotropic. But π ⊥ 〈−tc〉 is similar to a subform of a 3-fold Pfister
form ρ. As π ⊥ 〈−tc〉 is weakly isotropic, we obtain that ρ ∈ I3

t F = 0. This
yields that π ⊥ 〈−tc〉 is isotropic, contradicting that ϕ is anisotropic. ¤

The conclusion of the proposition would not hold anymore if instead of
the ED-property we assumed only SAP.
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4.7 Example. Let k be a maximal extension of Q in R such that 2 is not
a square in k. Then k is uniquely ordered and has four square classes, given
by ±1 and ±2. Let F = k((t)), the formal power series field in one variable
t over k. Now F has eight square classes, given by the set of representatives
{±1,±2,±t,±2t}. Moreover F satisfies SAP and I3

t F = 0. However F is
not an ED-field as the form 〈t,−2t〉 cannot be effectively diagonalised.

Let K = F (
√
−1) and m ≥ 2. The quadratic form ϕ = 〈1,−2〉 ⊥ 2m×〈t〉

over F is anisotropic, while 2 × ϕ is isotropic. Hence ϕ is totally indefinite
and i(ϕK) = m.

4.8 Remark. Assume that I3
t F = 0. Let K/F be a quadratic extension.

One can ask whether i(ϕK) ≤ 1 holds for every anisotropic form ϕ over F
which is weakly isotropic and not a 2-fold Pfister form. The critical case is
when the dimension is 6. In fact, if i(ϕK) ≤ 1 holds for every 6-dimensional
anisotropic weakly isotropic form ϕ over F , then this bound holds actually
for all anisotropic weakly isotropic forms except for 2-fold Pfister forms.

On the other hand, if there is a 6-dimensional anisotropic weakly isotropic
form ϕ such that i(ϕK) ≥ 2, then we can decompose ϕ = π ⊥ ϑ where π
is similar to a 2-fold Pfister form which splits over K and ϑ is of dimension
2. As seen before, π is strongly anisotropic. Let m ≥ 1. Since I3

t F = 0 it
follows that π and m× π represent exactly the same elements. In particular
ψ = ϑ ⊥ m×π is anisotropic, but weakly isotropic. Furthermore i(ψK) ≥ 2m,
because m × π splits over K.

5 Canonical forms

Given a quaternion algebra Q over F there is a canonical choice for a quad-
ratic form ϕ ∈ I2F whose Clifford invariant gives the class of Q in Br2(F ),
the norm form of Q. In general, given a central simple algebra of exponent 2
over F , Merkurjev’s Theorem only affirms the existence of a quadratic form
whose Clifford invariant is the class of that algebra. Here we are interested in
getting a good choice for this form. Several results in this section involve the
two conditions that I3

t F = 0 and st(F ) ≤ 3. Recall that, if I3F (
√
−1) = 0,

then I3
t F = 0 and st(F ) ≤ 2, so the results apply in this case.

We call a nontrivial form ϕ ∈ I2F a canonical form if ϕ is anisotropic
and if signP (ϕ) ∈ {0, 4} for every P ∈ X(F ). This notion will be interesting
essentially in the case where I3

t F = 0, as under precisely this condition a
canonical form is uniquely determined by its signatures.

5.1 Proposition. Assume that I3
t F = 0. Given a central simple algebra A

of exponent 2 over F , there is at most one canonical form associated with A.
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Proof: Assume that ϕ1 and ϕ2 are two forms over F with these properties.
Since c(ϕ1) = c(ϕ2) in Br2(F ), it follows from (3.1) that ϕ1 ⊥ −ϕ2 ∈ I3F .
Since signP (ϕ1 ⊥ −ϕ2) ∈ {−4, 0, 4} for all P ∈ X(F ), we conclude that
ϕ1 ⊥ −ϕ2 ∈ I3

t F = 0. As ϕ1 and ϕ2 are both anisotropic, it follows that
ϕ1 = ϕ2. ¤

5.2 Question. Is every division algebra of exponent 2 over F associated with
a canonical form?

5.3 Example. Let Q be a nonsplit quaternion algebra over F . Then Q is
associated with its norm form, which is a canonical form over F .

