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1. INTRODUCTION

Let X be a proper scheme of finite type over a field F'. A zero-cycle on X
is the formal sum _ n;[z;] where n; € Z and x; are closed (zero-dimensional)
points of the variety X. The factor group of the group of zero-cycles modulo
rational equivalence is called Chow group of dimension zero and is denoted by
CHy(X). The assignment = — deg(z) extends to the degree homomorphism

deg : CHy(X) — Z.

The image of deg coincides with n(X)Z where n(X) is the greatest common
divisor of the degrees deg(x) = [F'(z) : F] over all closed points z € X. We
denote the kernel of deg by CHy(X).

The main purpose of the paper is to present a characteristic free uniform
method of computing the group CHy(X) for projective homogeneous vari-
eties of semisimple algebraic groups. The method is based on the idea of
parametrization of fields over which X has a point. We illustrate the method
by proving that in many cases the group CHy(X) is trivial and give examples
of varieties when this group is not trivial. The main results of the paper can
be summarized as follows.

Let X be a scheme over F. We denote by A(X) the class of all field ex-
tensions L/F such that X (L) # (). We say that two fields Lo, L; € A(X) of
the same degree n over I’ are simply X-equivalent if they are members of a
continuous family of fields L; € A(X), t € Al of degree n over F (for precise
definition see Section 6). We say that L and L' are X-equivalent if they can
be connected by a chain of fields Ly = L, L4,...,L, = L' such that L; and
L;y 1 are simply X-equivalent for ¢+ = 0,...,r — 1. Furthermore we say that
the class A(X) is connected if every two fields in A(Xpg) of degree n(Xg) over
E are Xpg-equivalent over any special extension E/F (see Section 6).

Our first result (Theorem 6.5) asserts that if X is an arbitrary proper scheme
over F' such that the class A(X) is connected and CHy(X}) = 0 for any field
L € A(X), then CHy(X) = 0. Note that the condition CHy(X) = 0 always
holds for projective homogeneous varieties X. Thus the connectedness of the
class A(X) for such X implies CHo(X) = 0.
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We prove the connectedness of A(X) for various classes of projective homo-
geneous varieties. These include: Severi-Brauer varieties, certain generalized
Severi-Brauer varieties, quadrics, involution varieties, projective homogeneous
varieties related to groups of exceptional types %Dy, Gy, Fy, 12 Eg, E; with triv-
ial Tits algebras. As an application we get that CHy(X) = 0, i.e. the Chow
group CHy(X) is infinite cyclic for all above mentioned varieties. We borrow
from [11] the idea of using symplectic involutions in the case of generalized
Severi-Brauer varieties and involution varieties.

Some of our results were known before under certain restrictions on charac-
teristic of the ground field F. Triviality of CHy(X) in the case of the Severi-
Brauer variety X = SB(A) was proven by Panin in [15] if char F' does not
divide ind(A). Quadrics over fields of characteristic # 2 were considered by
Swan [27] and Karpenko [8]. The cases of certain generalized Severi-Brauer
varieties and involution varieties were treated by Krashen in [11] under the
assumption char /' = 0. Involution varieties of algebras of index at most 2
were considered in [13] by the second author under assumption char F' # 2.
Petrov, Semenov and Zainoulline [19], independently, have recently shown that
CHy(X) = 0 for projective homogeneous varieties X related to groups of types
Gy, Fo, LEs over fields of characteristic 0 with trivial Tits algebras.

The notion of X-equivalence used in the paper as the main technical tool
is formulated in terms of field extensions and discrete valuations, so that we
avoid symmetric power constructions used in [11] to describe closed points.
Flexibility of the notion of X-equivalence allows us not to impose any char-
acteristic restrictions on F' (except for the trialitarian D, and Eg, E; where
we assume that characteristic is # 2,3). Another advantage of our method is
its transparency and shortness. Even for those varieties where the result was
already known our proofs are simpler.

Finally we remark that most likely our results on algebraic groups of ex-
ceptional types are close to optimal. It looks hopeless to weaken restrictions
on Tits algebras and prove that CHy(X) is infinite cyclic for larger classes of
projective homogeneous varieties of exceptional groups.

At the end of the paper we give two examples of projective homogeneous va-
rieties X with CH(X) # 0 related to algebraic groups of types A; +A; +A; and
Bs with nontrivial Tits algebras. Note that our first result is minimal possible
since CHo(X) = 0 for all projective homogeneous varieties X of dimension at
most 2 (see Proposition 4.5).

2. PRELIMINARY FACTS ON ALGEBRAIC GROUPS

2.1. Parabolic subgroups. Let G be a simple simply connected algebraic
group over a field F'. Fix a maximal torus T" C G over F and a basis A of the
root system X = X(G,T) of G with respect to T'. Recall that for each subset
S C A one can associate the parabolic subgroup Ps in GG, whose semisimple
part is generated by the corresponding root subgroups UL, of G for all roots
a € 5. It is defined over a separable closure F., of F' and is called the standard
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parabolic subgroup of type S. Every parabolic subgroup P in G over Fy, is
conjugate to a unique standard parabolic subgroup Ps. We say that P is of
type S.

Let Xg be the variety of all parabolic subgroups of G of type S. If S is
stable with respect to the so-called *-action of the Galois group Gal (Fi.,/F)
(see [28]), the variety Xg is defined over F. It has a rational point if and only
if G contains an F-defined parabolic subgroup of type S. If Xg(F') # (), then
we say that Xg is isotropic.

2.2. Tits indices. Recall [28] that given G one can associate a geometric
picture called the Tits index of G. It consists of the corresponding Dynkin
diagram of G with some vertices circled. The set Sy of uncircled vertices
corresponds to an F-subgroup of G called a semisimple anisotropic kernel.
This subgroup is the semisimple part of the centralizer Cq(T}) where T} C G
is a maximal F-split subtorus in G. All maximal F-split subtori are conjugate
over F. Hence a semisimple anisotropic kernel of G is defined uniquely up to
conjugation.

All vertices in Tits index of G are circled if and only if G is quasi-split over
F and none of them is circled if and only if G is F-anisotropic. The last occurs
if and only if G contains no nontrivial F-split subtorus.

Let S be stable with respect to the x-action of Gal(Fs.,/F). Then the
variety Xg of parabolic subgroups in G of type S is defined over F' and it has
a rational point if and only if S contains the subset Sy of all uncircled vertices.
Hence an F-defined parabolic subgroup P C G of type S is minimal if and
only if S = Sy; in particular all minimal parabolic subgroups in G have the
same type and they are conjugate over F'.

2.3. Basic types. We say that S is a basic type for G if there is a form H
of G over a field extension L/F such that H is L-isotropic and its minimal
parabolic subgroups have type S. In other words, a type S is basic if in the
classification table [28] of Tits indices there is one whose set of all uncircled
vertices coincides with S.

3. STRONGLY INNER FORMS

One knows that G is a form of a quasi-split simply connected group Gy, i.e.
there exists a cocycle £ € Z1(F, Aut Gy) such that G is isomorphic over F' to
the twisted group *Gy. One says that G is of the same inner type as G or an
inner form of Gy if the class [¢] is contained in Im [H*(F, Go) — HY(F, Aut Gy)]
where Gy = Gy/Z is the corresponding adjoint group and Z C G is the center
of Gy. Otherwise G is an outer form of Gy. One says that G is a strongly
inner form of Gy if [¢] is contained in Im [H(F, Gy) — H'(F, Aut Gy)].

Remark 3.1. The notion of strongly inner forms was first introduced by Tits
in [30].
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For future reference we need some structure facts on strongly inner forms of
a quasi-split simple simply connected group Gy. In what follows ¢ € Z1(F, Gy)
and G = ¢G, is the corresponding twisted group.

3.1. Quasi-splitness criterion.

Lemma 3.2. G is quasi-split if and only if [§] = 1.

Proof. Let G be quasi-split. Since H!(F, Aut Gy) classifies all forms of Gy,
€] € Ker [H(F,Gy) — H'(F, Aut Gy)].

The group Aut Gy is the semi-direct product of the adjoint group G, and
the automorphism group Aut D of the Dynkin diagram D of Gy. It follows
that Aut Go(F) — Aut D(F) is surjective, hence the mapping H'(F,Gy) —
H'(F, Aut Gy) has trivial kernel. This implies that [¢] is contained in the kernel
of HY(F,Gy) — H*(F,Gp). Consider now an exact sequence 1 — Z — Gy —
Gy — 1. Tt gives rise to an exact sequence

Hl(sz) - Hl(FaGO) - Hl(F7§O)'

It follows that & up to equivalence takes values in Z. As GG is simply connected
and quasi-split, it contains a maximal quasi-split torus T' C Gy. Since Z C T
and H'(F,T) = 1, by Hilbert Theorem 90, the result follows. O

3.2. Application of Steinberg’s Theorem. Let C; C G be a maximal F-
split torus. The centralizer Cs(C1) is a reductive group over F' whose central
torus C' contains C. Note that if Gg is split, we have C' = ;. However in
general case C' # ;. The semisimple part H = [Cq(C1), Ca(Ch)] of Ca(Ch)
is an F-anisotropic simply connected group, not necessarily simple. Its Tits
index coincides with the subindex of G generated by uncircled vertices. The
group Cg(Ch) is an almost direct product of H and C, i.e H N C' is a finite
central subgroup of H and C¢(S;) = H - C.

Theorem 3.3. Assume that H'(F,C/HNC) = 1. Then H is a strongly inner
form of a quasi-split simply connected group Hy over F.

Proof. Let Cy C H be a maximal torus over F' and let T' = C'-Cy. By dimension
count, 7" is a maximal torus in G over F. It easily follows from arguments
contained in [25, §10] (see also [20, Propositions 6.18,6.19, p. 338-339]) that
there is an F-embedding ¢ : " — Gy such that the class [£] is contained in
Im [HY(F,T) — H'(F,Gy)]. Since CNH =CNCy and H'(F,C/CNH) =1,
the mapping H'(F,Cy) — H!(F,T) is surjective. Thus, up to equivalence, we
may assume that £ takes values in C.

