NONTRIVIALITY OF NK;(D) FOR DIVISION ALGEBRAS

ROOZBEH HAZRAT AND ADRIAN WADSWORTH

ABSTRACT. A field F is said to be NKNT if for any noncommutative division algebra D
finite dimensional over E C Z(D) = F with index ind(D), Nrd(D*)/F*"4(P) is nontrivial.
It is proved that if E is a field finitely generated but not algebraic over some subfield then
E is NKNT. As a consequence, if F' = Z(D) is finitely generated over its prime subfield or
over an algebraically closed field, then CK;(D) = Coker(K1F — K1D) is nontrivial.

Let D be a division algebra over its center F' of index n. Denote by D* and F* the
multiplicative group of D and F' respectively. Let Nrdp: D* — F* be the reduced norm
map, D™ the kernel of this map and D’ the commutator subgroup of D*. The inclusion map
F — D induces a homomorphism K;(F) = F* — K,(D) = D*/D’. Consider the group

CK, (D) = Coker(K,F — K,D) = D*/F*D’

Since 2 "Nrd(x) € D™ and the reduced Whitehead group SK;(D) = DY /D’ is n-torsion
(by [3], p. 157, Lemma 2), it follows that CK;(D) is an abelian group of bounded exponent
n? (In fact one can show that the bound is n, see the proof of Lemma 4, p. 154 in [3]
or pp. 579-580 in [5]). Thus, by the Priifer-Baer theorem CK;(D) = @ Z;, where each
k; | n (see [11], p. 105). Therefore if CK;(D) is nontrivial then D* has a (normal) maximal
subgroup. The question of whether D* has a maximal subgroup seems to remain open and
thus by the above observation is limited to the case when CK; (D) is trivial. In [4], Th. 2.12
it was proved that if D is a tensor product of cyclic algebras then CK;(D) is trivial if and
only if D is a quaternion division algebra (%) where F' is a real Pythagorean field (see
also [8]). It has been conjectured in [6] that if CK;(D) is trivial then D is a quaternion
division algebra.

The group CK; has been computed in [5] for certain division algebras, and its connection
with SK; was also studied. But, CK; (D) is often difficult to work with. We will focus here on
a related invariant, NK; (D), which is sometimes more tractable, and can yield information
about CK; (D). Define

NK;(D) = D*/F*DW = Nrd(D*)/F*mdP)

(with the isomorphism given by the reduced norm map). Observe that NK;(D) is a homo-
morphic image of CK;(D) and that whenever SK;(D) = 1, we have CK;(D) = NK;(D).
(Recall that SK;(D) = 1 whenever ind(D) is square-free, or the center F of D is a local or a
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global field, by [3], p. 164, Cor. 4, Th. 3, p. 165, (17), p. 166, (18).) For example, if Q = (“Tb)
is a quaternion division algebra with char(F") # 2, we have

CK1(Q) = NKy(Q) = ({r* — as® = bt* + abu® | r,s,t,u € F}\{0}) /F*.

From this formula, it is immediate that CK;(Q) is trivial iff F' is a real Pythagorean field
and Q = (=:1).

F

Observe that the condition that NK; (D) be trivial for a noncommutative division ring D
is an extremely strong one. Indeed, if ind(D) = d then NK;(D) = 1 iff Nrdp(D*) = F*? =
Nrdp(F*), which holds iff for every maximal subfield L of F, Ny p(L*) = F** = N ;p(F*).
It was shown in [4] that if C' is a noncommutative cyclic algebra with NK;(C) = 1, then
C = (=1=1) with F' a Pythagorean field. We will show here that NK; (D) is nontrivial for a
great many other noncommutative division algebras D. Of course, whenever NK; (D) # 1,

we also have CK;(D) # 1.

Definition. A field E is said to be NKNT (for NK; nontrivial) if for any noncommutative
division algebra D finite dimensional over E (and not necessarily central over E), NK;(D)
is nontrivial.