5.4 Proposition. Let D be a division algebra of exponent 2 over F . If D
is nonreal or, more generally, if there exists a quaternion algebra Q over F
such that D ⊗

F
Q is nonreal, then D is associated with a canonical form.

Proof: Assume that Q is a (possibly split) quaternion algebra over F such
that D⊗

F
Q is nonreal. By (3.11), D⊗

F
Q is associated with a form ϕ ∈ I2

t F .
Let π denote the norm form of Q and let ψ be the anisotropic part of ϕ ⊥ π.
Then c(ψ) = c(ϕ) + c(π) is the class of D in Br2(F ). It follows that ψ is a
canonical form and associated with D. ¤

5.5 Proposition. If st(F ) ≤ 3, then any division algebra of exponent 2 over
F is associated with a canonical form. If in addition I3

t F = 0, then this
gives a one-to-one correspondence between division algebras of exponent 2
and canonical forms over F .

Proof: This follows from (3.14). ¤

5.6 Remark. Let ϕ be a canonical form over F . Then, for any field exten-
sion K/F such that ϕK is not hyperbolic, the anisotropic part (ϕK)an is a
canonical form over K. Moreover, if ϕ is associated with the central simple
algebra A of exponent 2 over F and if I3

t K = 0, then (ϕK)an is the unique
canonical form over K associated with the algebra AK .

5.7 Question. Assume that I3F (
√
−1) = 0 and let D be a biquaternion

division algebra over F . Is the canonical form associated with D always of
dimension 6, i.e. is it one of the Albert forms associated with D?

5.8 Proposition. Let D be a biquaternion division algebra over F . If D con-
tains a nonreal quadratic extension of F , then D is associated to a canonical
form which is an Albert form and represents 1.
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Proof: Suppose a ∈ F× \ F×2 is such that F (
√

a) is nonreal and embeds
into D. Then −a ∈ ∑

F 2 and there is an Albert form α associated with D
containing 〈1,−a〉. It follows that α is a canonical form. ¤

If ϕ is a canonical form over F which represents 1, then we decompose
ϕ = 〈1〉 ⊥ ϕ′ and refer to ϕ′ as the pure part of ϕ. Note that this is consistent
with the notion of the pure part of a 2-fold Pfister form.

5.9 Question. Assume that I3
t F = 0. Does every canonical form over F

represent 1?

We give some sufficient conditions.

5.10 Proposition. Assume that I3
t F = 0. Let ϕ be a canonical form over

F . If there exists a quadratic form ψ over F with dim(ψ) = 4 and such that
signP (ϕ) = signP (ψ) for every P ∈ X(F ), then ϕ represents 1.

Proof: By (2.1, a) it is sufficient to show that ϕ represents an element of
∑

F 2. As I3
t F = 0, any element of

∑

F 2 is a sum of four squares in F .
Therefore it suffices to show that ϕ ⊥ −〈1, 1, 1, 1〉 is isotropic. We do this
by induction on the dimension of ϕ.

Since ϕ ∈ I2F , we have dim(ϕ) ≥ 4. Suppose that dim(ϕ) = 4. Then
ϕ ∼= aρ for some a ∈ F× and a 2-fold Pfister form ρ over F . It is clear
that signP (ϕ) ≡ signP (ρ) mod 8 for any P ∈ X(F ). Since signP (ϕ) and
signP (ρ) can each only be 0 or 4 for any P ∈ X(F ), we conclude that
signP (ϕ) = signP (ρ) for all P ∈ X(F ). Hence ρ ⊥ −ϕ ∼= 〈1,−a〉 ⊗ ρ is a
torsion 3-fold Pfister form, thus hyperbolic, which implies that ϕ represents 1.

Assume now that dim(ϕ) > 4. Let d = d±(ψ). Since dim(ψ) = 4 and
sign(ψ) = sign(ϕ) ∈ {0, 4} for any P ∈ X(F ), it follows that d ∈ ∑

F 2.
Since we can multiply one coefficient of an arbitrary diagonalisation of ψ
by d without changing the properties required in the choice of ψ, we may
actually assume that d = 1, so that ψ ∈ I2F . Then ϕ ⊥ −ψ ∈ I2

t F
and 2 × (ϕ ⊥ −ψ) ∈ I3

t F = 0. By a dimension argument it follows that
2 × ϕ is isotropic. Then ϕ contains a 2-dimensional torsion form β. Its
discriminant t = d±(β) is a sum of squares in F , but not itself a square, as ϕ
is anisotropic. We now shift the whole situation to the quadratic extension
K = F (

