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Abstract

Let D be a noncommutative finite dimensional F -central division algebra,

and let N be a normal subgroup of GLn(D) with n ≥ 1. Given a maximal

subgroupM ofN , it is proved that eitherM contains a noncyclic free subgroup

or there exist an abelian subgroupA and a finite family {Ki}r1 of fields properly

containing F with K∗i ⊂ M for all 1 ≤ i ≤ r such that M/A is finite if

CharF = 0 and M/A is locally finite if CharF = p > 0, where A ⊆ K ∗1 ×
· · · ×K∗r .

1 Introduction

Let D be a finite dimensional F -central division algebra. Denote by Mn(D) the

n×n matrix ring over D and SLn(D) the commutator subgroup of the multiplicative

group GLn(D) = Mn(D)∗. Let N be a normal subgroup of GLn(D) with n ≥ 1.

Given a subgroup M of N , we shall say that M is maximal in N if for any subgroup

H of N with M ⊂ H, one concludes that H = N . Now, let D be a noncommutative

division ring not necessarily of finite dimension over its centre F . The problem

of whether GLn(D) contains a noncyclic free subgroup seems to be posed first by

Lichtman in [11]. Stronger versions of this problem which essentially deal with the

existence of noncyclic free subgroups in normal or subnormal subgroups of GLn(D)

have been investigated in [6] and [7]. It is known so far that these problems have

positive answers as long as we work in a division algebra of finite dimension over its
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centre. Further investigations for the infinite dimensional case are also dealt with

in those articles. Given a maximal subgroup M of GLn(D), it is proved in [12] that

either M contains a noncyclic free subgroup or there exists a finite family {Ki}r1 of

fields with F ∗ ⊂ K∗i ⊂ M for all 1 ≤ i ≤ r such that M/A is finite if CharF = 0

and M/A is locally finite if CharF = p > 0, where A = K∗1 × · · · × K∗r . Now, let

N be a normal subgroup of GLn(D) with n ≥ 1, and M be a maximal subgroup of

N . The aim of this note is to investigate the structure of maximal subgroups of N

with respect to non-cyclic free subgroups sitting in M . To be more precise, let D

be a noncommutative division algebra of finite dimension over its centre F . Given

a maximal subgroup M of N , it is proved that either M contains a noncyclic free

subgroup or there exist an abelian subgroup A and a finite family {Ki}r1 of fields

with F ∗ ⊂ K∗i for all 1 ≤ i ≤ r such that M/A is finite if CharF = 0 and M/A

is locally finite if CharF = p > 0, where A ⊆ K∗1 × · · · × K∗r . This, in particular,

generalizes the main result of [12] concerning maximal subgroups of GLn(D).

2 Notations and conventions

Let D be an infinite F -central division ring and assume that N is a non-central

normal subgroup of GLn(D) with a maximal subgroup M . Given a subgroup G

of GLn(D), we denote by F [G] the F -algebra generated by elements of G over F .

We also denote by Dn the space of row n-vectors over D. Then Dn is a D − G

bimodule in the obvious manner. G is said to be an irreducible (reducible) subgroup

of GLn(D) whenever Dn is irreducible (reducible) as D−G bimodule. Considering

the elements of Dn as column vectors, we may regard Dn as a G−D bimodule. It is

easily shown that Dn is irreducible (reducible) as a G−D bimodule precisely when

it has the property as D−G bimodule. We shall say that G is absolutely irreducible

if Mn(D) = F [G]. For any group G we denote its centre by Z(G). Given a subgroup

H of G, NG(H) means the normalizer of H in G, [G : H] denotes the index of H

in G, and < H,K > the group generated by H and K, where K is a subgroup of

G. We shall say that H is soluble-by-finite if there is a soluble normal subgroup K

of H such that H/K is finite. Let S be a subset of Mn(D), then the centralizer of

S in Mn(D) is denoted by CMn(D)(S). We shall identify the centre FI of Mn(D)
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with F . For each d ∈ D∗, denote by Ad the matrix obtained from the unit matrix

by replacing the (1, 1)-th and (n, n)-th entries with d and d−1, respectively. Some

notations and conventions for linear groups and skew linear groups from [18], [21]

and [16] are frequently used throughout.