It is clear from the definition that if a field £ is NKNT then so is every finite degree field
extension of F. Here are some examples of NKNT fields: Clearly a finite field is NKNT;
so is any algebraically closed field; so also is any field of transcendence degree 1 over an
algebraically closed field, by Tsen’s Theorem. Since every division algebra over a global field
is a cyclic algebra, the result quoted above shows that every global field is NKNT. Likewise,
every nonreal local field is NKNT. However the field of real numbers R is not NKNT, since R
is a real Pythagorean and thus CK;(Hg) = 1, but the rational function field R(¢) is NKNT.
This is a consequence of our main theorem below. But we can see it directly as follows: If
L is a finite degree extension of R(t) and D is an L-central noncommutative division algebra,
then by Tsen’s Theorem, D is split by L(y/—1), so D is a quaternion algebra; but NK; (D)
is then nontrivial because L is not Pythagorean.

In this note our main result is:

Theorem. Let F' be a field which is finitely generated but not algebraic over some subfield Fy.
Then, F is NKNT.

Let D be a division algebra with center F'. In showing that NK; (D) is nontrivial, Lemma 1
below allows us to reduce to the case where ind(D) is a prime power. Our arguments then
divide into two cases depending on whether ind(D) is a power of char(F"). Lemma 2 and its
Corollary handle the first case:

Lemma 1. Let Dy, ..., Dy be division algebras with center F' such that ged(ind(D;), ind(D;)) =1
whenever i # j.Then,

NKl(Dl Rp D2 Rp ... Dk) = NKl(Dl) X ... X NKl(Dk) .
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Proof. 1t suffices by induction to prove the result for £ = 2. This can be done the same way
as the corresponding result for CK; was proved in [5], Th. 2.8. O

Lemma 2. Let D be a noncommutative division algebra similar to a cyclic algebra A. In
each of the following cases NKy(D) is nontrivial:

(1) F contains a square root of —1;
(2) The characteristic of F' is 2;
(3) The degree of A is odd.

Proof. Since the primary components of D are similar to tensor powers of A which are similar
to cyclic algebras, it suffices by Lemma 1 to consider the case when ind(D) is a power of a
prime. Thus, assume ind(D) = p¢, where p is a prime number and ¢ > 1 and D is similar
to a cyclic algebra A = (E/F,0,a). Choose A of minimal degree. Then, deg(A) = p°¢ and
a ¢ F*P; for, if a = 0P, then A is Brauer equivalent to (Ey/F,0,b), where [E : Ey| = p,
contradicting the minimality of deg(A).

Let d = p° = deg(A). Let a be the standard generator of A with a¢ = a. Since the
powers of o up to the d-th are part of a base of A over F', they are F-linearly independent.
Therefore, the minimal polynomial of a over F'is x¢ — a. If M is any splitting field of A,
then for a®1 € A® M, the minimal polynomial of a®1 over M is again % — a. Since
the characteristic polynomial of a®1 has degree d, this polynomial is also ¢ — a. Hence,
Nrd4(a) = det(a®1) = (=1)%"ta. So, if p is odd, or char(F) = 2, or F contains a square
root of —1, then Nrd,(a) ¢ F*P. But thanks to the Dieudonné determinant, Nrd 4(A*) =
Nrdp(D*). Thus Nrd 4(a) € Nrdp(D*)\F*", so NK; (D) is nontrivial. O

Recall that a p-algebra is a central simple algebra of degree a power of the prime p over a
field of characteristic p. Albert’s main theorem in the theory of p-algebras states that every
p-algebra is similar to a cyclic p-algebra (see [1], p. 109, Th. 31). Combining this with the
Lemma above, we obtain:

Corollary 3. Let D be a noncommutative p-division algebra. Then NK;(D) is nontrivial.

Remark. Let G(D) = D*/Nrd(D*)D’, which is a bigger group than CK;(D) in general. It
is much easier to see that G(D) # 1 for every noncommutative p-division algebra D. Indeed,

if G(D) =1 then Nrd(D*) = Nrd(D)**" where ind(D) = p". So, for F' = Z(D),
F*" C Nrd(D*) = Nrd(D)*" = Nrd(D)*" C F*#".

