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§ 1 Introduction

Let us first recall what is the essential dimension of a functor, cf. [BR 97]
and [R 00]. Let k be a field, and let F be a functor from the category of field
extensions of k into the category of sets. Let F/k be an extension and let ξ
be an element of F(F ). If E is a field with k ⊂ E ⊂ F we say that ξ comes

from E if it belongs to the image of F(E) → F(F ). The essential dimension

ed (ξ) of ξ is the minimum of the transcendence degrees E/k, for all E with
k ⊂ E ⊂ F such that ξ comes from E. One has ed(ξ) ≤ tr. deg. F . If there
is equality, we say that ξ is incompressible. The essential dimension ed (F)
of F is

ed (F) = max {ed (ξ)},
the maximum being taken over all pairs (F, ξ) with k ⊂ F and ξ ∈ F(F ).
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Along similar lines, the essential dimension ed(ξ; p) of ξ ∈ F(F ) at a

prime number p is
ed(ξ; p) = min {ed(ξK)},

where ξK is the image of ξ in F(K), and the minimum is taken over all
extensions K/F with [K : F ] finite and prime to p. The essential dimension

of F at p is
ed(F; p) = max {ed(ξ; p)}

the maximum being taken over all pairs (F, ξ) with ξ ∈ F(F ). It is clear that
ed(F) ≥ ed(F; p).

We will apply this to the functor F defined by:

F(F ) = H1(F, G) = { isomorphism classes of G-torsors over F},

where G is a smooth linear algebraic group over k. The essential dimension

ed(G) of G (resp. the essential dimension ed(G; p) at p) is ed(F) (resp.
ed(F; p)). If ξ is a versal G-torsor, in the sense of [GMS 03], p.13, one has

ed(G) = ed(ξ) and ed(G; p) = ed(ξ; p).

In case we feel the need to be precise about F , we write edF instead of just
ed.

If char(k) = 0, Reichstein and Youssin have given a very efficient lower
bound for ed(G; p), namely:

If G is connected and contains a finite abelian p-group A whose centralizer

is finite, then one has ed(G; p) ≥ rk(A), where rk(A) denotes the minimum

number of generators of A ([RY 00], th. 7.8).

The proof of Reichstein-Youssin uses resolution of singularities, hence
does not apply (for the time being) when char(k) > 0. What we do in
the present paper is to prove most of their results relative to p = 2 in ar-
bitrary characteristic (except1 characteristic 2) by using orthogonal groups
and quadratic forms (especially ”monomial” quadratic forms, cf. § 4). For
instance :

(1.1) If G is semisimple of adjoint type, and −1 belongs to the Weyl group,

then

ed(G; 2) ≥ rank(G) + 1.

1It seems likely that a similar method can also be applied in characteristic 2, but we

have not checked all the necessary steps.
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This is the case G = G◦ of th. 1 of § 2. Note that it implies

ed(E8; 2) ≥ 9 and ed(E7; 2) ≥ 8.

(1.2) ed (Spinn; 2) ≥ [n/2] for n > 6, n 6= 10 , the inequality being strict if

n ≡ −1, 0 or 1 (mod 8), cf. th. 11 and th. 12.

(1.3) ed (HSpinn; 2) > n/2 if n ≥ 8, n ≡ 0 (mod 8), cf. th. 13.

Of course, these results give lower bounds for ed(G) itself, for instance
ed(E8) ≥ 9.

§ 2 The Main Theorem

In what follows, we assume char(k) 6= 2 and k algebraically closed.
Let G◦ be a simple algebraic group over k of adjoint type, and let T be a

maximal torus of G◦. Let c ∈ Aut(G◦) be such that c2 = 1 and c(t) = t−1 for
every t ∈ T (it is known that such an automorphism exists, see e.g. [DG 70],
Exp. XXIV, Prop. 3.16.2, p. 355). This automorphism is inner (i.e. belongs
to G◦) if and only if −1 belongs to the Weyl group of (G, T ). When this is
the case, we put G = G◦. If not, we define G to be the subgroup of Aut(G◦)
generated by G◦ and c. We have

• G = G◦ for types A1, Br, Cr, Dr (r even), G2, F4, E7, E8 ;

• (G : G◦) = 2 and G = Aut(G◦) for types Ar (r ≥ 2), Dr (r odd), E6.

Let r = dim (T ) be the rank of G.

Theorem 1 If G is as above, we have ed (G; 2) ≥ r + 1.

The proof of Theorem 1 consists in:

a) construction of a G-torsor θG over a suitable extension K/k with
tr. degk(K) = r + 1, see below;

b) proof that the image of θG in a suitable H1(K,ON) (cf. § 3) is in-
compressible (§§ 4–6); this implies that θG itself is incompressible, and th. 1
follows.