The centralizer Cg,(C1) is a reductive F-subgroup in Gy and from the con-
struction of ¢ (see the proof of in [20, Proposition 6.18, p. 339]) it follows
that Cg,(C1) and Cg(Cy) are isomorphic over Fy.,. Hence their semisimple
parts Hy and H are isomorphic over Fi.,. As all maximal F-split tori in Gg
are conjugate, Cg,(C1) (and hence Hy = [Cg,(C1), Cg,(C1)]) is a quasi-split
group. By construction Hy contains Cs, hence ¢ can be viewed as an element
in Z1(F, Hy) and then clearly we have H ~ ¢H,. O
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3.3. Groups isotropic over a quadratic extension. Assume that F' is
infinite and perfect. Let L/F be a quadratic extension making G isotropic.
We denote the generator of Gal(L/F') by o. If P C G is an L-defined standard
parabolic subgroup of type S C A we denote by P~ the opposite parabolic
subgroup (it is generated by root subgroups U_,, a € A\ S, and U, a € ).
The class P of parabolic subgroups conjugate to P is called self-opposite if it
contains P~. Clearly, P N P~ is a reductive part of P.

Lemma 3.4. If P is self-opposite, then it contains an L-parabolic subgroup
Q € P such that Q N o(Q) is a reductive part of Q.

Proof. See [20, Lemma 17', p. 383]. O

4. COMPARISON OF TWO HOMOGENEOUS VARIETIES

Proposition 4.1. Let X be a scheme over F' and Y be a projective homoge-
neous variety over F' such that Y,y is isotropic for every x € X. Then the pro-
jection f: X XY — X induces an isomorphism f, : CHo(X xY) — CHy(X).

Proof. Consider the spectral sequence [23, §8]
Epq = H Ag(Yp@), Kp) = Apg(X XY, Ko)
z€X(p)
for the projection f, where A,(X x Y, K,) are the K-homology groups defined
in [23]. It gives an exact sequence
Ely 2 Ely — CHy(X x Y) — 0.

We shall identify the terms E} o. It is proven in [3, Th. 7.5] that the Chow
motive of the isotropic variety Yp(,) is isomorphic over F'(x) to a direct sum of
the motive Z and twisted motives of the form Z(r) for some projective homo-

geneous variety Z and r > 0. By the dimension consideration, Ao(Z(r), K,) =
A_(Z,Kyyr) =0, hence

Ao(Yr(@), Kn) ~ Ag(Spec F(x), K,,) = K, F(x)
where the isomorphism is the push-forward map with respect to the structure
morphism Yp ) — Spec F'(x). Thus
Ely= ] K.F(),
:BEX(O)

and therefore CHy(X x Y') = Coker(0) ~ CHy(X). O

Corollary 4.2. Let X andY be two projective homogeneous varieties over F
such that each of them is isotropic over residue field of every point of another.

Then CHo(X) =~ CHo(Y) and CHy(X) ~ CHy(Y).
Taking Y = Spec F' in Corollary 4.2 we get

Corollary 4.3. Let X be an isotropic projective homogeneous variety. Then
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Let X be a variety over a field F. Consider the Brown-Gersten-Quillen
spectral sequence

(4.4) Lyt = AP(X, Kfq) = K*p7q<X>7

where AP(X, K_,) is the K-cohomology group and K,(X) is the K-group of
X (see [21, §7]). If X is projective, the group Ey " = A%(X, K;) of regu-
lar invertible functions on X is equal to K;(F) = F*. Since the composite
K\(F) — K;(X) = A%(X, K;) is the identity, the edge homomorphism e is
surjective. In particular, all the differentials going from E%~! are trivial. If
d = dim X < 2, all differentials coming to E4~¢ are trivial, in particular, the
edge homomorphism €’ : CHy(X) — Ky(X) is injective.

If X is projective, the degree homomorphism for CHy(X) is the composition

CHo(X) S Ko(X) L5 Ko(Spec F) = Z,

where the f, is the push-forward homomorphism with respect to the structure
morphism f : X — Spec(F). Therefore, Ker(e/) ¢ CHy(X). If X is a pro-
jective homogeneous variety, the group Ky(X) is torsion free (see [16]), hence
CHo(X) C Ker(e') since CHp(X) is a torsion group. Thus CHg(X) = Ker(e').
In particular we have proven

Proposition 4.5. Let X be a projective homogeneous variety of dimension at
most 2. Then CHy(X) = 0.

4.1. Reduction to a basic type. Let G be a simple simply connected group
over F'. We fix a maximal torus T' C G over F', the corresponding root system
¥ =3%(G,T), abasis A C X and a subset S C A. Consider the variety Xg of
parabolic subgroups in G of type S. Let L = F(Xg) be the field of rational
functions of Xg. Since Xg(L) # (), there is an L-defined parabolic subgroup
P in G of type S. It contains a minimal parabolic subgroup P’ C P of G over
L whose type S’ is a subset in S.

Proposition 4.6. There are canonical isomorphisms CHo(Xs) ~ CHp(Xs)
and CHy(Xg) ~ CHo(Xg ).

Proof. We show that X g and X satisfy conditions of Corollary 4.2. As S C S,
there is a natural map f : Xg — Xg over F. Therefore Xg is isotropic over
F(2') for every o’ € Xg.

Conversely, let © € Xg and set £ = F(x). The set S’ consists of all un-
circled vertices of the Tits index of G over F(X). Therefore S’ contains all
uncircled vertices of the Tits index of G over E(X). Since E(X)/FE purely
transcendental, and the Tits index does not change under such extensions,
the set S’ contains all uncircled vertices of the Tits index of G over F, i.e.,

Xo(E) #0. 0

Remark 4.7. The proposition allows us to consider basic subsets S C A only
while computing CHy(Xg). In fact we proved even more: it is sufficient to
compute CHy(Xg) for those basic subsets S that appear as sets of uncircled
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vertices of the Tits indices of G over all field extensions L/F. Thus we can
narrow the set of basic types by considering Tits indices of strongly inner forms
of Gy only.

5. SPECIAL FIELDS

Let p be a prime integer. A field F is called p-special if the degree of every
finite field extension of F' is a power of p. We say that F'is special if F' is
p-special for some p. The following properties of special fields follow directly
from the definition.

(1) An algebraic extension of a p-special field is p-special.

(2) For every field F' and every prime p there is an algebraic field extension
F,/F such that the field F), is p-special and the degree of any finite
sub-extension L/F of F,/F is prime to p.

If X is a scheme over a p-special field F', then n(X) is a power of p and there
is a closed point x € X such that degx = n(X).

The following statement reduces the problem of computing CHy(X) to the
case of schemes over p-special fields.

Lemma 5.1. Let X be a proper scheme over F'. Assume that for any p-special
field extension L/F, the group CHo(X) is trivial. Then CHy(X) = 0.

Proof. Let a € CHy(X) and fix a prime integer p. As the image of a in
CHo(Xp,) is trivial, a is trivial over some finite sub-extension L/F in F,/F.
Applying the push-forward homomorphism with respect to the morphism X; —
X, we get [L : F|-a = 0. In particular, the order of a is not divisible by p.
Since this holds for every prime p, we have a = 0. U

The following statement enables us to consider only closed points of minimal
degree.

Lemma 5.2. Let X be a proper scheme over a p-special field F'. Assume that
for any finite field extension L/ F, every two closed points of Xy, of the smallest
degree n(Xp) are rationally equivalent. Then CHo(X) = 0.

Proof. Let = be a closed point of X of the smallest degree p® = n(X) and let
y be a closed point of X of degree p°. We claim that [y] = p’~?[z] in CHy(X).

We shall prove the claim by induction on p® = deg(y). We may assume that
p° > p® Choose an intermediate field ' C L C F(y) such that [L : F] = p
and a point y’ € X, over y of degree p’~*. Note that n(X}) divides n(X) and
n(X) divides p - n(Xy). Therefore we have the following two cases.

Case 1: n(Xy) = n(X) = p® Then there is a point 2’ € X over z of degree
p®. By the induction hypothesis applied to X, [1/] = p*~!17%[2'] in CHy(X).
Taking the push-forward homomorphism with respect to f : X;, — X we get

vl = fuly]) =" full2’]) = "7 p [a] = "7 a].
Case 2: n(Xy) = p*!. Choose a closed point 2’ € X, of degree p®~* and
denote by z its image in X. The degree of z is p%, in particular, [z] = [z] in
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CHy(X). By the induction hypothesis applied to X, [y] = p®~D=(=D[»] in
CHo(X). Therefore

] = £([y]) = pO V"V L) = 0] = 9 a):
The claim is proven. It follows that every 0-cycle o on X is equivalent to m/|x]
for some m € Z. If degav = 0, then m = 0, i.e., a = 0 in CHy(X). O

6. EQUIVALENCES OF FIELD EXTENSIONS

6.1. X-equivalence. Let F' be a field and let A be the class of all field exten-
sions of F. For any subclass B C A and every field L € A we write B, for the
subclass of B of all fields containing L. Let n(B) denote the greatest common
divisor of the degrees [E : F] over all fields E € B of finite degree over F. (We
set n(B) = 0 if B has no finite degree extensions.) In particular, n(A) = 1. If
F' is p-special then n(B) is a power of p or 0 and if n(B) > 0 then there is a
field E' € B such that [E : F] = n(B).

For every a € F, let v, be the discrete valuation of the rational function
field F'(t) over F' corresponding to the irreducible polynomial f(t) =t — a.

Let B C A be a subclass of field extensions of F'. Two fields L and L’ in B
of the same degree n over F' are called simply B-equivalent if there is a degree
n field extension E/F(t) such that £ € B and two discrete valuations of E
over vy and v; with residue fields isomorphic to L and L’ respectively over F.
Two fields L and L’ in B are called B-equivalent if there is a chain of fields
Lo=L,Lq,...,L, = L"in B such that L; is simply B-equivalent to L;,; for
alli =0,1,...,r—1.

Note that if two fields L and L’ in B contain a common subfield K € A, i.e.,
L,L' € By, then L ~g, L' implies L ~g L'.

Example 6.1. Let X be a scheme of finite type over F'. Denote by A(X) the
class of all fields E € A such that X (E) # (. The number n(A(X)) coincides
with n(X), and A(X)-equivalent fields will be called X -equivalent.