Hence, F**" = F*P”" Since char(F') = p, this implies F'* = F*? i.e., F' has no proper purely
inseparable extensions. But one knows by [1], p. 104, Th. 21, that any p-algebra has a purely
inseparable splitting field; hence, D = F'| a contradiction. (Compare this argument with
[8], Th. 2).

In order to prove the main Theorem, we need two propositions.



4 ROOZBEH HAZRAT AND ADRIAN WADSWORTH

Proposition 4. Let F' C L be fields with [L: F] = d < oo such that Ny,;p(L*) = F*. If V is
a discrete valuation ring of F with residue field V, and if the integral closure of V in L is a

finite V-module, then V' has a unique extension to a DVR W of L, and [W:V] = [L:F].

Proof. Let v be the normalized discrete valuation on F' corresponding to the valuation ring V.
“Normalized” means that the value group v(F*) = Z. Let vy, ..., vs be all the (inequivalent)
extensions of v to L. Since v is discrete and the integral closure of V' in L is a finite V-module,
we have Y7, e;f; = [L:F], where ¢; is the ramification index of v;/v and f; is the residue
degree of v;/v ([2], VI, §8.3, Cor. 3). Since v; extends v, the value group of v; is E%Z. For
any x € L, we have

S

(1) oNugr(0)) = 3 esfin(e),

by, [2], VI, §8.5, Cor. 2. Now by the Approximation Theorem ([2], VI, §7.2, Cor. 1) one
can choose x € L such that vi(z) = 1/e; and v;(z) = 0 for all « > 1. Thus by (1),
v(Ny p(z)) = fi. But since Ny p(z) € F*, we must have d | v(Ny p(z)) = fi < d. This,
combined with >~7  e;f; = d with all e; > 1 and f; > 1, forces f; = d = [L:F] and s = 1,
as desired. U

Using Proposition 4, we obtain the following Theorem which provides a further class of
fields with the NKNT property which is not covered by the main Theorem 7. For example,
it shows that if £’ is NKNT, then so is the Laurent power series field F'((x)).

Theorem 5. Let F be a discrete valued field with residue field F such that char(F) =
char(F'). If F' is NKNT, then so is F'.

Proof. Suppose there is a noncommutative division algebra D finite dimensional over F’ with
center K such that NK;(D) = 1. We can assume K = F. Since by Lemma 1, NK; respects
the primary decomposition of D, it is enough to consider the case when ind(D) = p*, where
p is prime and k& > 1. If char(F') = p, then D is a p-algebra and by Corollary 3, NK;(D) is
nontrivial. Thus we may assume that char(F') # p. Hence, every subfield of D containing F'
is separable over F.

Let d = p* = ind(D). Since NK;(D) = 1, we have Ny ,p(L*) = F** for every maximal
subfield L of D. Since L is separable over F', the integral closure in L of the discrete
valuation ring Vg of v on F' is a finitely generated Vg-module. Thus by Proposition 4,
v extends uniquely to any maximal subfield of D, with no ramification. So, v extends
uniquely to any subfield of D. By the theorem of Ershov-Wadsworth (see [13], Th. 2.1 or
[12]), it follows that v extends to a valuation on D, which is denoted again by v. Furthermore
D is not ramified over F', i.e. the value group I'p of D coincides with the value group I'r
of F. Let D and F be the residue division algebra and the residue field of the valuations
on D and F. Since char(F) = char(F) does not divide ind(D), the Ostrowski theorem
for valued division algebras, [9] Th. 3, yields [D:F] = [D:F||l'p : Tx| = [D:F]. Note
also that [Z(D): F]|[D:FJ; hence, Z(D) is separable over F. Thus, the surjectivity of the
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fundamental homomorphism I'p /T'r — Gal(Z (D)/F), together with the fact that Z (D) is
normal and separable over /" and I'p/T'p = 1 force that Z(D) = F' (see [13], Prop. 2.5 or
[7], Prop. 1.7). Hence, ind(D) = ind(D).