3 Maximal subgroups of normal

subgroups in Gln(D)

Given a division ring D with center F , let N be a normal subgroup of GLn(D). This

section essentially deals with the structure of maximal subgroups M of N and how

they sit in N with respect to noncyclic free subgroups. To prove our main result, we

shall need some commutativity theorems that enable us to understand better the

structure of M . To be more precise, given an F -central division ring D, let N be a

non-central normal subgroup of GLn(D) with n ≥ 1. Assume that M is a maximal

subgroup of N . It is shown that either M is irreducible or there exists P ∈ GLn(D)

such that P−1AdP ∈ M for any d ∈ D∗. Using this result, it is also proved that if

D is infinite, then there exists no non-abelian maximal subgroup M of N such that

|M/M ∩ F ∗ |<∞. We then show that M is nilpotent if and only if M is contained

in the multiplicative group of a subfield of Mn(D). Finally, using above results as

well as various other results from algebraic group and skew linear group theory, it

is proved that either M contains a noncyclic free subgroup or there exist an abelian

subgroup A and a finite family {Ki}r1 of fields with F ∗ ⊂ K∗i for all 1 ≤ i ≤ r such

that M/A is finite if CharF = 0 and M/A is locally finite if CharF = p > 0, where

A ⊆ K∗1 × · · · ×K∗r . We begin our study with the following lemmas:

Lemma 1. Let D, N, and M be as above. Then either M is irreducible or there

exists P ∈ GLn(D) such that P−1AdP ∈M for any d ∈ D∗.

Proof. If n = 1, then M is clearly irreducible. Thus, we may assume n ≥ 2.

If M is reducible, then there exists an invertible matrix P and a natural number
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0 < m < n such that

PMP−1 ⊆ H =

{[
A B

0 C

]
| A ∈ GLm(D), C ∈ GLn−m(D), B ∈ GLm×(n−m)(D)

}
.

By maximality of M in N , two cases may occur. If H ∩N = PMP−1, since Ad ∈ H
and Ad ∈ SLn(D) ⊂ N (cf. [3]), we conclude that Ad ∈ PMP−1 for any d ∈ D∗,and

so the result follows. Otherwise, we have H ∩ N = N . Since SLn(D) ⊆ N we

conclude that SLn(D) ⊆ H which is clearly a contradiction. ¤

We observe that the above lemma holds also for a maximal subgroup of a sub-

normal subgroup in GLn(D), as it is known that for n ≥ 2 subnormal subgroups of

GLn(D) are normal, and for n = 1 the conclusion is clear.

Lemma 2. If G is an irreducible subgroup of GLn(D), then CMn(D)(G) is a division

ring.

Proof. It is clear that CMn(D)(G) is a ring. Given 0 6= X ∈ CMn(D)(G), we may

view X as a transformation of the row vectors Dn. By definition, KerX is aD−G bi-

submodule of Dn. Since G is irreducible we conclude that KerX = 0 or Dn. Thus,

we have KerX = 0 because X 6= 0. By a similar argument and using the fact the

X commutes with each elements of Mn(D) one may easily show that ImgX = Dn,

and hence CMn(D)(G) is a division ring. ¤

Lemma 3. If n ≥ 2 and M satisfies a group identity, then CMn(D)(M) is a field.