Example 6.2. In the notation of Proposition 4.6 the classes A(Xg) and
A(Xg) coincide.

We shall need the following

Lemma 6.3. Let X be a proper scheme of finite type over F' such that CHy(Xp) =
0 for any field L € A(X) (e.g., X is a projective homogeneous variety by Corol-
lary 4.3). Let x and ' be two closed points of X such that residue fields F(x)
and F(z') are isomorphic over F. Then [x] = [2'] in CHy(X).

Proof. Let L = F(x). By assumption there are rational points y and 3’ of X,
over x and 2’ respectively. As [y] = [¢] in CHy(X}), taking the push-forward
homomorphism with respect to X; — X we get [z] = fu([y]) = f([y]) =
[2']. O

Lemma 6.4. Let X be a proper scheme of finite type over F such that CHy(Xp) =
0 for any field L € A(X). Let x and x' be two rational points of X of degree
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n(X) such that residue fields F(x) and F(z') are X -equivalent. Then [x] = [2/]

Proof. We may assume that F'(x) and F(z') are simply X-equivalent. Let
E be the field extension of F'(t) of degree n = n(X) in the definition of the
simple equivalence between F'(x) and F'(z'). We have the dominant morphism
Spec E — Spec F(t) — PL. Since E € A(X), there is a morphism Spec £ —
X over F'. Denote by C' the closure of the image of the diagonal morphism
SpecE — X x PL. Thus C is an integral proper curve with a surjective
morphism f : €' — PL. By assumption there are two discrete valuations v
and v’ of F over the valuations vy and v; of F(t) respectively. Let v and v’
dominate points ¢ and ¢ on C' respectively, so that f(c) = 0 and f(¢') =
Note that the residue field of ¢ is isomorphic to a subfield of the residue field
of v, which in its turn is isomorphic to the field F(x) of degree n over F.
On the other hand, C' C X x PL, hence n(C) > n(X) = n. Therefore, c is
a closed point of degree n, f~(0) = Spec F/(c) and F(c) ~ F(x). Similarly,
f7Y(1) = Spec F(c) and F(¢) ~ F(x').

The morphism f is flat, hence [¢] = f*([0]) = f*([1 ]) (] i
Consider the projection g : C' — X. Let z = g(c) and 2/ =
isomorphic to a subfield of F'(¢) and n(X) = n, we have F(z
Similarly F(2') ~ F(¢') ~ F(2'). Therefore, [z] = g.([c]) =
Lemma 6.3, [z] = [z] = [¢] = [2/]. O

A class B C A is called connected if for any special field £ € A every
two fields in By of degree n(Bg) over E are Bg-equivalent. For example, the
whole class A is connected, and therefore for every X with X (F") # 0 the class
A(X) = A is connected.

Theorem 6.5. Let X be a proper scheme of finite type over F such that
CHo(XL) = 0 for any field L € A(X). Suppose that the class A(X) is con-
nected. Then CHy(X) = 0.

Proof. By Lemma 5.1 we may assume that F' is p-special for some prime p.
It follows from Lemma 6.4 that for any finite field extension L/F', every two
closed point of X, of degree n(X) are rationally equivalent. By Lemma 5.2,
CHy(X) = 0. O

7. SEVERI-BRAUER VARIETIES

Let A be a central simple algebra of degree m over a field F' and let X be the
corresponding Severi-Brauer variety of right ideals of A of dimension deg(A)
(see [10, §1]). The variety X is projective homogeneous of the group SL;(A)
of type S = {aa,...,a;_1} where simple roots aj, ..., a,_1 of the Dynkin
diagram A,,_; are numbered as follows:

Qa1 Q9 Qmp—1
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Here m — 1 is the rank of SL;(A). A field extension L/F belongs to A(X) if
and only if the algebra A;, = A ®p L is split. In particular n(X) = ind(A). If
A is split, i.e., A = End(V') for some vector space V', the Severi-Brauer variety
X is the projective space P(V).

Let D be a (unique up to isomorphism) central division algebra F-algebra
Brauer equivalent to A. Every maximal subfield of D has degree n = n(X) over
F and it is a splitting field for D and A and it belongs to A(X). Conversely,
every field in A(X) of the smallest degree n is isomorphic over F' to a maximal
subfield of D [6, §4.4].

For every element d € D denote by Prd; = Prdy(s) € F|[s] the reduced
characteristic polynomial of d. The polynomial Prd, is monic of degree n and
Prd, is irreducible if and only if d generates a maximal subfield of D. In this
case F(d) ~ F[s]/(Prdy).

Recall that a finite field extension L/F is called simple if L is generated over
F' by one element. In particular every separable finite extension is simple.

Lemma 7.1. Let L C D be a simple maximal subfield and let d € D. Then
there is a mazximal subfield K C D containing d such that L ~x K.

Proof. We have L = F(a) for some a € D. In particular the polynomial Prd,
is irreducible. Consider the element ¢ = td + (1 — t)a € D[t] and its reduced
characteristic polynomial Prd. € F[s,t]. Note that Prd.(s,0) = Prd, and
Prd.(s,1) = Prdy. In particular Prd. is irreducible.

Set R = F|[s,t]/(Prd.). Since Prd,. is irreducible, R is a domain. The
quotient field £ of R is the maximal subfield of Dp() generated by c and
therefore belongs to A(X). Let @ be the principal ideal of R generated by t.
The factor ring R/Q is isomorphic to F[s]/(Prd,) ~ L. In particular, @ is a
maximal ideal of R. As the localization R is a Noetherian local domain of
dimension one with principal maximal ideal, Ry is a discrete valuation ring.
The corresponding discrete valuation of F with residue field L restricts to v
on F(t).

Let v be a discrete valuation of E restricting to v;. Since R is integral over
FIt], R is contained in the valuation ring O of v. As R/(1 —t) = F[s]/(Prdy)
and Prdy is a power of the minimal polynomial h = h(s) of d, the intersection
of R with the maximal ideal of O is generated by 1 — ¢ and h. In particular
residue field K of O contains F[s|/(h) = F(d).

On the other hand, since X is proper, a morphism Spec £ — X extends to
Spec O — X. Therefore K contains F'(z) for some z € X. But [K : F| < [E:
F(t)] = n, therefore K = F(z) and [K : F] = n. Thus K is isomorphic to a
maximal subfield of D containing d and L ~x K. U

Theorem 7.2. Let A be a central simple F-algebra and let X be the Severi-
Brauer variety SB(A). Then the class A(X) is connected.

Proof. 1t is sufficient to show that every two maximal subfields of D are X-
equivalent. We proceed by induction on deg D and may assume that deg(D) >
1. Choose a separable maximal subfield L of D. It is sufficient to show that L is
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X-equivalent to any maximal subfield £ C D. Choose an element d € E \ F.
By Lemma 7.1, L. ~x K for some maximal subfield K containing d. Let
M = F(d) and consider the centralizer D' of M in D. The fields £ and K
are maximal subfields of D’. By the induction hypothesis, K ~x,, F and
therefore, K ~x F. Finally, L ~x K ~x F. OJ

Theorem 6.5 yields

Corollary 7.3. (Cf., [15]) Let X be a Severi-Brauer variety. Then CHy(X) =
0.

8. GENERALIZED SEVERI-BRAUER VARIETIES

Let A be a central simple F-algebra. Denote by X = SB(2, A) the general-
ized Severi-Brauer variety of right ideals of A of dimension 2 deg(A) (see [10,
§1]). Tt is a projective homogeneous variety of the algebraic group SL;(A) of
type S = {ai,as,...,q,} where simple roots are numbered as in Section 7.
A field extension L/F belongs to A(X) if and only if ind Ay < 2. If A is
split, i.e., A = End (V') for some vector space V', the variety SB(2, A) is the
Grassmannian variety of planes in V.

If index of A is odd, then a field extension L/F belongs to A(X) if and only
if L splits A. Therefore the class A(X) coincides with A(SB(A)). Hence the
class A(X) is connected, by Theorem 7.2.

Suppose now that ind A = 2n is even. We have n(X) = n. Let D be a
central division F-algebra of degree 2n Brauer equivalent to A. In particular
A(X) = A(SB(2,D)). Every finite extension of F of degree n in A(X) is
isomorphic to a subfield of D and conversely every subfield of D of degree n
is contained in A(X).

Suppose that D has a symplectic involution o. Denote by Symd(D, o) the
subspace of D of all elements d+o(d) for d € D. The characteristic polynomial
of an element a € Symd(D, o) is the square of the monic pfaffian characteristic
polynomial Prp,(s) of degree n [10, Prop. 2.9]. In particular, [F(a) : F] < n,
moreover the polynomial Prp,(s) is irreducible if and only if [F(a) : F| = n.

Lemma 8.1. For any subfield K of D of degree n there is a symplectic invo-
lution T of D such that K C Symd(D, 7).

Proof. The centralizer ) of K in D is a quaternion algebra over K. By [10, Th.
4.14], the canonical involution of ) can be extended to a symplectic involution
7 on D. Choose an element y € @) such that y+7(y) = 1. Then z = zy+7(zy)
for every x € K, i.e., K C Symd(D, 7). O

Lemma 8.2. Let 0 and 7 be two distinct symplectic involutions on D and let
L be a simple subfield of Symd (D, o) of degree n. Then

(1) There exists a subfield K of D of degree n such that L ~x K and
K N Symd(D, T) contains a non-constant element.

(2) For every d € Symd(D, o) there exists a subfield K of D of degree n
such thatd € K and L ~x K.
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Proof. Let L = F(a) for some a € Symd(D, o).

(1) Choose b € D* such that ¢ = Int(b) o 7 [10, Prop. 2.7]. We have
ba € Symd(D, 7). Replacing a by a + 1 if necessary we assume that ba # F.

Consider the element ¢ = ¢t + (1 — t)b € D[t] and the involution o, =
Int(c) o op@) on Dpw. Then ca € Symd(Dpy,0.). The pfaffian character-
istic polynomial Prp,, belongs to F[s,t]. We have Prp,(s,0) = Prp,, and
Prp.(s,1) = Prp,, in particular Prp,, is irreducible. Considering the quotient
field E of the factor ring F'[s, t]/(Prp,,) as in the proof of Lemma 7.1 we find
two discrete valuations of E over vy and vy respectively with residue fields
isomorphic to L and a subfield K of D containing the nonconstant element ba.
Thus L ~x K.