Let us start with part a). Let R be the root system of G with respect
to T , and let Rsh be the (sub) root system formed by the short roots of R.
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Let ∆ = {α1, . . . , αr} be a basis of Rsh. The root lattices of R and Rsh are
the same; hence ∆ is a basis of the character group X(T ). This allows us to
identify T with Gm × · · · × Gm using the basis ∆.

Call A0 the kernel of “multiplication by 2” on T . Let A = A0 ×{1, c} be
the subgroup of G generated by A0 and by the element c defined above. The
group A is isomorphic to (±1)r+1.

Take K = k(t1, . . . , tr, u) where t1, . . . , tr and u are independent indeter-
minates. We have H1(K, A) = H1(K,Z/2Z) × . . . × H1(K,Z/2Z). Identify
H1(K,Z/2Z) with K×/(K×)2 as usual. Then u and the ti’s define elements
(u) and (ti) of H1(K,Z/2Z). Let θA be the element of H1(K, A) with com-
ponents ((t1), . . . , (tr), (u)). Let θG be the image of θA in H1(K, G). We will
prove in § 6 :

Theorem 2 (K, θG) is incompressible, and remains so after any field exten-

sion of K of odd degree.

Note that Theorem 2 implies Theorem 1 since tr. deg. K = r + 1.

Remarks. (i) It would not be useful to take A0 instead of A. Indeed, A0 is a
subgroup of T and H1(K, T ) = 1 by Hilbert Theorem 90. Hence the image
in H1(K, G) of any element of H1(K, A0) is trivial. In particular, the class
θG defined above is killed by the quadratic extension K(

√
u)/K.

(ii) Suppose that G = G◦, i.e. that c belongs to G◦. The subgroup A con-
structed above is the same as the one described in [BS 53], p.139, for compact
Lie groups. It is also the same one (with the same θG) as in Reichstein-
Youssin theory [RY 00].

§ 3 An orthogonal representation

Proposition 3 There exists a quadratic space (V, q) over K, and an orthog-

onal irreducible linear representation

ρ : G −→ O (V, q)

with the following property :

(∗) the nonzero weights of T on V are the short roots and they have

multiplicity 1.
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Proof. Let B be a Borel subgroup containing T . This defines an order on the
root system R. Let β be the highest root of Rsh with respect to that order.
It is a dominant weight. We choose for V an irreducible representation L(β)
of G◦ with highest weight β. By a well-known criterion ([St 67], Lemmas 78,
79, p. 226), L(β) is an orthogonal representation of G◦. Since Rsh ∪ {0} is
R-saturated in the sense of [Bo 75], VIII. § 7.2, the nonzero weights of L(β)
belong to Rsh, hence are conjugate to β by the Weyl group. This implies
that they have multiplicity 1, so that (∗) is fulfilled.

It remains to show that this orthogonal representation of G◦ extends to
an orthogonal representation of Aut (G◦), and hence of G. This can be done
in the following way:

If Aut (G◦) = G◦, there is nothing to prove.
If Aut (G◦) 6= G◦, the roots have the same length, so that β is the highest

root of R, and V = L(β) is essentially the adjoint representation of G◦. More

precisely, if G̃◦ denotes the universal covering of G◦, one can take for V the
image of Lie (G̃◦) in Lie (G◦), with the obvious action of Aut(G◦). One puts
on V the ”normalized Killing form” q(x, y). That form is defined first over
Z, in which case it is equal to Tr (ad(x) · ad(y))/2h where h is the Coxeter
number (see [GN 04], [Sel 57], [SpSt 70]); it is then defined by base change
for every simple group scheme, and the computation of its discriminant done
in the references above shows that it is nondegenerate.

Examples. a) When the roots of R have the same length, we have V =
Lie (G◦), except for :

• type An when p divides n + 1;

• type E6 when p = 3.

In both cases, V has codimension 1 in Lie G◦.

b) When the roots have different length, then:

• If G is of type G2, then V = L(ω1), where ω1 is the first fundamental
weight (in Bourbaki’s notation); its dimension is 7.

• If G is of type F4, then V = L(ω4); its dimension is 26 if p 6= 3 and 25
if p = 3.

• If G is of type Br, r > 1, then V = L(ω1) is the standard representation
of G = SO2r+1 of dimension 2r + 1.
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• If G is of type Cr, r > 1, then V = L(ω2). When p ∤ r, one has
V ⊕ 1 =

∧2(V1) where V1 = L(ω1) is the standard representation of

G̃ = Sp2r; one has dim V = 2r2−r−1. When p | r, V is a subquotient
of

∧2(V1) of dimension 2r2 − r − 2.

§ 4 Monomial quadratic forms

Consider the following general situation. Let A be an abelian group of type
(2, . . . , 2) and rank s and let λ : A → O(V, q) be an orthogonal representation
of A. As above, take K = k(t1, ..., ts), where t1, . . . , ts are independent
indeterminates, and define θA ∈ H1(K, A) as in § 2. Let θO = λ(θA) be the
image of θA in H1(K,O (V, q)). Let X(A) = Hom (A,Z/2Z) be the character
group of A. Let Xλ be the subset of X(A) made up of the characters whose
multiplicity in λ is odd.