Proof. By Lemma 1, we know that M is either irreducible or there exist P ∈
GLn(D) such that P−1AdP ∈ M for any d ∈ D∗. If the second case occurs, then

one may easily show that D∗ satisfies a group identity and hence, by a theorem of

[15, p.304], we conclude that D is a field which is a contradiction. Therefore, we may

assume that M is irreducible. Now, by Lemma 2, we conclude that CMn(D)(M) =

D1 is a division ring. Let x be in the derived group of D1, i.e., x ∈ D
′
1. Since

SLn(D) ⊆ N we conclude that x ∈ N . Now, by maximality of M , we have either

〈x,M〉 = M or 〈x,M〉 = N . In the first case we have x ∈M ∩D1 and so x ∈ Z(M).

In the second case we obtain x ∈ Z(N). Now, it is known that N as a non-central
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normal subgroup of GLn(D) with n ≥ 2 must contain SLn(D) [3]. Therefore,

Z(N) ⊆ F ∗, i.e., x ∈ Z(N) ⊆ F ∗. Hence in any case we have x ∈ F ∗Z(M), and so

D′1 ⊆ F ∗Z(M). This means that D′1 is abelian and hence, by a result of Hua [10, p.

223], we conclude that D1 is a field. ¤

One of the consequences of the above lemma is the following result which will

be used later on.

Lemma 4. If n ≥ 2 and M soluble, then CMn(D)(M) is a field.

The next result essentially says that if D is infinite, then there exists no non-

abelian maximal subgroup M of N such that |M/M ∩ F ∗ |<∞.

Theorem 1. Assume the notations of section 2. Then there exists no non-abelian

maximal subgroup M of N such that |M/M ∩ F ∗ |<∞.

Proof. Assume first that F ∗ ⊆ M , where M is a nonabelian maximal subgroup

of N . If n = 1, set D1 = F [M ]. Since | M/F ∗ |< ∞ it is clear that D1 is a

finite dimensional division algebra. If N ⊆ D1, by Cartan-Brauer-Hua Theorem, we

obtain D1 = D. Therefore, D is a finite dimensional division algebra. Let x1, · · · , xt
be the representatives for cosets of F ∗ in M , i.e., M = F ∗x1 ∪ · · · ∪ F ∗xt. Then, we

have M = 〈x1, · · · , xt〉F ∗, where 〈x1, · · · , xt〉 is the group generated by x1, · · · , xt.
Take x ∈ N \ M . By maximality of M , we obtain N = 〈x1, · · · , xt, x〉F ∗. Put

H = 〈x1, · · · , xt, x〉 so that N = HF ∗. Therefore, N ′ = H is a normal subgroup

in D∗. Now, by Corollary 1 of [13], we conclude that N ′ ⊆ F ∗. This implies that

N is central which is a contradiction. Therefore, we must have N * D1. Now,

by maximality of M we obtain N ∩ D1 = M . It is clear that M = D1 ∩ N is

a subnormal subgroup of D∗1. Since |M/F ∗| < ∞, by a result of Herstien [8], we

obtain M ⊆ Z(D1) which is a contradiction to our assumption.

We now assume that n ≥ 2. By Lemma 1, we conclude that either M is irre-

ducible or there exists P ∈ GLn(D) such that P−1AdP ∈ M for all d ∈ D∗. If

the second case occurs, we obtain At
d = aI, where a ∈ F ∗ and t = [M : F ∗]. This

in turn implies that d2t = 1. Therefore, by a result of [10, p. 225], we conclude
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that D is finite which is a contradiction. So we may assume the first case, i.e., M

is irreducible. By a theorem of [18, p. 14], we obtain that F [M ] is a prime ring

with [F [M ] : F ] < ∞. If F ∗ is finite, then so is M . Now, by Theorem 4 of [1],

which assert that a normal subgroup of GLn(D) does not contain any finite maxi-

mal subgroup, we arrive at a contradiction. So, assume that F ∗ is infinite and set

K = CMn(D)(M). By Lemma 3, we know that K is a field. Therefore, Z(M) is an

integral domain. Since [F [M ] : F ] <∞ we conclude that Z(M) is field. Therefore,

by a result of [15], F [M ] is simple ring. Thus, by Centralizer Theorem, we have