Since NK;(D) # 1 and ind(D) = ind(D) = d, there is @ € D" with Nrdy(a@) ¢ F’. Let
a be any inverse image of @ in the valuation ring V of D, and let L be any maximal subfield
of D containing a. Let V7, be the valuation ring of the restriction of v to L, and let L be the
residue field of V. Because V, is the unique extension of Vg to L, V, is the integral closure
of Vi in L; hence, it is a finitely-generated Vp-module. Since [D: F F| = [D: F], we must have
[L:F| = [L F], showing that L is a maximal subfield of D. If by, ..., by are any F-vector
space base of L, then any inverse images by, . .., by of the b; in the Valuatlon ring V7, form a
base of Vi, as a free Vp-module. (The b; generate Vi, over Vp by Nakayama’s Lemma, and
they are Vp-independent because Vi is a valuation ring and the b; are F-independent.) By
computing the norm N, p(a) as the determinant of the F-linear map multiplication by a
using the base by, ..., by, we obtain Ny p(a) € Vp and

NL/F(CL) = NZ/F(E) in F
Because we have assumed NK;(D) = 1, we have
Nyjp(a) =Nrdp(a) € F*N Ve = VE.

Hence,

_ —d
Nrdg;(@) = Ng (@) = Npp(a) € VA =F"

contradicting the choice of @. So, NK;(D) # 1, contradicting the choice of D. Thus, F is
NKNT. 0

Proposition 6. Let FF C F(t) C L be fields with t transcendental over F and [L: F(t)] < co.
If L = F(t)(«) for some «, then there is a discrete valuation ring V' of F(t) with F C 'V such
that V has an extension to a DVR W of L such that W = V. (In fact, there are infinitely
many such V'.)

Proof. Let R = F[t]. We can assume that « is integral over R. Let f = 2" +c, 12" '+.. .+¢p
be the minimal polynomial of « over F(t). The integrality of a over R (with R integrally
closed) assures that f € R[z]. Let

= {m € F[t] | m is irreducible and monic in F[t] and «|f(r) for some r € R}.

We will show that |Py| = co. Assume first that ¢g = 1, and write f = zh(z)+1 with h € R[z]
and deg(h) = n—1. Suppose |P¢| = {m1,...,m}. Let s = tm ... m,. Since h has only finitely
many roots in R, there is a natural number ¢ with h(s*) # 0. Then f(s°) = s‘h(s") + 1 has
positive degree in ¢, so is not a unit of R. If p is an irreducible monic factor of f(s), then
p € Pr,but pts,sopé&{m,...,m}, a contradiction. Hence Py cannot be finite if ¢y = 1.

Now assume ¢y # 1. Let f(cox) = cog(z). So g € R[z] with deg(g) = deg(f) > 1, and
g has constant term 1. By the previous case, |P,| = co. But sincef(cor) = cog(r), we have
P, C Py. So, |Ps| = o0, as claimed.
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Now, take any m € Py, and let V' be the DVR R(;) which is the localization of R at its

prime ideal (7). Let M = 7V, which is the maximal ideal of V; so V = V/M. Assume first
that the ring V[a] is integrally closed.

Since 7|f(r) for some r € R, the image f of f in V[z] has a root 7 in V. Note that
fF(t)[x] N V[z] = fV]z], by the division algorithm as f is monic in V[z]. Hence, V[a] =
V{z]/ fV]x] and

(2) Vlel/MV([a] = Vi[z]/(f, M) = V[2]/(])-

Because f(7) =0,z — T is an irreducible factor of f in V[z]. Let N be the maximal ideal of
V[a] containing MV [a] corresponding to (z —7)/(f) in V[x]/(f) in the isomorphism given
by (2). Let W be the localization V[a]y. Then W is a DVR, as V]a] is the integral closure
of V in L. Furthermore, W N F(t) = V and W = V[a]/N = V[z]/(z —F) = V. Thus, the
desired W exists for V' = R(r) whenever m € Py and Rn)[a] is integrally closed.