Theorem 4 The integers ed(θO) and ed(θO; 2) are both equal to the rank rλ

of the subgroup of X(A) generated by Xλ.

Note that θO ∈ H1(K,O (V, q)) may be interpreted as a quadratic form
(namely, the twist of q by θO); we will denote this form by qO; it is well
defined up to K-isomorphism. To prove Theorem 4, we first need to compute
explicitly qO.

Computation of qO

If α ∈ X(A), let Vα be the corresponding weight subspace of V . We have
an orthogonal decomposition V = ⊕

α
Vα; put mα = dim Vα.

Let α1, . . . , αs be the canonical basis of X(A) corresponding to the pro-
jections A = Z/2Z × · · · × Z/2Z → Z/2Z. Any element a ∈ A acts by mul-
tiplication by α(a) on Vα. Hence twisting q|Vα

by θO we obtain a quadratic
form 〈tα, . . . , tα〉 of dimension mα, where tα = α(t) = tn1

1 · · · tns

s ∈ K× for
α = n1α1 + · · ·+ nsαs. Hence qO can be written as

qO = ⊕ mα 〈tα〉,
where mα 〈tα〉 means the direct sum of mα copies of the 1-dimension form
〈tα〉. Note that, because −1 is a square, we have 〈tα, tα〉 = 0 in the Witt
group W (K), so that the formula can also be written as

qO = ⊕
α∈Xλ

〈tα〉 in W (K),
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where the sum is over the set Xλ defined above.

Examples. Let ρ : G → O (V, q) be as in Proposition 3 and let λ denote the

composition A → G
ρ→ O (V, q).

a) If G = G2 and V is as defined in § 3, then

qO = 〈 u, t1, ut1, t2, ut2, t1t2, ut1t2 〉 = 〈〈 u, t1, t2 〉〉 − 〈1〉,

where 〈〈 u, t1, t2 〉〉 is the generic 3-Pfister form.

b) Similarly, in the case of G = F4 (and p 6= 3), qO is

qO = q3 ⊗ (q2 − 〈1〉) ⊕ 〈1, 1〉,

where q2 (resp. q3) is a generic 2-Pfister form (resp. 3-Pfister form). When
p = 3, the term 〈1, 1〉 is replaced by 〈1〉.
c) In case G = E8, q0 can also be computed. One finds:

qO = 8 〈1〉 ⊕ 〈1, u〉 ⊗ ( ⊕
(m)

〈tm1

1 · · · tm8

8 〉 )

where m = (m1, . . . , m8) runs through the 120 octuples of 0, 1’s such that

m1m2 + m3m4 + m5m6 + m7m8 ≡ 1 (mod 2).

Monomial quadratic forms

A rank n quadratic form f(X1, . . . , Xn) over K = k(t1, . . . , ts) is called mono-

mial if it is a diagonal form

f(X) =
∑

aiX
2
i ,

with ai ∈ K and if each coefficient ai is a monomial in t1, . . . , ts with ex-
ponents in Z (“Laurent monomial”). As usual, we write such a form as
f = 〈a1, . . . , an〉.
Examples. a) The generic 2-Pfister form 〈1, t1, t2, t1t2〉 is monomial over
k(t1, t2).
b) The form qO = ⊕

α
〈 tα〉 defined above is monomial.
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Let f = 〈a1, . . . , an〉 be monomial. After dividing the ai’s by squares, we
may assume that they are ”square-free”, i.e. for every i and j, the exponent
of tj in the monomial ai is 0 or 1. We can then write f as:

f = ⊕mf (µ) 〈tµ〉,

where the exponent µ = (µ1, . . . , µs) belongs to {0, 1}s = (F2)
s, tµ means

tµ1

1 · · · tµs

s , and mf (µ) is ≥ 0. We say that f is multiplicity free if it is square-
free and mf (µ) = 0 or 1 for every µ.

Proposition 5 A multiplicity free monomial quadratic form f over K =
k(t1, . . . , ts) is anisotropic.

Proof. Let v be the valuation of K with value group Zs (with lexicographic
order) which is trivial on k and such that

v(t1) = (1, 0, . . . , 0), . . . , v(ts) = (0, . . . , 0, 1)

(see [Bo 64], Chap. 6, § 10). If f represents 0 we get an equation

∑
tµφµ(t)

2 = 0,

where the non-zero terms have different v-valuations (and even different val-
uations in Γ/2Γ). This is only possible if all the terms are 0.
Alternate proof: use the fact that f is a subform of a generic s-Pfister form,
and that such a form is anisotropic, cf. [Pf 95], p. 111.