√
t). Note that ϕK is isotropic. Hence i(ϕK) = 1 by (4.2). Let ϕ′

be the anisotropic part of ϕK . As i(ϕK) = 1 we have dim(ϕ′) = dim(ϕ)− 2.
Note that signP (ϕ′) = signP (ψK) for any P ∈ X(K). Moreover I3

t K = 0,
because I3

t F = 0 and K/F is a totally positive quadratic extension. We
thus can apply the induction hypothesis and obtain that ϕ′ ⊥ −〈1, 1, 1, 1〉 is
isotropic over K. Therefore the Witt index of ϕ ⊥ −〈1, 1, 1, 1〉 over K is at
least 2. By (4.2) this implies that ϕ ⊥ −〈1, 1, 1, 1〉 is isotropic over F . ¤
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5.11 Corollary. Assume that F is a SAP-field with I3
t F = 0. Then any

canonical form over F represents 1.

Proof: Since F is a SAP -field, given a form ϕ over F with signP (ϕ) ∈ {0, 4}
for all P ∈ X(F ), we can choose d ∈ F× such that signP (〈〈−1, d〉〉) = signP (ϕ)
for all P ∈ X(F ). Thus the statement follows from (5.10). ¤

Let Fpyth denote the pythagorean closure of F .

5.12 Corollary. Assume that I3
t F = 0 and st(F ) ≤ 3. Let D be a divi-

sion algebra of exponent 2 over F . If D is nonreal or, more generally, if
ind(DFpyth

) ≤ 2, then the canonical form associated with D represents 1.

Proof: Let ϕ be the canonical form associated with D. If DFpyth
is split, then

ϕ is torsion, and the result follows from (5.10) with ψ = 〈〈1, 1〉〉. Assume now
that ind(DFpyth

) = 2. Since I3
t F = 0, by [3, (3.5)] we have a decomposition

ϕ ∼= γ ⊥ ϑ where γ is a strongly anisotropic form and ϑ is a torsion form
over F . Then ϑFpyth

is hyperbolic and γFpyth
is the unique canonical form

associated with DFpyth
. It follows that dim(γ) = 4 and signP (ϕ) = signP (γ)

for all P ∈ X(F ). By (5.10) applied with ψ = γ, this proves the claim. ¤

6 Decomposability

We are going to show the equivalence of several properties for nonreal division
algebras of exponent 2 over a field F with I3F (

√
−1) = 0. Under slightly

stronger assumptions on F , we show in (6.4) that these properties are actually
all satisfied. The key idea comes from [11, (2.2)].

6.1 Proposition. Assume that I3F (
√
−1) = 0. Let D be a division algebra

of exponent 2 over F . Let m ≥ 1 be such that ind(D) = 2m. Assume either
that D is nonreal or that F is an ED-field. Then the following are equivalent:

(1) D is decomposable into a tensor product of quaternion algebras.

(2) D has a maximal subfield which is a 2-extension of F .

(3) The canonical form associated with D has dimension 2m + 2.

Proof: The implications (3) ⇒ (1) ⇒ (2) are obvious and hold without the
last hypothesis above. It remains to show that (2) implies (3).

Assume that D contains a maximal subfield L such that L/F is a 2-
extension. Then [L : F ] = deg(D) = 2m. Let ϕ be the canonical form
associated with D. We will prove the equality dim(ϕ) = 2m+2 by induction
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on m. Since ind(C(ϕ)) = ind(D) = 2m, we know that dim(ϕ) ≥ 2m + 2.
If m = 1 then D is a quaternion algebra and ϕ is its norm form, thus an
anisotropic 2-fold Pfister form, so we have dim(ϕ) = 4 = 2m + 2. Let
now m > 1. Since L/F is a 2-extension of degree 2m, there is a quadratic
extension K/F contained in L/F . Recall that I3F (