(2) Let E be the degree n subfield of Dy generated by ta + (1 —t)d. As
in the proof of Lemma 7.1 we see that there are two discrete valuations of F
with residue fields L = F'(a) and K respectively, where K is a subfield of D of
degree n and d € K. O

Theorem 8.3. Let X be the generalized Severi-Brauer variety SB(2, A) of a
central simple algebra A of exponent not divisible by 4. Then the class A(X)
s connected.

Proof. By definition of connectedness we may assume that F' is a p-special
field. If p is odd and we already know that the class A(X) is connected. Thus
we may assume that p = 2, exp(A) = 2 and ind(A) = 2n is even. By [10, Th.
3.8], the algebra A has a symplectic involution.

We use the notation above. It is sufficient to show that every two subfields
of D of degree n are X-equivalent.

Let L and E be subfields of D of degree n. We may assume that L/F is
separable (see [29, Prop. 5]) and therefore is simple. We prove that L ~x E
by induction on n. By Lemma 8.1, we can choose symplectic involutions o and
7 of D such that L C Symd(A, o) and E C Symd(A, 7).

Case 1: ¢ = 7. Choose an element d € E'\ F. By Lemma 8.2(2), there is
a subfield K of D of degree n containing d such that L ~x K. Let D’ be the
centralizer of M = F(d) in D. By the induction hypothesis applied to D’ with
the involution 7|p we have K ~x,, F, therefore K ~x Fand L ~x K ~x E.

Case 2: 0 # 7. By Lemma 8.2(1), there exists a subfield K of D of degree
n such that L ~x K and K N Symd(D, ) contains a non-constant element
d. Choose a subfield H C Symd(D, ) of degree n containing d. Let D’ be
the centralizer of M = F(d) in D. By the induction hypothesis applied to
D', K ~x,, H and therefore K ~x H. By the first case, H ~x E, hence
L~x K~x H~x FE. O

Corollary 8.4. (Cf., [11]) Let X be the generalized Severi-Brauer variety
S_B(Q,A) of a central simple algebra A of exponent not divisible by 4. Then
CHo(X) =0.
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9. QUADRICS

Let ¢ be a quadratic form on an F-vector space V of finite dimension. De-
note by X the projective quadric hypersurface in P(V') defined by the equation
q = 0. If X is smooth, it is a projective homogeneous variety of the special or-
thogonal group O™ (q) of type S = {ay, ..., a,} where simple roots ay, . ..y,
of the Dynkin diagrams D,,, and B,, are numbered as follows:

a1 Qo g e Xm—1 a1 Qo A—1 QU
o777

Here the first and second diagrams correspond to the cases dim V' = 2m and
dim V' = 2m + 1 respectively.

The quadric X has a rational point if and only if ¢ is isotropic. If ¢ is
anisotropic, then n(X) = 2 by Springer’s theorem.

Example 9.1. Let ¢ be a nonzero 2-dimensional quadratic form. Then we
have dim X = 0, moreover X = Spec Cy(q), where Cy(q) is the even Clifford
algebra of q. The form ¢ is non-degenerate (resp. anisotropic) if and only if
Co(q) is an étale quadratic F-algebra (resp. a quadratic field extension of F').

Theorem 9.2. The class A(X) for a projective quadric X is connected.

Proof. We may assume that ¢ is anisotropic. Let L/F be a quadratic field
extension making ¢ isotropic and let x € X be a point with F(x) ~ L. Let
{1,a} be a basis of L over F' and let w = u + av, u,v € V, be an isotropic
vector in V. Then w € Uy, where U is the 2-dimensional subspace of V
spanned by v and u. Moreover, by Example 9.1, F(z) ~ Cy(q|v).

Conversely, if U C V is a 2-dimensional subspace, then

X NP(U) = Spec F(z) =~ Co(qly),

where z is a closed point of degree 2. Thus it is sufficient to show that for
every two 2-dimensional subspaces U and U’, the quadratic field extensions L =
Co(q|v) and L' = Cy(q|v) are X-equivalent. We may assume that UNU’ # 0.

Let {v,u} and {v,u'} be bases of U and U’ respectively. Consider the F'[t]-
submodule W of Vppy generated by v and tu + (1 — t)u’. Let R = Co(qpp|w)-
The quotient field E of R belongs to A(X). Since R/(t) = L’ is a field, the
principal ideal () generated by t is maximal. Therefore the localization R
is a Noetherian local domain of dimension one with principal maximal ideal,
i.e.,, Rg is a discrete valuation ring. The corresponding discrete valuation of
E with residue field L' restricts to vg on F'(t). Similarly, there is a discrete
valuation of E with residue field L restricting to vy, i.e., L and L' are simply
X-equivalent. 0

Corollary 9.3. (Cf., [8], [27]) Let X be a smooth projective quadric. Then
CHy(X) = 0.
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10. INVOLUTION VARIETIES

Let A be a central simple algebra of degree 2m with a quadratic pair (o, f),
where o is an involution on A of the first kind and f : Sym(A, o) — F'is a linear
map satisfying certain properties [10, §5.B]. If A is split, i.e., A ~ End(V') for a
2n-dimensional vector space V' over F, the space Sym(A, o) is identified with
the subspace of symmetric elements in V ®r V and f(v ® v) = ¢q(v) for a
non-degenerate quadratic form ¢ on V.

Consider the morphism

¢ : SB(A) — P(Sym(4, o))

taking an ideal I in A to the (1-dimensional) subspace I - o(I) of Sym(A4, o)
[10, p. 122]. Let W = Ker(f). The inverse image X = ¢ 'P(W) is called
the wnvolution wvariety of the quadratic pair. Thus X is a hypersurface in
the Severi-Brauer variety SB(A). In the split case as above, X is a smooth
projective quadric hypersurface in P(V') given by the quadratic form ¢. In
other words, X is a twisted form of a projective quadric. It is a projective
homogeneous variety of the special orthogonal group O" (4,0, f) [10, §26] of
type S = {aa, ..., an}, where S is the subset of vertices of the Dynkin diagram
D,,. In fact, any twisted form of a smooth projective quadric is isomorphic to
an involution variety.

If A is not split, then ind A is even. Consider the case ind(A) = 2. Let @ be
a quaternion division algebra Brauer equivalent to A. Then A ~ Endg(V) for
some right @-module V. The Severi-Brauer variety SB(A) can be identified
with the variety P (V') of reduced rank 1 @-submodules in V. Note that for
any @-submodule U C V of rank 1, the subvariety Pg(U) of Po(V) is a conic
curve. Then either the conic Pg(U) is contained in X or the intersection of
Po(U) with X is a point of degree 2. Therefore n(X) = 2.

Theorem 10.1. Ifind(A) = 2 then the class A(X) is connected.

Proof. Asn(X) = 2 it is sufficient to show that every two closed points x and z’
of degree 2 in X are X-equivalent. By [13, Lemma 1], there are Q-submodules
U CV and U’ C V of rank 1 such that x € Py(U) and 2’ € Po(U’). In fact
F(z) and F(2') are isomorphic to the even Clifford algebras of the restrictions
of the quadratic pair to U and U’ respectively. Let v and v’ be nonzero vectors
of U and U’ respectively. Consider w = tv+(1—t)v" € Ve and let W = Qt]w.
Let R be the even Clifford algebra of the restriction of the quadratic pair
(o, f)@F[t] on W. As in the proof of Theorem 9.2 we see that the quotient field
E of R is a quadratic extension of F'(t) equipped with two discrete valuations
over vy and vy respectively and residue fields isomorphic to F'(z) and F(z’),
i.e., F(z) and F(z') are simply X-equivalent. O

Consider the general case when ind(A) = 2n. Assume that F' is a 2-special
field. We claim that n(X) = 2n. Indeed, n(X) > 2n since X is a hypersurface
in SB(A) and n(SB(A)) = 2n. On the other hand, choose a field extension
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K/F of degree n such that ind Ay = 2. As n(Xg) = 2, we conclude that
n(X) < 2n.
Set Y = SB(2,A). We know that n(Y') = n.

Lemma 10.2. Let yo and y; be two closed points of Y of degree n such that
F(yo) and F(y1) are simply Y -equivalent. Then there exist points xo and x1 of
X of degree 2n such that F(xo) and F(x1) are simply X -equivalent and F(y;)
is isomorphic to a subfield of F(x;) for i =0,1.

Proof. Let E/F(t) be an extension of degree n such that Y(FE) # () and let
w;, 1 = 0,1, be two discrete valuations of E over the valuations v; of F'(t) with
F(w;) ~ F(y;).

Since ind Ap = 2, there is a quadratic field extension K/ E such that X (K) #
(). Let u; be a discrete valuation of K extending w; and let L; be the residue
field of u;. As X is projective, a morphism Spec K — X factors through a
morphism Spec O; — X, where O; is the valuation ring of u;. In particular
X(L;) # 0, therefore

on = [K : F(t)] > [Li : F] > n(X) = 2n.

Hence there is a closed point x; € X of degree 2n with F'(z;) ~ L;. Note that
Ly and L; are simply X-equivalent and F'(y;) ~ F(w;) C L;. O

Theorem 10.3. Let A be a central simple algebra of even degree with a qua-
dratic pair and let X be the corresponding involution variety. Then the class
A(X) is connected.

Proof. We may assume that F' is p-special. If p # 2, then X (F) # () and the
class A(X) is connected. Let F' be a 2-special field. If A splits, then X is a
smooth projective quadric, and the result follows from Theorem 9.2. Thus we
may assume that ind A = 2n for some n > 1.