Let f be a monomial square-free quadratic form over K, and let Xf be
the subset of (F2)

s made up of the µ’s such that mf (µ) is odd. Let e = ef

be the rank of Xf , i.e. the dimension of the F2-subspace of (F2)
s generated

by Xf .

Proposition 6 The integers ed(f) and ed(f ; 2) are both equal to e.

Note that for f = qO the rank of XqO
is obviously equal to that of Xλ,

hence Theorem 4 follows from Proposition 6.

Remark. One may wonder whether the equality ed(f) = ed(f ; 2) remains
true for an arbitrary quadratic form f . It is not hard to see that it does if
ed(f ; 2) ≤ 2, but we do not know what happens for larger values of ed(f ; 2).
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§ 5 Proof of Proposition 6

We use induction on the number s of the indeterminates t1, . . . , ts, the case
s = 0 being obvious. Since −1 is a square in k, each pair 〈tµ, tµ〉 is hyperbolic,
and can be replaced by 〈1,−1〉 = 〈1, 1〉. Hence every monomial quadratic
form f can be written as f = 〈1, . . . , 1〉 ⊕ q, with q multiplicity free. Since
Xf = Xq or Xq ∪ {0} , we have e = rank(Xf) = rank(Xq).

We now make a further reduction on f . In order to state it, let us say
that q is e-reduced if the set Xq contains the first e basic vectors

x1 = (1, 0, . . . , 0); x2 = (0, 1, . . . , 0); . . . ; xe = (0, . . . , 1, . . . , 0).

This amounts to saying that

q = 〈t1, . . . , te, ae+1, . . . , an〉,

where the ai, for i > e, are pairwise distinct square-free monomials in
t1, . . . , te of total degree 6= 1.

Lemma 7 There is an automorphism of the extension K/k which transforms

q into an e-reduced form.

Proof. Note that GLs(Z) acts in a natural way on the set of monomials with
exponents in Z. This gives a natural embedding of GLs(Z) into Aut(K/k).
Moreover, the natural map

GLs(Z) −→ GLs(F2)

is surjective, since GLs(F2) = SLs(F2) and

SLs(Z) → SLs(Z/mZ)

is well known to be surjective for any m. By the very definition of e, the
set Xq contains e elements z1, . . . , ze which are linearly independent over
F2. Hence there exists φ ∈ GLs(Z) ⊂ Aut(K/k) whose reduction mod 2
transforms the zi into the first e basic vectors x1, . . . , xe. It is clear that φ(q)
is e-reduced.

We now use the “residue operators” of the local theory of quadratic forms
(see e.g. [L 73], Chap. VI, § 1.5). Recall that, if v is a discrete valuation of a
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field K, with residue field K̃, one may write any quadratic form q over K in
the form

q = 〈 u1, . . . , um, πum+1, . . . , πun 〉,

where the u’s are units, π is a uniformizing element and m is an integer
with 0 ≤ m ≤ n. One defines the first residue ∂1(q) of q as the class in the

Witt group W (K̃) of the quadratic form 〈ũ1, . . . , ũm 〉, where ũi denotes the

image of ui in K̃; similarly, the second residue ∂2(q) of q is the class in W (K̃)
of 〈 ũm+1, . . . , ũn 〉. It is known (loc. cit.) that the class of ∂1(q) does not
depend on the choice of π, nor on the choice of the diagonalization of q; as for
the class of ∂2(q), it is only defined up to similarity (i.e. up to multiplication
by a 1-dimensional quadratic form).

Proposition 8 Let v be a discrete valuation on an extension L of k trivial

on k, let L̃ be its residue field, and let φ be a quadratic form over L. Let e
be a positive integer. Assume :

a) ∂2(φ) 6= 0 in W (L̃).

b) edeL(ψ; 2) ≥ e − 1 for every quadratic form ψover L̃ belonging to the Witt

class of ∂1(φ).

Then edL(φ; 2) ≥ e.

(Both ed’s are relative to k, viewed as a subfield of L and of L̃.)

Proposition 8 implies Proposition 6

We apply induction on e. The case e = 0 or 1 is trivial. Let us assume e > 1.
We may suppose that f is of the form f = 〈1, . . . , 1〉⊕q, where q is e-reduced
and multiplicity free. Since the exponents µ appearing in Xf are sums of the
xi (1 ≤ i ≤ e), the tµ appearing in q belong to the subfield k(t1, ..., te) of K.
This shows that ed(f) ≤ e.

It remains to show that ed(f ; 2) ≥ e. To do so, consider the valuation v
on K associated to the indeterminate t1. Such a valuation is characterized
by the properties:

v(t1) = 1;

v(x) = 0 if x ∈ k(t2, ..., ts)
×.