√
−1) = 0 implies that

I3K(
√
−1) = 0. Moreover, if F is an ED-field, then so is K. Let C be the

centraliser of K in D. Then C is a division algebra over K of index 2m−1

and exponent 2 and Brauer equivalent to DK . Therefore the canonical form
associated with C is the anisotropic part of ϕK . By induction hypothesis,
since C contains L as a maximal subfield and L/K is a 2-extension, we
obtain that diman(ϕK) = 2(m − 1) + 2 = 2m. Note that either ϕ is torsion
or F is an ED-field. Since ϕ is anisotropic over F and dim(ϕ) > 4 and
since I3

t F = 0, we have i(ϕK) ≤ 1 by (4.3) or (4.6), respectively. Therefore
dim(ϕ) = dim(ϕK) = diman(ϕK)+2i(ϕK) ≤ 2m+2. Since we know already
that dim(ϕ) ≥ 2m + 2, equality follows. ¤

6.2 Corollary. Assume that I3F (
√
−1) = 0. Let D be a nonreal division

algebra of exponent 2 over F . If D is isomorphic to a product of m quaternion
algebras, then there is even a decomposition

D ∼= (s1, t1)F ⊗
F
· · · ⊗

F
(sm, tm)F

where s1, . . . , sm ∈ ∆F (〈1, 1〉) and t1, . . . , tm ∈ F×.

Proof: Let ϕ be the canonical form associated with D. By the hypothesis,
dim(ϕ) = 2m+2. As D is nonreal, ϕ is a torsion form. Thus 2×ϕ ∈ I3

t F = 0.
It follows that ϕ contains a 2-dimensional form β such that 2×β is hyperbolic.
Hence, we can write ϕ ∼= 〈a,−as,−at〉 ⊥ ψ with a subform ψ and some
s ∈ ∆F (〈1, 1〉) and a, t ∈ F×. Using (3.12, c) it follows that D ∼= (s, t)F ⊗F

D′

where D′ is a division algebra of exponent 1 or 2 and index 2m−1, associated
with the form ϕ′ = 〈−ast〉 ⊥ ψ of dimension 2m. If m > 1, then ϕ′ is
anisotropic by (3.12, b). Furthermore ϕ′ is torsion. Hence ϕ′ is the canonical
form associated with D′, and D′ is nonreal and a product of m−1 quaternion
algebras. We may now conclude by induction on m. ¤

6.3 Corollary. Assume that I3F (
√
−1) = 0 and let D be a division algebra

of exponent 2 and of index 8 over F . If D is nonreal or if F is an ED-field,
then D is isomorphic to a product of quaternion algebras.

Proof: By (3.3), D contains a maximal subfield which is a 2-extension of F .
Hence the statement follows from (6.1). ¤
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A positive answer to Question (3.2) for fields F with I3F (
√
−1) = 0 would

yield that the conditions (1)–(3) in (6.1) are not only equivalent but actually
hold altogether.

Given a field K of characteristic different from 2, let

cd2(K) = sup {m ∈ N | ImL 6= 0 for some finite extension L/K} .

In view of the Milnor Conjecture, proven by Voevodsky (cf. [25]), this actu-
ally agrees with the usual definition of the cohomological 2-dimension of K,
where instead of ImL 6= 0 one would have to read Hm(L, µ2) 6= 0. However,
the definition taken here is closer to the way we are going to use it.

6.4 Theorem. Assume that cd2(F (
√
−1)) ≤ 2 and let D be a central division

algebra of exponent 2 over F . Assume either that D is nonreal or that every
algebraic extension of F is an ED-field. Then D is decomposable into a
product of quaternion algebras.

Proof: Let ϕ be the canonical form of D. In view of (6.1) it suffices to show
that dim(ϕ) = 2m + 2.

We choose a maximal subfield L of D. Note that [L : F ] = 2m and that
L/F is separable since char(F ) 6= 2. Using Galois theory we may choose a
finite extension of odd degree M/F (automatically linearly disjoint to L/F )
such that LM/M is a 2-extension (where LM denotes the composite). Note
that DM is still a division algebra, hence of index 2m, because the degree
[M : F ] is prime to ind(D). The canonical form associated with DM is
ϕM , because this form is anisotropic, by Springer’s Theorem. Since LM is a
maximal subfield of the algebra DM and a 2-extension of its center M , (6.1)
shows that dim(ϕ) = dim(ϕM) = 2m + 2. ¤

6.5 Corollary. Assume that cd2(F (
√
−1)) ≤ 2. Let D be a nonreal division

algebra of exponent 2 over F and ϕ = 〈1〉 ⊥ ϕ′ the canonical form associated
with D.