Let z and 2’ be two closed points of X of degree 2n. We would like to show
that F'(x) and F(z') are X-equivalent. As F'is 2-special, we can choose closed
points y and ¢y’ € Y of degree n such that F(y) C F(z) and F(y') C F(2).
By Theorem 8.3, F'(y) and F(y') are Y-equivalent, i.e., there are closed points
Yo = Y, Y1,---,Yr =y of degree n such that F(y;) and F(y,41) are simply Y-
equivalent for i = 0,...,7 — 1. By Lemma 10.2 applied to each pair (y;, yi+1)
there are closed points z%, z;11 of X of degree 2n such that F'(z}) and F(x;41)
are simply X-equivalent and F(y;) C F(x}), F(yi+1) C F(2i41)-

Set for convenience xy = x and z/. = 2. For every i = 0,...,r, the fields
F(z;) and F(z}) contain F(y;). The index of A over F(y;) is equal to 2. By
Theorem 10.1, the fields F'(z;) and F(x]) are Xp(,,)-equivalent, and therefore
are X-equivalent. Finally we have

F(z) = F(xo) ~ F(xg) ~ F(x1) ~ F(a)) ~ -+~ F(a,) ~ F(a) = F(a'). O
Corollary 10.4. (Cf., [11]) Let A be a central simple algebra of even degree

with a quadratic pair and let X be the corresponding involution variety. Then
CHo(X) =0.
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11. CAYLEY-DICKSON AND JORDAN ALGEBRAS

Let C' be a Cayley-Dickson algebra over F'. Denote by N the norm form of
C given by N(x) = zZ, where z — Z is the canonical involution of C. It is
known [10, Prop. 33.18, Th. 33.19] that N is a 3-fold Pfister form, and C' is
split if and only if N is split. Therefore, Theorem 9.2 applied to the quadric
given by N yields

Theorem 11.1. The class of splitting fields of C' is connected.

Remark 11.2. One can give a direct proof of Theorem 11.1 along the lines of
the proof of Lemma 7.1 using the fact that a quadratic field extension of L/F
splits C' if and only if L can be embedded into C.

Let J be an exceptional simple 27-dimensional Jordan algebra over a field F’
of degree 3 arising from the first Tits construction [7, Ch. IX, §12]. Recall that
there is an associated central simple F-algebra A of degree 3 and an element
a € F*. The algebra J is split if and only if a is a reduced norm for A.

Theorem 11.3. Let J be an exceptional simple 27-dimensional Jordan algebra
over a 3-special field F of degree 3 arising from the first Tits construction.
Then the class of all splitting fields of J is connected.

Proof. We may assume that J is not split. Therefore for the class B of all
splitting fields of J we have n(B) = 3. Let L and L’ be two cubic extensions
of F splitting J. We shall show that L ~g L'. By [17, Cor. 3] we may assume
that L and L’ are subfields of J. Choose generators x and z’ of L and L’ over
F respectively and let E be the subfield of Jp() generated by tx + (1 —t)z’.
As in the proof of Lemma 7.1 one shows using the cubic minimal polynomials
of z and 2’ that there are two discrete valuations of E over vy and v; with
residue fields L and L’ respectively, i.e., L and L’ are simply B-equivalent. [J

12. GROUPS OF EXCEPTIONAL TYPES

In what follows G denotes split or quasi-split simple simply connected al-
gebraic group over F' of one of the following types: Gs, Fy, Dy, Eg, E;.  Let
¢ € ZYF,Gy) be a cocycle and let G = ¢G be the corresponding strongly
inner form of Gj,.

Theorem 12.1. Let X = Xg be a projective homogeneous variety of the group
G as above. If G is an outer form of type Eg of of type E; we assume that S # ().
If G is a trialitarian group or of types Eg, E; we assume that char(F') # 2,3.
Then the class A(X) is connected. In particular, we have CHy(X) = 0.

If S = A, then Xg = SpecF' and there is nothing to prove. Thus, by
Proposition 4.6 we may assume that S is a proper basic subset of A. By
Lemma 5.1, we may also assume that F' is p-special.

If p # 2,3, then we have H*(F,Gy) = 1 for all types under the consideration.
Indeed, by Steinberg’s theorem [25], £ is equivalent to a cocycle with coefficients
in a maximal torus 7' C Gq and, by [20, Proposition 6.21, p. 375], we have
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HY(F,T) = 1 for p-special fields with p # 2,3. It follows that G is split or
quasi-split and hence Xg(F') # (). Thus we may assume that p = 2, 3.

To finish the proof we shall either show directly that A(X) is connected or
construct a projective homogeneous variety Y (under some algebraic simple
group) such that

(i) The class A(Y') is connected;
(i) A(Xs) = A(Y).

We shall construct Y using case-by-case consideration.

13. TYPES Gy AND F,

By [28], each isotropic group of type Gy is split. Hence the only basic type
for G is S = (). Since Xy is a variety of Borel subgroups of G, the class A(Xp)
consists of all field extensions making G split.

Recall that the correspondence C' +— G = Aut(C') gives rise to a bijection
between the set of isomorphism classes of Cayley-Dickson algebras and the set
of isomorphism classes of simple groups of type Gy [10, Theorem 26.19]. In par-
ticular the classes of splitting fields for C' and G coincide. The connectedness
of A(Xjy) follows from Theorem 11.1.

We pass to type Fy. According to [28], if G is isotropic over a field extension
L/F but not L-split, then its Tits index is of the form

Q1 Qg Q3 Q4

: 5

It follows that there exist two basic types only:
S1=0 and Sy = {ay, s, as}.

The class A(Xg,) consists of all field extensions L/F making G split and
A(Xg,) consists of all field extensions L/F making G isotropic.

The correspondence J +— G = Aut(J) gives rise to a bijection between
the set of isomorphism classes of exceptional simple 27-dimensional Jordan
algebra of degree 3 and the set of isomorphism classes of simple groups of type
F4 [10, Theorem 26.18]. In particular the classes of splitting fields for J and
G coincide.

If p = 3, then J arises from the first Tits construction (cf. [7, Ch. IX, §12]).
We claim that the diagram above cannot appear as the Tits index of G over
any extension L/F of F. Indeed, assume the contrary. Since G is not split
over L, so is J. The anisotropic kernel of G over L has type Bs, hence there
is a finite extension E/L of degree [E : L] = 2% for some positive integer a
making G (and hence J) split. On the other side, the extension E/L does not
split J since it arises from the first Tits construction — a contradiction. Thus
we showed that the classes A(Xg,), A(Xg,) and the class of all splitting fields
of J coincide and we are done by Theorem 11.3.
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If p = 2, then J is reduced. Recall (cf. [4], [18]) that given J one can
associate a 3-Pfister form f3(J) and a 5-Pfister form f5(.J) with the following
properties (cf. [26], [22]):

(a) The group G is split over a field extension L/F if and only if fs(J) is
hyperbolic over L;
(b) The group G is isotropic over a field extension L/F if and only if f5(J) is
hyperbolic over L.

Let Y} and Y3 be the projective quadric defined by the equations f3(J) =0
and f5(J) = 0 respectively. By (a) and (b), we have A(Xgs,) = A(Y7) and
A(Xs,) = A(Y3). The connectedness of A(Xg,) and A(Xg,) follows from
Theorem 9.2.

14. TYPE D,

Suppose first that G is anisotropic of type 'Dy or 2D,. Then G ~ Spin(f),
where f is an 8-dimensional quadratic form with trivial even Clifford algebra.
Let dF*? be the discriminant of f. The form f L (1,—d) has trivial discrim-
inant and Clifford algebra, therefore it is represented by a 3-Pfister form g in
the Witt ring W (F).

As g can have Witt index 0 or 4 over a field extension L/F, it follows that
if f becomes isotropic over L/F, then its Witt index over L is either 1 or f is
quasi-split (i.e., its Witt index is either 3 or 4). Hence for the Tits index of G
over L there are the following possibilities only:

«Q «Q
ap Qg 3 a1 Qo 3 ap Qo fo) (v
C gi* Qy

Q4 Qy

By Remark 4.7, we need to consider the following basic types only:
Sl == {(]./2,0[3,0(4} and SQ == @

The variety Xg, is isomorphic to the quadric Y defined by f = 0. The class
A(Y') is connected by Theorem 9.2.

The second case Sy corresponds to the variety of Borel subgroups of G. A
field extension L/F makes Xy isotropic if and only if it splits g. Let Z be
the projective quadric defined by g = 0. Then the classes A(Xy) and A(Z)
coincide, and we are done again by Theorem 9.2.

We now turn to trialitarian cases D, and °D,. We need to consider the case
p =3 only. Let E/F be a cubic extension over which G is a classical group.

Lemma 14.1. Let F be 3-special. If L/F is an extension such that G is
L-isotropic, then G is quasi-split over L.

Proof. 1f G is not quasi-split over L, then, by [28], its Tits index over L is of

the form
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Hence the semisimple L-anisotropic kernel of G is isomorphic to Re /1,(SLy (D)),
where D is a quaternion algebra over F' and E' = E - L. Note that such a
group is still anisotropic over E’. On the other side, since F' is 3-special, G is
quasi-split over E and hence over £/ = E' - L — a contradiction. 0]

Lemma 14.1 implies that we need to consider the basic type S = () only. Let
Rg, : HY(F,Gy) — H3(F,Z/3) be the Rost invariant. We refer to [4] for the
definition and properties of the Rost invariant. It takes values in Z/3 since F'
is 3-special. By [2, Theorem 6.14], Ker Rg, = 1 and Rg,([{]) is a 3-symbol,
say (a)U (b) U (c), where a,b,c € F*.

Let J be the Jordan algebra arising from the first Tits construction cor-
responding to the central simple algebra A = (a,b) over F' of degree 3 and
element c. Recall that it is split over a field extension L/F of F' if and only
if ¢ € Nrd A, or equivalently if and only if R, ([¢]) is trivial over L, by [14,
Th. 12.2]. As Ker Rg, = 1, the last holds if and only if [;] = 1. Thus, by
Lemma 3.2, the classes of splitting fields of J and A(Xjy) coincide and the
connectedness of Xy follows from Theorem 11.3.