Moreover, we have K̃ = k(t2, ..., ts).
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Let us write f as f = φ ⊕ 〈t1〉 ⊗ φ′, where φ, φ′ are monomial quadratic
forms over k(t2, . . . , ts). The second residue of f with respect to v is given
by ∂2(f) = ∂2(q) = φ′. Since q is multiplicity free, so is φ′. It is clear that
φ′ 6= 0, and hence φ′ is anisotropic, by Proposition 5. Since the Witt class of
φ′ is ∂2(f), we have checked condition a) of Proposition 8.

Let us look at condition b). Of course φ is a representative of ∂1(f).
Moreover, it is clear that φ can be written as φ = m〈1, 1〉⊕ψ, where m is an
integer ≥ 0 and ψ is a multiplicity free (e − 1)-reduced monomial quadratic

form over K̃, hence is anisotropic, by Proposition 5. Since 〈1, 1〉 = 〈1,−1〉,
this shows that any quadratic form ψ′ over K̃ which belongs to the Witt class
∂1(f) is isomorphic to m′〈1, 1〉 ⊕ ψ, hence is (e − 1)-reduced. We may thus
apply the induction assumption to ψ′, and deduce that ed eK(ψ′; 2) ≥ e − 1.
By Proposition 8, we get edK(f ; 2) ≥ e, as required.

Proof of Proposition 8

Let L′ be an odd-degree extension of L, and let F be a subfield of L′,
containing k, and such that φ is L′-isomorphic to a quadratic form φF over
F . We have to show that tr. degk(F ) ≥ e. We distinguish two cases:

i) The case L′ = L. Let w be the restriction of v to the subfield F . There
are three possibilities:

i1) w is trivial on F (i.e. v(x) = 0 for every x ∈ F×). In that case,
the coefficients of φF are v-units, and this implies that ∂2(φ) = 0, which we
assumed is not true.

i2) The value group v(F×) is a subgroup of even index of v(L×) = Z. The
same argument as for i1) shows that ∂2(φ) = 0.

i3) The index of v(F×) in v(L×) is odd. In that case, ∂1(φ) ∈ W (L̃) is

the image of ∂1(φF ) ∈ W (F̃ ) under the natural map W (F̃ ) → W (L̃). Here

F̃ is the residue field of F with respect to w. Choose any representative ψ eF

of ∂1(φF ); it gives a representative ψeL of ∂1(φ), hence we have

ed eF (ψ eF ; 2) ≥ edeL(ψeL; 2) ≥ e − 1

by hypothesis b). This implies that tr. degk(F̃ ) ≥ e−1, hence tr. degk(F ) ≥ e
by a standard result of valuation theory, cf. [Bo 64], Chap. 6, § 10, no. 3.

ii) The general case. Let S be the set of extensions w of v to L′. For
each w ∈ S, let e(w/v) and f(w/v) be the ramification index and the residue
degree of w with respect to v.

Lemma 9 There exists w ∈ S such that both e(w/v) and f(w/v) are odd.
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Proof. By dévissage, it is enough to prove this in the following two cases.
a) The extension L′/L is separable. In that case, we have the standard

formula (cf. [Bo 64], Chap. 6, § 8, no. 5)

∑

w∈S

e(w/v)f(w/v) = [L′ : L].

Since [L′ : L] is odd, there is at least one w ∈ S such that e(w/v)f(w/v) is
odd.

b) We have char(L) = p > 0 and L′/L is purely inseparable. In that case,
S is reduced to one element w, and one checks that e(w/v) and f(w/v) are
powers of p, hence are odd.

End of proof of ii). Select w as in Lemma 9. We are going to apply case i) to
(L′, φ, w). Note first that the w-residues of φ are the images of its v-residues

by the base change L̃ → L̃′. Since [L̃′ : L̃] is odd, the map W (L̃) → W (L̃′)

is injective. This shows that ∂2(φ) 6= 0 in W (L̃′), so that condition a) is
satisfied by (L′, φ, w).

It remains to check condition b). Let ψ0 be the unique anisotropic rep-
resentative of ∂1(φ); by a classical theorem of Springer (cf. [L 73], p.198), it

remains anisotropic in L̃′. Hence the representatives ψ of ∂1(φ) over L̃′ are the

sums of ψ0 and some hyperbolic forms; in particular they come from L̃. Since
an odd degree extension does not change ed( ; 2) we have edeL′(ψ; 2) ≥ e− 1.
We have thus checked conditions a) and b) over L′, and we may apply part
i) of the proof.

This concludes the proof of Proposition 8 and hence of Proposition 6 and
of Theorem 4. ¤

Remark. Let K/k be a field extension, with k algebraically closed. Let q and
q′ be quadratic forms over K which belong to the same Witt class. Is it true
that ed(q) = ed(q′) and ed(q; 2) = ed(q′; 2)? It is so when K = k(t1, . . . , te)
and one of the forms q or q′ is monomial. We do not know what happens in
general.