(a) For any a ∈ F×\−F×2, the algebra DF (
√
−a) has nontrivial zero-divisors

if and only if ϕF (
√
−a) is isotropic, if and only if a ∈ ∆F (ϕ′).

(b) Let E be another nonreal division algebra of exponent 2 over F with
associated canonical form ψ = 〈1〉 ⊥ ψ′. Then D ⊗F E is a division
algebra if and only if ∆F (ϕ′) ∩ ∆F (ψ′) = ∅.

Proof: The first equivalence in (a) follows from (5.6), (6.1), and (6.4).
Moreover, if a ∈ ∆F (ϕ′) then certainly ϕF (

√
−a) is isotropic. Conversely, if
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ϕF (
√
−a) is isotropic, then ϕ contains a subform similar to 〈1, a〉, and using

(2.1, b) and Witt cancelation it follows that ϕ′ represents a. This shows the
second equivalence stated in (a).

To prove (b), we first observe that D ⊗F E is associated with ϕ′ ⊥ −ψ′

and that this is a torsion form. We may assume that D ⊗F E is not split,
so that ϕ′ ⊥ −ψ′ is not hyperbolic. Since D and E are both nonreal, the
canonical form associated with the F -algebra D⊗F E is the anisotropic part
of ϕ′ ⊥ −ψ′. Let m, n ∈ N be such that ind(D) = 2m and ind(E) = 2n.
Then dim(ϕ) = 2m + 2 and dim(ψ) = 2n + 2, and therefore dim(ϕ′ ⊥
−ψ′) = 2(m + n) + 2. Using (6.1), it follows that ind(D ⊗F E) = 2m+n if
and only if ϕ′ ⊥ −ψ′ is anisotropic, that is, if and only if ϕ′ and ψ′ do not
represent any nonzero element in common. ¤

6.6 Conjecture. If I3
t F = 0, then every division algebra of exponent 2 over

F is decomposable into a tensor product of quaternion algebras.

7 Lengths and heights

We are going to study decomposition lengths of division algebras of exponent
2 and compare them to heights of associated quadratic forms.

For a central simple F -algebra A of exponent 1 or 2 we denote by t(A)
the least number t ≥ 0 such that A is Brauer equivalent to a product of
t quaternion algebras; by (3.1) such a number t always exists. Note that
t(A) = 0 if and only if exp(A) = 1, that is, if A is split. The number t(A) is
called the decomposition length of A.

In view of (3.4) we define a second invariant for nonreal central simple
algebras. Given a nonreal central simple algebra of exponent 1 or 2 over F ,
we denote by t′(A) the least number t ≥ 0 such that A is Brauer equivalent to
a tensor product of t quaternion algebras of the type (s, x)F with s ∈ ∑

F 2

and x ∈ F×. We may call t′(A) the nonreal decomposition length of A.
Obviously t′(A) ≥ t(A). As (3.10) showed, it may happen that t′(A) > t(A).

7.1 Conjecture. If I3
t F = 0, then for any nonreal central simple algebra A

of exponent 2 over F one has t′(A) = t(A).

By (6.2) this is true under the stronger hypothesis that I3F (
√
−1) = 0.

Using a variation of the arguments in [9, (2.14)] we can verify the conjecture
for small values.

7.2 Proposition. Assume that I3
t F = 0. For any nonreal central simple

algebra A of exponent 2 over F with t(A) ≤ 4 one has t(A) = t′(A).
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Proof: On the one hand, there is an anisotropic form ϕ ∈ I2F of dimension
2t(A) + 2 associated with A. On the other hand, the canonical form ϕ′

associated with A has dimension 2t′(A)+2. Since we know that t′(A) ≥ t(A),
in order to prove the statement, we just need to show that dim(ϕ) ≥ dim(ϕ′).