15. INNER FORMS OF TYPE 'E

According to [28] all admissible Tits’ indices of type 'Eg corresponding to
isotropic (not split) groups are as follows:

(8% Qo

@) © I O) (b) i

Q1 3 Gy Q5 Qg Q1 Q3 Q4 05 Og

In case (b) the corresponding anisotropic kernel has type As + Ay. Since SLg x
SL3 has no nontrivial strongly inner forms, Theorem 3.3 implies that diagram
(b) can not appear as the Tits index of a strongly inner form of type ' Eg (note
that in the notation of that theorem the condition H*(F,C/C'N H) = 1 holds,
since C' = (] is an F-split torus). Thus, by Remark 4.7, the only basic types
to be consider are

S =0 and Sy = {a9, a3, ay, as}.

Lemma 15.1. Assume that G has diagram (a) over an extension L/F. Then
the anisotropic L-kernel of G is isomorphic to Spin(f) where f is a 3-Pfister
form over L.

Proof. The anisotropic L-kernel is a strongly inner form of type 'D,, by The-
orem 3.3. So the result is clear. OJ

Lemma 15.2. Let F' be 3-special. Then A(Xg,) = A(Xg,).
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Proof. The inclusion A(Xg,) C A(Xg,) is clear. Conversely, let L € A(Xg,).
If X, (L) = 0, then G has Tits index (a) over L. The corresponding anisotropic
kernel of G over L is isomorphic to Spin(f) where f is a 3-Pfister form, by
Lemma 15.1. Hence it can be split by a quadratic extension E/L. On the
other side, the Rost invariant Rg, has trivial kernel (cf. [2], [5]), takes values
in H3(F,Z/3) and Rg,([¢]) is a symbol, by [2]. Let J be a Jordan algebra
corresponding to the symbol Rg,([¢]). As Ker Rg, = 1, J is nontrivial over L
and remains so over its quadratic extension E/L since J arises from the first
Tits construction. However J, [¢] (and hence G) have the same splitting fields
— a contradiction. O

If p = 3, then by Lemma 15.2, A(Xg,) = A(Xg,) and the classes of splitting
fields of J and A(Xg,) coincide where J is the Jordan algebra constructed
in Lemma 15.2. The connectedness of A(Xg,), A(Xs,) follows from Theo-
rem 11.3.

Let now p = 2.

Lemma 15.3. If F is 2-special, then G is F-isotropic.

Proof. There exists the canonical embedding Hy — Go where Hy is a split
group of type Fy. It induces the mapping H'(F, Hy) — H(F,Gy) which is
surjective, by [4, page 51, Exercise 22.9], since F' is 2-special. Each class in
HY(F, Hy) is split over a quadratic extension FE/F, by property (a) in Sec-
tion 13, hence so is [¢]. By [2, Lemma 6.4], G is isotropic over F. O

Lemma 15.3 implies that Xg,(F) # () and hence A(Xg,) is connected. Fur-
thermore, if G is not split, then, by Lemma 15.1, its anisotropic kernel is
isomorphic to Spin(f) where f is a 3-Pfister form f. Hence A(Xg,) = A(Y)
where Y is the quadric defined by f = 0.

16. OUTER FORMS OF TYPE Eg

If p # 2, then Gy and G are inner forms of type Es. So we may assume that
p = 2. Then F is perfect since by our assumption char(F) # 2.

16.1. Basic types. Let K = F (\/E) be the quadratic extension which makes
Gy (and hence () an inner form of type Es. We denote by o a unique nontrivial
automorphism of K/F. According to Tits’ classification [28] if G is F-isotropic
but not quasi-split, then its F-index is one of the following:

oy 0y Q3 Q1 Qo Qg QO3

W e—@ . e+ ]| @e—. .

Qs Qg Q5 a5 Qg
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Lemma 16.1. The Tits index of G is not of the form (a).

Proof. In case (a) the anisotropic kernel of G has type Ay + Ay and a maximal
F-split torus € has dimension 2. By dimension count C] coincides with the
center C' of its centralizer; in particular C' and all its quotients have trivial
cohomology in dimension 1. Hence, by Theorem 3.3, the anisotropic kernel
of G is a strongly inner form of Ry p(SL3). As H'(F, Rik/r(SL3)) = 1, the
group Rk,p(SLg) has no nontrivial strongly inner forms. O

Thus there are four basic types only:
S1={ag, a3, 04,05}, S = {an, a3, a4, 05,06}, Sz = {az, g, a5}, Sy=0.

According to Lemma 15.3, G is isotropic over K. If it is not K-split, then
its Tits index is given by diagram (a) in Section 15 and hence its anisotropic
kernel over K is isomorphic to Spin(f) where f is a 3-Pfister form over K.
Since f can be split by a quadratic extension of K, we obtain that n(Xg,)
divides 4.

To compute the numbers n(Xg) we need information on groups of type D,.

16.2. Classical groups of type D,. Recall that a simple simply connected
F-group of type 'D, can be realized as a spinor group Spin(A, 7) associated
to a central simple algebra A over F' equipped with an involution 7 of the
first kind, orthogonal type and trivial discriminant. If A is represented by a
skew field D in the Brauer group Br (F'), then A ~ Endp(V') where V is a
right D-module, and 7 corresponds to a non-degenerate skew-hermitian form
h of trivial discriminant on V' with respect to a suitable involution 7" on D of
symplectic type.

Spin(A, 7) is isotropic over F' if and only if A is isotropic, i.e. there is a
vector v € V such that h(v,v) = 0. Tits index of Spin(A, 7) over F is of the

form
a1 Qo Qg Qid Qrd—1
S
Qg

Here d = deg(D), i is the Witt index of h and rd = n.

16.3. Trialitarian effect. We keep the above notation. Assume that we are
given a pair (A, 7) such that A has index 2 and degree 8. Consider the even
Clifford algebra of (A, 7). It is of the form A; x Ay where A;, Ay are central
simple algebras of degree 8 equipped with involutions 7y, 75 of orthogonal type
and A - A; - Ay = 1 in the Brauer group Br (F) (see [10]). The center Z of
Spin(A, 7) is isomorphic to Z ~ 7Z/2 x Z/2. Three nontrivial elements in Z
give rise to the quotient morphisms ¢; : Spin(A,7) — O"(4;, 1), i = 1,2 and
¢ : Spin(A,7) — O (A, 7). If Spin(A, 7) is isotropic over F', there are two
possibilities for its Tits index:

(6%} as

a1 Qg i (e 5e)
Qy Qg
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In the first case all algebras A, A;, A5 have index 2 and in the second case
one of the algebras Ay, As is split and a quadratic form f corresponding to its
involution is isotropic. Note that according to the above picture isotropy of f
implies automatically that its Witt index is 2.

Lemma 16.2. Assume that A, Ay, Ay have indices at most 2. Then there is a
quadratic extension L/F such that Spin(A, 1) has rank at least 2 over L.

Proof. 1f all algebras A, A;, Ay are matrix algebras, then G ~ Spin(f) where
f is a 3-Pfister form. Such a form can be split by a quadratic extension.
Assume that A has index 2. Consider the pair (A, 71) and the corresponding
involution variety Y. As n(Y') = 2, there is a quadratic extension L/F belong-
ing to A(Y). The remark above the lemma shows that L-rank of Spin(A,7)
is at least 2. 0

16.4. Computing n(Xg).
Proposition 16.3. We have n(Xg,) = n(Xs,) = n(Xsg,) = 2.

Proof. We consider the most difficult case when G is anisotropic over F.
Isotropic cases are reduced to groups of classical types and can be treated
much easier.

We may assume that G is not split over K, since otherwise Xg, (K) #
0,7 = 1,...,4 and we are done. Then its Tits K-index is given by dia-
gram (a) in Section 15 and so the variety of parabolic subgroups in G of type
S1 = {ag, a3, a4, a5} contains a K-point. By Lemma 3.4, there is a parabolic
subgroup P in G over K of type S; such that H; = P N o(P) is a reductive
part of P.

H, is defined over F' and is an almost direct product of a simple simply
connected F-group of classical type Dy and a 2-dimensional central torus 7;.
Since T3 is F-anisotropic and split over K, o acts on the character lattice of T}
by multiplication —1. Hence each 1-dimensional subtorus in 77 is F-defined.

Let & be the highest root in X with respect to the ordering given on diagram
(a) in Section 15. The restriction mapping &|r, : Ty — G,, is a nontrivial
homomorphism. Let T3 be its kernel. It has dimension 1 and, by construction,
Ty commutes with Uyg. As Ty is defined over F, so is Hy = Cg(T3) which is a
reductive group whose semisimple part [Hs, Hs] is a simple simply connected
group of classical type D5 generated by roots aw, ag, ay, as, a.

Let us describe the structure of [Hs, Hs]. Note first that it has K-rank 1
(and hence K-isotropic), since Tj is contained in Hy = Cg(T3) and T is a
maximal K-split torus in G of dimension 2. Furthermore, up to isogeny, we
have [Hy, Hy] ~ SU(D,h) where D is a skew field over F' equipped with a
symplectic involution 7 and h is a skew hermitian form over D with respect
to 7. As [H,, Hy| is K-isotropic and its anisotropic semisimple kernel over K
coincides with that of G (it is a group of type Dy generated by {as, as, oy, as}),
Theorem 3.3 applied to G over K shows that this anisotropic kernel has trivial
Tits algebras over K. It follows that the discriminant of A is trivial over K,
the algebra D splits over K and hence D is either F' or a quaternion skew field.
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We claim that the discriminant of h is d. Indeed, we know that it is trivial
over K, hence we need only to exclude the possibility for it to be trivial over
F. Let Z be the variety of Borel subgroups of [Hy, Hy]. If the discriminant
of h is trivial over F', then [Hs, Hs] is a group of inner type and hence it
has rank 5 over a field extension F(Z)/F. This implies automatically that
G is split over F'(Z). But F is algebraically closed in F'(Z), hence K is not
contained in F(Z). It follows that G is still a group of outer type over F(Z)
— a contradiction.

Assume now that D is a quaternion skew field. By [13, Lemma 1], h can be
written in the form h = h; @ he where hy is a 1-dimensional skew-hermitian
form over D isotropic over K and h; is a 4-dimensional form with trivial
discriminant. Lemma 16.2 applied to (D, hy) shows that there is a quadratic
extension L/F such that L-rank of SU(D,h,) is at least 2. Note that the
conditions of this lemma are satisfied since the anisotropic kernel of SU(D, h;)
over K is a group of classical type D4 with trivial Tits algebras. An inspection
of possible Tits indices of G over L shows that G is either quasi-split over L or
has Tits index (b) in the above list of Tits indices of outer type Eg. In all cases
we have Xg, (L) # 0, Xgs,(L) # 0, Xg,(L) # 0 and hence n(Xg,) = n(Xg,) =
n(X 53) = 2.