§ 6 Proof of Theorem 2

Let ρ : G → O (V, q) be as in Proposition 3, and let θO = ρ(θG) be the image

of θG in H1(K,O (V, q)). If ρA denotes the composition A → G
ρ→ O (V, q),
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we have θO = ρA(θA). By Theorem 4, it suffices to show that the rank of
〈XρA

〉 is r + 1. We need the following.

Lemma 10 Let R be an irreducible root system, and Rsh the set of short

roots. Let Q(R) be the root lattice of R. If α and β are elements of Rsh, we

have :
α = β (mod 2Q(R)) ⇐⇒ α = ±β.

Proof. This can be checked by inspection of all possible root systems.

Let us compute the weights of ρA and their multiplicities. For a short
root α ∈ R+

sh we denote by Vα the corresponding weight subspace of V for
T . By construction, dim Vα = 1 and we have an orthogonal decomposition

V = V0 ⊕
{
⊕
α

(Vα ⊕ V−α)

}
,

where the sum is taken over all positive short roots.
Any element a ∈ A◦ acts by multiplication by α(a) on Wα = Vα⊕V−α, and

acts trivially on V0. The automorphism c of § 2 preserves V0 and permutes Vα

and V−α. Since k is algebraically closed, there is a basis {uα, vα} of Wα such
that c(uα) = uα, and c(vα) = −vα. It follows that the weight subspaces for ρA

belonging to ⊕
α

(Vα ⊕ V−α) correspond to characters α ∈ R+
sh and αγ, where

γ ∈ X(A) = Hom(A,±1) is given by A◦ 7→ 1 and c 7→ −1. Furthermore,
all these weights of ρA have multiplicity 1, by Lemma 10. Depending on the
action of c on V0 the set XρA

may contain additionally 0 and γ. In all cases
the rank of 〈XρA

〉 is r + 1, as required. ¤

§ 7 Spin groups

We keep the notation of the previous §§. In particular, the ground field k is
algebraically closed of characteristic 6= 2. If n > 2, we denote by Spinn

the universal covering of the group SOn (relative to the unit quadratic
form 〈1, ..., 1〉). For n ≤ 6, this group is “special”, which implies that
ed(Spinn) = 0, cf. [R 00]. The situation is different for n > 6. In or-
der to state it precisely, let us define an integer e(n) by :

e(10) = 4;
e(n) = [n/2] = rank Spinn if n > 6 and n 6= 10.
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Theorem 11 We have ed(Spinn; 2) ≥ e(n) for every n > 6.

Proof. Let us write e = e(n), and put K = k(t1, ..., te), where t1, . . . , te are
independent indeterminates. We are going to construct a monomial quadratic

form fn of rank n over K with the following properties:

(i) the Stiefel-Whitney classes w1(fn) and w2(fn) are both zero. (For the
definitions of the Stiefel-Whitney classes, see e.g. [GMS 03], § 17.)

(ii) rank(Xfn
) = e , with the notation of the lines preceding Proposition 6.

Such a form fn corresponds to an element [fn] of H1(K,On) which belongs
to the image of H1(K,Spinn) → H1(K,On) (because of (i)) and is such
that ed([fn]; 2) = e (because of (ii), cf. Proposition 6). This shows that
H1(K,Spinn) contains an element ξn with ed(ξn; 2) ≥ e; hence the theorem.

Here is the construction of fn. There are four cases, depending on the
value of n modulo 4:

a) n ≡ 0 ( mod 4), n ≥ 8. We have e = n/2, which is even. We define fn

by:
fn = 〈t1, . . . , te〉 ⊗ 〈1, t1 · · · te〉.

Condition (ii) is obvious (but would not be true in the excluded case n = 4).
As for condition (i), it follows from the general formulae:

w1(f ⊗ f ′) = 0 and w2(f ⊗ f ′) = w1(f) · w1(f
′)

if rank(f) and rank(f ′) are even. Indeed this shows that w1(fn) = 0 and that
w2(fn) = (t1 · · · te) · (t1 · · · te) = (−1) · (t1 · · · te) = 0 since −1 is a square in k.

b) n ≡ −1 ( mod 4 ), n ≥ 7. Here e = (n − 1)/2, which is odd. We put:

fn = 〈t1, . . . , te〉⊗〈1, t1 · · · te〉 ⊕ 〈t1 · · · te〉.

Conditions (i) and (ii) are checked as in case a).

c) n ≡ 1 ( mod 4 ), n ≥ 9. Here e = (n − 1)/2, which is even. We put:

fn = fn−1 ⊕ 〈1〉 = 〈t1, . . . , te〉⊗〈1, t1 · · · te〉 ⊕ 〈1〉.