As c(ϕ) = [A] = c(ϕ′), (3.1) yields that ϕ ⊥ −ϕ′ ∈ I3F . We denote by
π the anisotropic part of ϕ ⊥ −ϕ′. If π is trivial, then ϕ ∼= ϕ′ and we are
done. Assume that π is nontrivial. Then dim(π) ≥ 8 by the Arason-Pfister
Hauptsatz. On the other hand, I3

t F = 0 yields that 2 × ϕ′ is hyperbolic,
thus 2 × ϕ is Witt equivalent to 2 × π and in particular diman(2 × π) ≤
2(2t(A) + 2) ≤ 20. Since 2 × π ∈ I4F , it follows now from [8] that the
anisotropic part of 2 × π is similar to some 4-fold Pfister form ρ over F .
Moreover, ρ then is of the form 2× π′ for some 3-fold Pfister form π′ over F .
Since I3

t F = 0, we obtain π′ ∼= π, whence π is a 3-fold Pfister form.
Now ϕ ⊥ −π is Witt equivalent to ϕ′. Therefore dim(ϕ) < dim(ϕ′)

would imply that ϕ′ contains a 5-dimensional Pfister neighbour of π. This is
impossible by (4.3), as ϕ′ is a torsion form. ¤

For a quadratic form ϕ over F we define the ‘correction term’

ε(ϕ) =







2 if dim(ϕ) is even and d±(ϕ) = 1,
0 if dim(ϕ) is even and d±(ϕ) 6= 1,
1 if dim(ϕ) is odd.

Note that ε(ϕ) depends only on the Witt equivalence class of ϕ. We further
put t(ϕ) = t(c(ϕ)), and similarly t′(ϕ) = t′(c(ϕ)) in case ϕ is torsion.

7.3 Lemma. If ϕ is not hyperbolic, then t(ϕ) ≤ 1
2
· (diman(ϕ) − ε(ϕ)).

Proof: If dim(ϕ) ≤ 3, then t(ϕ) ≤ 1 and the inequality is easily checked.
We assume now that dim(ϕ) > 3 and write ϕ ∼= ψ ⊥ 〈a, b, c〉 for some form
ψ over F and a, b, c ∈ F×. We can further assume that ϕ is anisotropic.
Let ϕ′ = ψ ⊥ 〈−abc〉. Note that diman(ϕ′) ≤ diman(ϕ) − 2, ε(ϕ′) = ε(ϕ),
and c(ϕ) = c(ϕ′) + [(−ab,−ac)F ] in Br2(F ), whence t(ϕ) ≤ t(ϕ′) + 1. The
statement now follows by applying the induction hypothesis to ϕ′. ¤

In [3] a field F was called a WD-field if every quadratic form ϕ over F
can be decomposed into ϕ ∼= ϕs ⊥ ϕt where ϕs is a strongly anisotropic form
and ϕt a torsion form over F . Obviously, any nonreal field is a WD-field.
If F is real, then F is a WD-field if and only if every weakly isotropic form
over F contains a 2-dimensional torsion form. Any field F with I3

t F = 0 is
a WD-field, by [3, (3.5)].

7.4 Lemma. Assume that F is a WD-field. For any non-hyperbolic torsion
form ϕ over F one has t(ϕ) ≤ t′(ϕ) ≤ 1

2
· (diman(ϕ) − ε(ϕ)).
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Proof: We only need to show the second inequality. The proof goes along
the same lines as in (7.4), now using in addition that, by the assumption on
F , one may chose the elements a, b, c in such way that −ab ∈ ∑

F 2, and that
ϕ′ then is also a torsion form. ¤

The height of a quadratic form ϕ over F , denoted by h(ϕ), is by definition
the height of its generic splitting tower (cf. [24, p. 160]). It can be given by
the formula

h(ϕ) = |{i(ϕK) | K ∈ E(F )}| − 1

where E(F ) is the set of finitely generated field extensions K/F . It is easy
to see that

h(ϕ) ≤ 1

2
(diman(ϕ) − ε(ϕ)) .

This becomes an equality under certain conditions.

7.5 Lemma. Let ϕ be a quadratic form over F . If diman(ϕ) ≤ 5, then

h(ϕ) =
1

2
(diman(ϕ) − ε(ϕ)) .