Mn(D)⊗F F [M ]op ' K⊗F Ms(F ) 'Ms(K), for some positive integer s. Therefore,

Mn(D) is a PI-ring and hence, by a result of Kaplansky, D is a finite dimensional

division algebra over its center. Now, let x1, · · · , xt be a set of representatives for

cosets of F ∗ in M , i.e, M = F ∗x1 ∪ · · · ∪ F ∗xt. Then, we have M = 〈x1, · · · , xt〉F ∗,
where 〈x1, · · · , xt〉 is the group generated by x1, · · · , xt. Take x ∈ N \M . By max-

imality of M , we obtain N = 〈x1, · · · , xt, x〉F ∗. Put H = 〈x1, · · · , xt, x〉 so that

N = HF ∗. This implies that N ′ = H is a normal subgroup of GLn(D). Now, by

Corollary 1 of [13], we conclude that N ′ ⊆ F ∗ and hence N is central, which is a

contradiction and so the result follows in this case.

Finally, if F ∗ is not a subset of M , set M1 = MF ∗ and N1 = NF ∗. It is clearly

seen that M1 is a maximal subgroup of N1. If | M/M ∩ F ∗ | is finite, then so is

|M1/F
∗ |. Therefore, this reduces to the first case and so the result follows. ¤

As a consequence of the above theorem, setting N = GLn(D), we obtain a short

proof of Lemma 1 in [12], i.e.,

Corollary 1. Let D be a division ring not necessarily of finite dimension over its

center F . If either n = 1 and D is noncommutative or n > 1 and D infinite, then

there exists no maximal subgroup M of GLn(D), n ≥ 1, containing F ∗ such that

|M/F ∗ |<∞ .

Proof. By Theorem 1, there exists no nonabelian maximal subgroup with the

stated property. If M is abelian, by Lemma 3, we conclude that K = CMn(D)(M) is

a field. Now, by maximality of M , we obtain M = K∗, and hence K∗/F ∗ is finite.

But it is known that this is not possible unless M = K∗ is finite. Now, by Corollary

3.11 of [9], we conclude that D = F and D is finite, which is a contradiction. ¤
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The next result provides us with a criterion for M to be nilpotent.

Theorem 2. Let D be a noncommutative finite dimensional F -central division

algebra. Then, M is nilpotent if and only if M is contained in the multiplicative

group of a subfield of Mn(D).

Proof. One way is clear. Assume that M is nilpotent and n ≥ 2. By Lemma 1,

either M is irreducible or there exists P ∈ GLn(D) such that P−1AdP ∈ M for

any d ∈ D∗. If the second case happens, then one may easily conclude that D∗

is soluble. Therefore, by Hua’s Theorem [10, p. 223], D is commutative which is

a contradiction. Therefore, we may assume that M is irreducible. By a result of

[18, p. 14], F [M ] is a prime ring. Set K = CMn(D)(M). By Lemma 4, we know

that K is field. Therefore, Z(M) is an integral domain. Since [F [M ] : F ] < ∞
we conclude that Z(M) is field. Now, by a result of [15, p. 47 ], F [M ] is a simple

ring. Thus, by Artin-Wedderburn’s Theorem, we obtain F [M ] ' Mn1(D1) for some

positive integer n1 and a division ring D1. Since SLn(D) ⊆ N , we have SLn1(D1) ⊆
(GLn(D)′ = SLn(D) ⊆ N . If SLn1(D1) ⊆ M , then, by a theorem of [18, p.154],

we conclude that D1 is a locally finite field. This implies that F is a locally finite.