Conditions (i) and (ii) follow from case a).

d) n ≡ 2 ( mod 4 ). This case splits into four subcases:

14



d1) n = 10. Here e = 4 and we put

f10 = f8 ⊕ 〈1, 1〉 = 〈t1, . . . , t4〉⊗〈1, t1...t4〉 ⊕ 〈1, 1〉.

d2) n = 14. Here e = 7. We put

f14 = 〈t7〉⊗(〈〈 t1, t2, t3 〉〉0 ⊕ 〈〈 t4, t5, t6 〉〉0)

where 〈〈a, b, c〉〉0 means 〈〈a, b, c〉〉 − 〈1〉, i.e. 〈a, b, c, ab, bc, ac, abc〉. The sim-
plest way to check condition (i) is to rewrite f14 in the Witt ring W (K)
as

f14 = 〈t7〉 · (〈〈 t1, t2, t3 〉〉 + 〈〈 t4, t5, t6 〉〉).
This shows that f14 belongs to the cube I3 of the augmentation ideal I of
W (K), and that implies condition (i). Condition (ii) is easy to check.

d3) n = 18. Here e = 9. We put:

f18 = 〈t1, t2, t1t2〉⊗〈t7, t8〉 ⊕ 〈t3, t4, t3t4〉⊗〈t8, t9〉 ⊕ 〈t5, t6, t5t6〉⊗〈t7, t9〉.

In the Witt ring W (K), one has:

f18 = 〈〈 t1, t2 〉〉 · 〈t7, t8〉 + 〈〈 t3, t4 〉〉 · 〈t8, t9〉 + 〈〈 t5, t6 〉〉 · 〈t7, t9〉,

and this shows that f18 ∈ I3, hence condition (i). As for condition (ii), one
checks that, if one makes the change of variables:

T1 = t1t7, T2 = t2t7, T3 = t1t2t7, T4 = t3t8, T5 = t4t8,

T6 = t3t4t8, T7 = t5t9, T8 = t6t9, T9 = t5t6t9,

then f18 becomes e-reduced (as a monomial quadratic form in the Ti). This
implies (ii).

d4) n ≡ 2 ( mod 4 ), n > 18. We define fn by induction on n, as the sum
of fn−8 and f8 (with independent variables):

fn = fn−8 ⊕ 〈te−3, te−2, te−1, te〉⊗〈1, te−3te−2te−1te〉.

Conditions (i) and (ii) are proved by induction on n. This concludes the
proof.

Remarks. 1) The reader may wonder whether the quadratic form fn used
above could have been defined via an abelian finite subgroup of Spinn(k)
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whose image in SOn(k) is of type (2, . . . , 2). The answer is “yes”; this fol-
lows from the well known construction of abelian 2-subgroups of Spinn from
binary linear codes (see e.g. [RY 00], pp. 1043–1044). Indeed, this is how we
first obtained case d3 above (n = 18).

2) When n ≡ −1, 0 or 1 ( mod 8 ), the bound given by Theorem 11 can
be slightly improved. This is due (in characteristic 0, at least) to Reichstein-
Youssin ([RY 00], Theorem 8.16). More precisely:

Theorem 12 Assume n ≡ −1, 0 or 1 ( mod 8 ), n ≥ 7. Then :

ed(Spinn; 2) ≥ [n/2] + 1.

Proof. We define a (2, ..., 2)-subgroup A of Spinn(k) as in § 2, namely as
A0×{1, c̃}, where A0 is the 2-division subgroup of the maximal torus T , and
c̃ is a lifting in Spinn(k) of the element c of the adjoint group. The congruence
condition on n implies that c̃ is of order 2. We have rankA = r+1 = [n/2]+1.
Let us suppose first that n ≡ ±1 ( mod 8 ). The spin representation is then
orthogonal, and it gives a homomorphism

ρ : Spinn → ON , with N = 2r = 2(n−1)/2.

If K = k(t1, . . . , tr, u) we define θA ∈ H1(K, A) as in § 2. The image of
θA by ρ corresponds to a rank N quadratic form q, which is easily shown
to be isomorphic (up to a change of variables) to 〈u〉 ⊗ 〈〈 t1, . . . , tr 〉〉. By
Proposition 6, we have ed(q; 2) ≥ r+1. This shows that the image θ of θA in
H1(K,Spinn) is such that ed(θ; 2) ≥ r+1, and the theorem follows. The case
where n ≡ 0 ( mod 8 ) is analogous : one takes for ρ the direct sum of the two
half-spin representations (which are orthogonal, because n ≡ 0 ( mod 8 )).

§ 8 Other examples

Theorem 13 (i) ed(HSpinn; 2) ≥ n/2 + 1 if n > 0, n ≡ 0 (mod 8).
(ii) ed(PSOn; 2) ≥ n − 2 if n is even ≥ 4.
(iii) ed(2.E7; 2) ≥ 7.
(iv) ed(PGLn) ≥ v2(n) if n > 0.

(Undefined notation will be explained below.)