Proof: We may assume that ϕ is anisotropic. For diman(ϕ) ≤ 3 the equality
is obvious. Assume that ϕ has dimension 4 or 5. Let K/F be a quadratic
extension over which ϕ becomes isotropic. If i(ϕK) = 1, then h(ϕ) = 2 and
ϕ /∈ I2F , which yields the stated equality. It remains to consider the case
where i(ϕK) = 2. Then ϕ contains a 4-dimensional form π over F of trivial
discriminant. If dim(ϕ) = 4 then ϕ = π ∈ I2F , hence h(ϕ) = 1 and ε(ϕ) = 2,
showing the claim. On the other hand, if dim(ϕ) = 5 then ϕ is a neighbour
of a 3-fold Pfister form ρ over F . Let L be the function field of ϕ over F .
With ψ being the form over F such that ρ = ϕ ⊥ −ψ we obtain that ψL is
anisotropic, and further Witt equivalent to ϕL, because ρL is hyperbolic. As
dim(ψ) = 3 we obtain i(ϕL) = 1 and conclude the claimed equality by using
that it holds for ψL. ¤

7.6 Theorem. Assume that I3
t F = 0. Let ϕ be a form over F . Assume

either that F is an ED-field and |signP (ϕ)| ≤ 5 for all P ∈ X(F ), or that ϕ
is a torsion form. Then

h(ϕ) =
1

2
(diman(ϕ) − ε(ϕ)) .

Proof: We proceed by induction on diman(ϕ). For diman(ϕ) ≤ 5, the claim
follows from (7.5). Assume that diman(ϕ) ≥ 6. Without loss of generality
we assume that ϕ is anisotropic. Any of the two alternative assumptions in
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the statement allows to conclude that ϕ contains a torsion binary form β.
We put K = F (

√
d) where d is the discriminant of β. Then K/F is a totally

positive quadratic extension and ϕK is isotropic. By (4.2) we have i(ϕK) = 1,
whence diman(ϕK) = dim(ϕ)−2. As K/F is totally positive, the assumption
I3
t F = 0 implies that I3

t K = 0. Moreover, if F is an ED-field then so is K.
By induction hypothesis we have h(ϕK) = 1

2
(diman(ϕK) − ε(ϕK)). Since

diman(ϕ) = dim(ϕ) = diman(ϕK) + 2, we obtain

1

2
(diman(ϕ) − ε(ϕK)) = h(ϕK) + 1 ≤ h(ϕ) ≤ 1

2
(diman(ϕ) − ε(ϕ)) .

Thus, showing the equality ε(ϕK) = ε(ϕ) would establish the claim.
Assume on the contrary that ε(ϕK) 6= ε(ϕ). By the definition of the

correction term ε this means that we have ϕ ∈ IF \ I2F and ϕK ∈ I2K.
Let ψ be the orthogonal complement of β in ϕ over F , whence ϕ = ψ ⊥ β.
Since K = F (

√
d) with d = d±(β), we conclude that ψ ∈ I2F . Recall that

β is a torsion form. Hence, if ϕ is torsion, then ψ ∈ I2
t F , and by (2.1, b)

this implies that ψ is universal, contradicting the fact that ϕ is anisotropic.
Assume now that F is an ED-field. We fix any element a ∈ ∆F (ψ). Since β
is a torsion form over F , which is an ED-field, there is some b ∈ ∑

F 2 such
that −ab ∈ ∆F (β). By (2.1, a) then bψ = ψ, so that ϕ = bψ ⊥ β is isotropic,
again a contradiction. ¤

7.7 Corollary. Assume that I3F (
√
−1) = 0. Then for any torsion form ϕ

over F one has

h(ϕ) = t(ϕ) = t′(ϕ) =
1

2
(diman(ϕ) − ε(ϕ)) .

Proof: In view of (7.6) and (6.2), we only have to show that, for any non-
hyperbolic torsion form ϕ over F , one has t′(ϕ) = 1

2
(diman(ϕ) − ε(ϕ)).

It is not difficult to see that there exists a torsion form ψ over F with
dim(ψ) = 2t′(ϕ) + ε(ϕ) and with the same discriminant and the same
Clifford invariant as ϕ. Then ϕ ⊥ −ψ ∈ I3

t F = 0. Therefore we have
diman(ϕ) ≤ dim(ψ) = 2t′(ϕ) + ε(ϕ), i.e. t′(ϕ) ≥ 1

2
(diman(ϕ) − ε(ϕ)). The

other inequality follows from (7.4). ¤
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