To complete the proof we show that the needed integral closure property of R [a] occurs
for all but finitely many © € P;. Let T be the integral closure of R in L; so T is a
finitely generated R-module ([2], V, §3.2, Th. 2). We have R[a] C T, and T and R|a] each
have quotient field L. So, T'/R[a] is a finitely generated torsion R-module; hence it has
nonzero annihilator in R. Therefore, there is b € R with b # 0 and b7 C R]a]. Hence,
R[a][1/b] = T'[1/b], which is integrally closed. For any monic irreducible 7 € R, if w1 b then
the DVR R() is a localization of R[1/b]. Hence, R(x)[a] is a localization of R[1/b][a], so
R(m[a] is integrally closed. There are only finitely many monic irreducibles of R dividing b.
For all other 7 in the infinite set Py, we have R(r)(«) is integrally closed. O

Remark. For the result of Prop. 6, it is not sufficient to assume that [L:F(t)] < co. For
example, suppose char(F) = p # 0 and [F'/?: F] > p?. Take any field K with F C K C F'/»
and p? < [K:F] < oo, and let L = K (t). Take any discrete valuation ring V of F(t) and any
extension of V to a DVR W of L. Identify V and K with their canonical images in W. Since
V = F(p) for some 3, the Theorem of the Primitive Element shows that V N K = F(v), for
some v € K. Since 47 € F', we have [F(v):F] < p < [K:F], so V doesn’t contain all of K.

Because K C W, this shows that W #* V.

Theorem 7. Let F' be a field which is finitely generated but not algebraic over some sub-
field Fy. Then, F' is NKNT.

Proof. We need to show that for each finite degree extension field K of F' and each noncom-
mutative finite dimensional division algebra D with center K, we have NK; (D) is nontrivial.
As in the proof of Theorem 5, we can assume that K = F and that I is a finite degree
extension of Fy(t), with ¢ transcendental over Fy. Since NKj respects the primary decom-
position of D, by Corollary 3 it suffices to consider the case where ind(D) = p*, where p is
a prime number with p # char(Fp).

Let L be any maximal subfield of D and let S be the separable closure of Fy(t) in L.
Then, S = Fy(t)(«) for some . By Proposition 6, applied to the field extension Fy(t) C S,
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there is a DVR V' of Fy(t) (with Fy C V') which has an extension to a DVR W of S with
V = W. Because L is purely inseparable over S, W has a unique extension to a DVR Y
of L, and Y is purely inseparable over W. Let Z = Y N F, which is a DVR of F. Since
W =V CZ CY, we have Y is purely inseparable over Z. If char(Fy) = 0, it follows that
Y =Z;hence [Y : Z] =1 # p* = [L : F]. If char(Fy) = q # 0, then [Y : Z] = ¢* for some
> 0. Since q # p by hypothesis, we again have [Y : Z] # [L : F).

Let Vg (resp. V1) be the integral closure of V' in F' (resp. L), and let Z;, be the integral
closure of Z in L. Because the integral closure of Fy[t] in F' (resp. in L) is a finitely generated
Fy[t]-module, by [2], V, §3.2, Th. 2, and V is a localization of Fy[t] (or Fy[t™]), V@ and Vi
are finitely generated V-modules, so V}, is a finitely generated Vp-module. Then, as Z is a
localization of Vg, Z is a finitely generated Z-module. Since the conclusion of Proposition 4
fails for Z C Y in the field extension F C L, we have F*?" S Np/k(L*) € Nrd(D*), showing
that NK; (D) is nontrivial. O

S <

Corollary 8. If D is a noncommutative division algebra whose center is finitely gener-
ated over its prime field or over an algebraically closed field, then NK;(D) # 1. Hence,
CKi(D) # 1 and D* contains a mazimal proper normal subgroup.

Proof. This is immediate from the Theorem and the comments in the introduction. U
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