16



Proof (sketch). Let G be the group HSpinn (resp. PSOn, resp. 2.E7, resp.
PGLn) mentioned in the theorem. We apply the method of the previous
sections to a suitable abelian subgroup A of G(k), of rank e = n/2+1 (resp.
n − 2, resp. 7, resp. v2(n)) and to a suitable orthogonal representation
ρ : G → GL(V ). We thus get a monomial quadratic form q over K =
k(t1, . . . , te), and a routine computation, based on Theorem 4, shows that
ed(q; 2) = e, hence the result.

Here are the definitions of A and ρ in each case (the “routine computa-
tion” is left to the reader):

Case (i). The group G = HSpinn is the half-spin group, i.e. the quo-
tient of Spinn by a central subgroup of order 2 distinct from the kernel of
Spinn → SOn. This is well defined whenever n ≡ 0 (mod 4), with a slight
ambiguity for n = 8, since in that case HSpin8 is isomorphic to SO8 (and
hence ed(HSpin8; 2) = 7). The group G acts faithfully on the correspond-
ing half-spin representation S. Since n ≡ 0 (mod 8), this is an orthogonal
representation. Let T be a maximal torus of G. As in § 2 we define A to be
the subgroup of G(k) generated by the elements of order 2 of T and by an
element c of order 2 of N(T ) such that ctc = t−1 for every t ∈ T (such an
element exists because n is divisible by 8). The group A is an elementary
abelian (2, . . . , 2)-group of rank e = n/2+1. We choose for V the direct sum
S ⊕ Lie(G).

Case (ii). The group G = PSOn is the quotient SOn/µ2, i.e. an adjoint
group of type Dn/2. The group A is the image in G(k) of the diagonal
matrices of square 1 in SOn. It is a (2, . . . , 2)-abelian group of rank e = n−2.
One takes for V the Lie algebra of G, with the quadratic form defined by
Tr(x · y).

Case (iii). The group G = 2.E7 is a simply connected group of type E7.
Choose a maximal torus T of G, and let c ∈ N(T ) be such that ctc−1 = t−1

for every t ∈ T . We have c2 = z, where z is the non trivial element of the
center of G. Let A0 be the kernel of t 7→ t2; it is an elementary group of type
(2, . . . , 2) and of rank 7; it contains z. The subgroup A of G generated by
A0 and c is an abelian group of type (4, 2, . . . , 2) and of rank 7. The image
of A in the adjoint group G′ = G/{1, z} is A′ = A/{1, z}; it is elementary
abelian of rank 7. If K = k(t1, . . . , t7), we have a canonical element θA′ in
H1(K, A′); since −1 is a square in K, there exists an element θA ∈ H1(K, A)
whose image in H1(K, A′) is θA′ . We choose for orthogonal representation of
G the adjoint representation. The action of A on this representation factors
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through A′, hence gives a monomial quadratic form q over k(t1, . . . , t7) and
one checks that q is 7-reduced.

Case (iv). Here G = PGLn and e = 2m, where m is the 2-adic valuation
of n. If we write n as 2mN , with N odd, there is a natural injection of
PGL2× . . .×PGL2 (m factors) in G. Let A1 be a (2, 2)-subgroup of PGL2,
and let A = A1 × . . . × A1 (m factors). We have an embedding

A −→ PGL2 × . . . ×PGL2 −→ PGLn = G,

and A is a (2, . . . , 2)-group of rank e. We select for V the space Mn of n× n
matrices, with the scalar product Tr(x · y). The group G acts by conjugation
on Mn. (Here the monomial quadratic form q is the tensor product of a
generic e-Pfister form by the unit form 〈1, . . . , 1〉 of rank N2; since N is odd,
Theorem 4 shows that the essential dimension of q at 2 is indeed equal to e.)
¤

Remarks. 1) We do not know how good are the lower bounds of Theo-
rems 1,11,12 and 13. Some are rather weak: for instance, th. 1 applied to
type Bn gives roughly half the true value of ed(G; 2). What about those on
Spinn, HSpinn, and E8? These questions are related: an upper bound for
HSpin16 would give one for E8.

2) Applying Proposition 6 to the generic quadratic form q = 〈t1, . . . , tn〉
and the generic quadratic form q′ = 〈t1, . . . , tn−1, t1 · · · tn−1〉 of discriminant 1
one recovers the well known facts that ed(On; 2) ≥ n and ed(SOn; 2) ≥ n−1
(if n ≥ 2), cf. e.g. [R 00], Theorems 10.3 and 10.4.

3) There are cases where the method “A → G → O(V, q)” fails to give
any result. For instance, let G be a group of type E6 (adjoint, or simply
connected, it does not matter). By using the relations of this group with
G2 (cf. [GMS 03], Exercise 22.9) it is not hard to see that ed(G; 2) is equal
to 3. One can show that there is no way to prove this by the A → G →
O(V, q) method: every orthogonal representation G → O(V, q) gives a map
H1(K, G) → H1(K,O(V, q)) which is trivial, hence gives no information on
ed(G).
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