If D = F and h is a 10-dimensional quadratic form over F', we can apply the
same argument as above. Namely, since h is isotropic over K, we can write it
in the form h = hy @ hy where hsy is a 2-dimensional quadratic form splitting
over K and h; is an 8-dimensional quadratic form with trivial discriminant.
Arguing as in Lemma 16.2 we easily see that h; has rank at least 2 over a
proper quadratic extension L/F. So the result follows. U

16.5. Basic type S;. Let L € A(Xg,) and [L : F] = 2. As K € A(Xg,),
it suffices to show that L and K are Xg,-equivalent. We shall construct an
F-subgroup H C G of classical type D5 with the properties:

1) there is an F-embedding Y — Xg,, where Y is the involution variety corre-
sponding to H ;
2) L,K € A(Y).

Property 2) implies that L and K are Y-equivalent, by Theorem 10.3, and
property 1) implies that L and K are Xg,-equivalent.

To construct H with the required properties we repeat the argument in 16.4
by verbatim. Namely, G contains a parabolic subgroup P of type Sy over L.
We may assume that P is standard in the corresponding ordering of the root
system of G. Let 7 be the nontrivial automorphism of L/F. Without lost
of generality we may assume that H; = P N 7(P) is a reductive part of P,
by Lemma 3.4. It is an F-reductive group whose semisimple part is a simple
simply connected group of type D4 generated by roots as, as, ay, a5 and whose
central torus 77 has dimension 2. This torus is isotropic over L and splits over
K- L.
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Let Ty C T be the kernel of the restriction mapping &|7, where & is the
highest root in the chosen ordering of the root system of G. Below we shall
show that Ty is F-defined. Then the centralizer Hy = Cg(T3) is a reductive
F-group whose semisimple part H = [Hs, Hs] is a simple simply connected
group of type D5 over F'. We claim that it has the required properties.

Let us check property 1). The Dynkin diagram of H is of the form

—a 9 Oy Q3

'—'—C%

The corresponding involution variety Y is the variety of parabolic subgroups in
H of type S1 = {aw, ay, ag, a5 }. The subgroup Py = PNH of H is parabolic of
type Si. Then the required embedding is given by H/Py — G /P, hPy — hP.
It is well defined and it is easy to check that it is F-defined using the twisted
argument.

To check 2) we need information about the structure of 73. It is proven in
[1, Theorem 2.12], that T viewed over L is isomorphic to 71 ~ Rg/(Gm k)
where £ = L - K. Thus 17 viewed over L is an almost direct product of a 1-
dimensional split L-subtorus, say Vi, and a 1-dimensional L-anisotropic torus
Vo = Rg; (G ). It follows that Gal(L/F') preserves Vi, V5 and hence both of

them are F-defined. Note that computation in [1] shows that V; is contained
in H and commutes with the subgroup of H generated by s, a4, asz, as. The
last implies that H is L-isotropic and L € A(Y).

Lemma 16.4. We have Vo =Ty and Ty splits over K.

Proof. The 2-torsion part of T; is of the form Rp,r,(112). One easily checks the
centralizer of —1 € Rg/r(p2) in G is H - Ty, hence Ty is L-defined. But T}
contains only two L-defined subtori, namely V; and V5. As V; C H, we get
T2 == ‘/2

Assume that T5 is not split over K. Let Z be the variety Z of Borel subgroups
of H over K. The group H being quasi-split over K(H/B) contains a split
torus over K(H/B), say T3, of dimension at least 4. One easily checks that
Cq(T3) is a maximal torus in G containing T,. As K is algebraically closed in
K(Z), the torus Ty is still anisotropic over K(Z) and hence C¢(73) does not
split over K(Z).

On the other side, as rank of G over K(H/B) is at least 4, Tits classification
implies that G is split over K(H/B) (see the diagrams in Section 15) and
hence so is the torus Cg(T3) because any K (Z)-split torus in G is contained
in a maximal K (Z)-split torus of G. This contradicts our assumption that 75
is anisotropic over K (H/B). O

As Ty is K-split, the K-anisotropic kernel of G is contained in Hy = Cg(T5),
hence G and H have the same K-anisotropic kernel. Then Tits classification
of groups of inner type Eg shows that K € A(Y).
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16.6. Basic type S;. Assume that L € A(Xg,) and [L : F] = 2. Let 7 be
the nontrivial automorphism of L/F. Choose a parabolic subgroup P C G
over L of type Sy such that H' = P N 7(P) is a reductive part of P. It is a
reductive subgroup of G over F' whose semisimple part [H’, H'] has type A5 and
is generated by roots aq, as,...,aq in a proper ordering of the corresponding
root system of G. The centralizer H” = C¢([H', H']) is an F-defined subgroup
of G of type A; containing the central torus of H'. It is generated by the root
subgroups Uys where & is the highest root.

Consider H = H" - [H', H']. Tt is an F-defined semisimple subgroup of G of
type A; + As whose component of type A; is split over L and is of the form
SLy (D) where D is a quaternion algebra over F'. It follows that L € A(SB(D)).
Conversely, any splitting field of D is contained in A(Xg,).

Let L; be another quadratic extension of F' such that L; € A(Xg,). We are
going to show that Ly € A(SB(D)). Theorem 7.2 then implies Ly ~gppy L
and hence L, ~Xs, L.

Applying the above construction to L; we can construct an F-subgroup H,
of G of type A; + As. Its component of type A; correspond to quaternion
algebras D, splitting over L, and it suffices to show that D; = D.

H, and H are related to subsystems of type A; 4+ As in the root system Eg.
Since every two roots in the root system of type Eg are conjugate by an element
in the corresponding Weyl group W (Eg), so are every two root subsystems of
type A; + As. Then Hy, H are conjugate over Fl.,. Let Hy = gHg ' where
g € G(F,,p). Fixing F-defined maximal tori 77,7 in Hy, H respectively, we
may assume additionally that Ty = gT'g~'. As Hy, H, T}, T are F-defined, for
each o € Gal(Fl,/F) we have a, = g~ °" € Ng(H) N Ng(T). Tt follows that
H, = *H where \ = (a,); in particular we have D; = *D.

The torus T can be decomposed as T" = T"T" where T", T" are intersections
of T" with simple components of H of types A; and Ajs respectively. Since
groups of type A; have no nontrivial outer automorphisms, one checks that

a, can be decomposed as a, = alall where a, and a are contained in the

normalizers of 7" and 7" in the simple components of H respectively. Thus
twisting of D is given actually by the cocycle A’ = (a)). This cocycle takes
values in SL;(D) and hence twisting does not change D since any cocycle in
ZY(F,SLy(D)) is equivalent to a cocycle with coefficients in the center pg of

SL,(D).

16.7. Basic type S;. Let Ly, Ly € A(Xg,) be two quadratic extensions of F
contained in A(Xg,). As A(Xg,) C A(Xg,), the above construction applied
to Ly or Ly gives us an F-defined subgroup H of G of type A; + As. Its simple
components, say H" and H”, are of the form H' = SL;(D) and H” = SU(A, 7)
where D is a quaternion algebra over F' splitting over Lq, L, and A is a central
simple algebra of degree 6 over K equipped with an involution 7 of the second
kind.

Any field extension L/F splitting D makes H” a strongly inner form of a
quasi-split group of type As, by Theorem 3.3, hence it also splits A. Then
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[A] = [D ®F K] in the Brauer group Br(K) and hence H” ~ SU(T, h) where
T =D ®p K and h is a skew-hermitian form of dimension 3 given on a vector
space V over T equipped with the standard involution, say o, of the second
kind.

We are also given that H” is isotropic over L1, Lo, i.e. h represents zero over
Ly, Ly. Since Ly, Ly splits T' and have degree 2 over F', there are 1-dimensional
T-submodules Uy, Uy in V' such that h restricted to Uy, Us is isotropic over L
and Lo respectively. This fact can be reformulated as follows. Let v; € Uy and
vy € Uy be two nontrivial vectors. Let o1, 05 be involutions on T corresponding
to the elements a; = h(vy,v1) and as = h(vy, v9), i.e. 01, 09 are compositions of
o with the inner conjugation given by ay,ay. Then SU(T, 0y) and SU(T, 03)
are split over L; and L, respectively.

Clearly SU(T, 01) and SU(T, 02) are subgroups in H” = SU(T, h) and being
groups of type A; they are of the form SL;(D;) and SL;(Ds) where Dy, D, are
quaternion algebras over F' contained in 7" such that D1 ® K = Do @ K =T.
Recall that the pure part D; of D; is given by

D} ={zeT|oir)=—2}={reD°®K | ao(x)a; ' = —x}.

We now note that v; is defined up to t; € T, hence D; is defined up to
conjugation in 7". Since by our construction, D; and D are split over L;, we
can modify v;, a; and D; (by replacing them with t;v;, t;a;0(t;) and t;Dt;*
for a proper element t; € T') such that D N D; contains a common subfield
isomorphic to L;.

More precisely, this common subfield can be obtained as follows. As a; is
skew with respect to o we can write it in the form a; = a} + a; where a; € K
and a] € D°. Modifying a;, if necessary, we may assume that a] # 0. Then
we have

D°ND; ={de D°|oyd) =—d} ={de€ D°| aida; " = d}.

It follows that D° N Dy has dimension 1 and is generated by a.

We are ready to finish the proof. Consider a vector v(t) = (1 — t)vy + tvg
where t is an indeterminate. Let a(t) = h(v(t),v(t)). Write a(t) = a(t)' +a(t)”
as above. Here a(t) € K ®p F(t) and a(t)” € D° ®@p F(t). Clearly, a(t)”
generate a maximal subfield L(¢) in D ®p F'(t) splitting D ® g F'(t) and making
H" isotropic. This implies that L(t) € A(Xg,). Since v(0) = vy and v(1) = vy,
arguing as in Theorem 9.2 we see that L(t) has two discrete valuations with
residue fields isomorphic to Ly, Ls.
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17. TypE E;

By Tits classification [28], if G is isotropic over an extension L/F but not
split, then its Tits index is one of the following:

(6] %)
a) (e I e b)  — I —)
a7 g O Q4 O3 O ay Qg 5 Q4 Q3 O

[
c) & - ©

a7 g Q5 Q4 (3 (1
Thus we need to consider the following basic types only:
Sl = {(1/1,...,0(6}, SQ = {(1/2,...,0[7}, Sg = {OZQ,...,O[5}, 54 = @

If p = 3, then we can repeat the same argument as in the case of type 'E;.
Consider the case p = 2.

Lemma 17.1. Let F be 2-special. Then we have n(Sy) = n(Sy) = n(Ss) = 2.

Proof. By [31], G contains an F-defined subgroup H of type Eg. It is a strongly
inner form of a quasi-split group of type Eg, since F' is 2-special. We know that
any such a group (and hence () has rank at least 2 over a proper quadratic
extension E/F. The above diagrams show that Xg, (E) # () fori =1,2,3. O

By Lemma 15.3, if F/F is a quadratic extension such that Xg, (E) # 0,
then Xg,(F) # (). Hence it suffices to consider types Ss, S3 only.

17.1. Basic type S;. Repeating verbatim the argument in 16.6 we find that
G contains an F-defined subgroup H of type A; + Dg such that A(Xg,) =
A(SB(D)) where D is a quaternion algebra over F' corresponding to the sim-
ple component of H of type A;. The connectedness of A(Ss) follows from
Theorem 7.2.

17.2. Basic type S3. Let L/F be a quadratic extension belonging to A(Xg,).
Let Hy; and H, be the simple components of types A; and Dg respectively of the
group H constructed in 17.1. We have H; ~ SL;(D) where D is a quaternion
algebra over F'. The above Tits diagrams show that the anisotropic L-kernel
of Hy is of the form Spin(f) where f is a 4-Pfister form. It follows that up
to isogeny H is of the form SU(T, h) where T is a quaternion algebra over F'
equipped with the standard symplectic involution 7 and A is a skew hermitian
form with respect to 7 defined over a 6-dimensional vector space V over T

Lemma 17.2. IfT is nontrivial, then we have D =T

Proof. If E/F is an extension splitting D, then H, viewed over E is a strongly
inner form of a split group of type Ds. Hence H, is of the form Spin(g) where
g is a 6-dimensional quadratic form from I3. It follows that T is split over FE.
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As this is true for all splitting fields of D, the quaternion algebras D and T
coincide. ]

Let Y be the involution variety corresponding to SO(D,h). By our con-
struction, L € A(Y). Conversely, let E € A(Y). We noted above that Ho
viewed over E is related to the quadratic form g of dimension 12 from I3.
Since g is isotropic over E and since 10-dimensional quadratic forms from I3
are isotropic, we conclude that F-rank of Hy is at least 2. This implies that
E-rank of G is at least 2. An inspection of the above Tits diagrams shows that
E € A(Xg,). Thus we showed that A(Y) = A(Xs,) and the connectedness of
A(Y') follows from Theorem 10.3.

18. TWO EXAMPLES OF A NONTRIVIAL CHy(X)

In this section we give two examples of projective homogeneous varieties X
with nontrivial group CHy(X).

18.1. First Example. We owe to Vishik the observation that [9] essentially
contains an example. Let F' be a field of characteristic different from 2 and
let a,b € F*. Let Q.5 be the quadric of the 2-fold Pfister form ((a,b) =
(1, —a,—b,ab). In the split case (over a quadratic extension E/F), Q. is
isomorphic to PL x PL, in particular, there are two families of lines on Q.
Let I, be one of these lines and denote by u,j, € CHy(Qqp) the push-forward
of the class of [,;, under the morphism (Qup)r — Qup-

Let X, be the variety of isotropic planes of ((a,b)). Over the field E €
A(Xqp), the variety X, is the disjoint union of two copies of the projec-
tive line. We can view [,; as a rational point of X,;, over E. Denote the
push-forward of the class of [, in CHo(X,p) by Zap, 50 x4 is a 0-cycle of
degree 2. The incidence correspondence between (),; and X,; induces a map
CHo(Xap) — CHy(Qup) taking ugp to 4.

Let ¢ = (1,—a, —b,ab, —c, —d, cd) for some a,b,c,d € F* and let @) be the
corresponding 5-dimensional quadric. We have natural embeddings @, — Q
and Q.4 — (. Denote the images of u,; and u.4 in CH;(Q) by the same
symbols.

It is shown in [9, Cor. 5.2] that in the case —1 € F*?, the classes u,; and
ucq are equal if and only if the Pfister form ((a, b, ¢, d)) is isotropic.

Denote by X the variety of isotropic planes of g. The images of x,; and
Zeq in CHy(X) will be denoted by the same symbols. We have the incidence
correspondence between () and X that induces a homomorphism CHy(X) —
CH;(Q) taking z,p — Zcq 10 Ugp — Ued.

If Fis a field such that —1 € F*? and the Pfister form {(a,b,c,d)) is
anisotropic, the class uqj — .4 is nontrivial and therefore z,, — xz.q # 0.
As deg(zqp — xca) = 0, the class x,, — .4 represents a nontrivial element of
CHy(X). Note that X corresponds to the subset {a1, az} of the set of vertices
of the Dynkin diagram Bs.
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18.2. Second Example. We shall give an example of a 3-dimensional projec-
tive homogeneous variety X with a nontrivial group CHy(X). Note that this
is an example of the smallest possible dimension in view of Proposition 4.5.

Let C;, 1 = 1,2, 3, be three conic curves corresponding to quaternion algebras
Q; over F' and let X = 1 x Cy x C3. For every subset S C {1,2,3} let Qg be
the tensor product of @); for all 7 € S (in particular, Qg = F'). We define the
complex

(18.1) 1 51(@s) & (F*)* 2 13 (F,2/22)
S#0D
by the following formulas:

a(z) = (a1, a9,a3), a; = HNrds(a:S),
53i
Blar, as, az) = (a1) U [Q1] + (a2) U [Qa] + (a3) U [Qs],
where Nrdg : K1(Qg) — Ki(F) = F* is the reduced norm homomorphism, (a)

denotes the class in H'(F,Z/2Z) corresponding to a € F* under the Kummer
isomorphism and [@Q] denotes the class of Q in H*(F,Z/2Z).

Proposition 18.2. The group CHy(X) is isomorphic to the homology group
of the complex (18.1).

Proof. In the spectral sequence (4.4) for X the only possibly non-trivial differ-
ential coming to B33 is dy : AYX, K,) = Ey > — Ey™° = CHo(X) and all
the differentials coming to E>~2 are trivial. Therefore, the sequence

Ki(X)® = AY(X, K5) 2 CHy(X) S Ko(X)

is exact. As the image of dy coincides with Ker(e') = CHy(X), it is sufficient
to identify the cokernel of the first homomorphism in the sequence with the
homology group of the complex (18.1).

The group A'(X, K3) was computed in [12]. If all Q; are split, we have

AYX, Ky) = K (F) @ CHY(X) ~ F* @ Z* = (F*)?,

where we identify CH'(X) with Pic(X) = Zhy ® Zhy ® Zhs ~ Z? (here h; is
the class of a rational point in C;). In the general case the group A'(X, K>)
is canonically isomorphic to a subgroup of (F*)3, namely to the kernel of the

homomorphism £.
The group K;(X) was computed in [21, §8, Th. 4.1]:

(18.3) Ki(X) = [ Ku(Qs)-
S

The first term of the topological filtration K (X)™ is the kernel of the natural
homomorphism K;(X) — K1 F(X). We claim that for every S, the corre-
sponding homomorphism K;(Qg) — K;F(X) is the reduced norm map Nrdg
followed by the natural homomorphism K;F — K;F(X). Since the group K;
of a field injects when the field gets extended, we may assume that all @); are
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split. In this case the reduced norm Nrdg is an isomorphism and (18.3) iden-
tifies K1 (X) with the direct sum of K;(F')Lg, where Lg is the tensor product
of the canonical line bundles L; on the C; ~ PL such that i € S. As Lg maps
to 1 in KoF(X), the claim follows.

We have shown that K (X)) consists of all z = (x5) such that 3" Nrdg(zg) =
0. We claim that the image of z in A'(X, K5) C (F*)3 is equal to (a1, as, as),
where a; is the product of Nrdg(zg) for all S 5 i. We can assume that all
Q; are split. Under the identification of K;(Qg) with K;(F), the element x
corresponds to > bgLg = Zs#@ bs(Ls — 1), where bg = Nrdg(zg). Note that
the image of Lg — 1 under the natural map Ko(X)® — CH'(X) is equal to
the first Chern class ¢1(Lg) = > ,cqc1(Li) = Y_;cq hi. Therefore, the image of
rin AYX, Ky) = Zhy ® Zhy @ Zhs is equal to a1hy @ ashs @ azhs, where a; is
the product of bg for all S > 1.

It follows from the claim that the image of the homomorphism K;(X)®) —
AY(X, Ky) C (F*)3 is equal to Im a. O

Example 18.4. Let F' = k((t)) be the Laurent power series field over a field
k of characteristic different from 2, Q; = (b;, —t)r for some b; € k*. Let bg
be the product of b; for all i € S, kg = k(bg/z) and Normg : k§ — k™ be the
norm homomorphism. Since (t*,t™,t?) € Im(«) for all n,m,p, H?(F,Z/27) is
equal to HP(k,Z/27) & HP~'(k,Z/2Z)U(—t) and Im Nrdg = Im Normg - F*?U
Im Normg -t - F*2, the homology group of (18.1) is isomorphic to the homology
group of the complex

[Tx: % ) 5 vk, 2/22),
S#0

where
o' (x) = (ar,a9,a3), a; = HNorms(xs),

53i
B'(ar, az, a3) = (a1) U (b1) + (a2) U (b2) + (az) U (bs).
There is a field k& and the elements b; so that the complex is not acyclic (see
[24, 85]) and therefore CHy(X) # 0 in this case.
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