Therefore, D is algebraic over a finite field and hence, by Jacobson’s Theorem [10,

p.219], D is commutative which is a contradiction. Thus, SLn1(D1) * M and by

maximality of M in N we must have MSLn1(D1) = N . Since SLn1(D1) ⊆ F [M ]

we have N ⊆ F [M ] and hence by Cartan-Brauer-Hua Theorem [14], we obtain

F [M ] = Mn(D). Therefore, one may easily show that Z(M) = M ∩ F ∗. Since

D is of finite dimension over F , we may view M as an irreducible nilpotent linear

group. Therefore, by a theorem of [19, p. 57], we obtain [M : Z(M)] < ∞. Now,

by Theorem 1, we conclude that M is abelian and so M ⊆ K = CMn(D)(M) and

the result follows in this case. It remains to show that the result also holds for

n = 1. So, let n = 1 and set D1 = F [M ]. If N ⊆ D∗1, then, by Cartan-Brauer-Hua

Theorem, we have F [M ] = D. Therefore, we obtain Z(M) = M ∩ F ∗. Now, by

the same argument as used above, we conclude that M is abelian and so the result

follows in this case. Finally, assume that N * D1. Thus, by maximality of M , we

have N ∩D1 = M . It is clear that D1∩N CD∗1 and so M CD∗1. Now, we know that

any noncentral normal subgroup of a finite dimensional division algebra contains a

noncyclic free subgroup [7]. Therefore, M as a noncentral normal subgroup of D∗1
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contains a noncyclic free subgroup. This is in contradiction with the fact that M is

nilpotent and hence result follows. ¤

Now, as a consequence of the above result, we may easily obtain the following

corollary which is the last part of Proposition 2 in [12].

Corollary 2. Let D be a noncommutative finite dimensional F -central division

algebra, and let M be a maximal subgroup of GLn(D) with n ≥ 1. Then, M is

nilpotent if and only if M is the multiplicative group of a maximal subfield of Mn(D).

Proof. Set N = GLn(D). By Theorem 2, M ⊆ K∗ ⊆ GLn(D), where K is a

subfield of Mn(D). Now, by maximality of M , the result follows. ¤

Given a maximal subgroup M of GLn(D), it is proved in [12] that either M

contains a noncyclic free subgroup or there exists a finite family {Ki}r1 of fields with

F ∗ ⊂ K∗i ⊂ M for all 1 ≤ i ≤ r such that M/A is finite if CharF = 0 and M/A is

locally finite if CharF = p > 0, where A = K∗1 × · · ·×K∗r . Now, let N be a normal

subgroup of GLn(D) with n ≥ 1, and M be a maximal subgroup of N . In the next

result we essentially generalize the above mentioned result to maximal subgroups of

N as follows:

Theorem 3. Let D be a noncommutative finite dimensional F -central division

algebra, and N be a non-central normal subgroup of GLn(D) with n ≥ 1. Given

a maximal subgroup M of N , then, either M contains a noncyclic free subgroup

or there exist an abelian subgroup A and a finite family {Ki}r1 of fields properly

containing F with K∗i ⊂M for all 1 ≤ i ≤ r such that M/A is finite if CharF = 0

and M/A is locally finite if Charf = p > 0, where A ⊆ K∗1 × · · · ×K∗r .

Proof. We first consider the case n = 1. If M is abelian, then as in the proof

of last corollary, M is the multiplicative group of a subfield of D and so the result

follows. So, we may assume that M is nonabelian. Set E = F [M ]. By maximality

of M , we have either N ∩ E∗ = M or N ⊆ E∗. If the first case occurs, we conclude

that M is normal in E∗. Therefore, by a result of [7], M contains a noncyclic free
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subgroup. If the second case happens, by Cartan-Brauer-Hua Theorem, we have

F [M ] = D. Assume that M does not contain a noncyclic free subgroup and con-

sider the following cases.

Case 1: CharF = 0. Since M does not contain a noncyclic free subgroup we

conclude, by Theorem 1 of [22], that M contains a soluble normal subgroup T of

finite index, i.e., [M : T ] < ∞. If T ⊂ F ∗, then we obtain [M : F ∗] < ∞ which

contradicts Theorem 1. Now, T as a subgroup of D∗ is a completely reducible linear

group. Therefore, by a theorem of [19, p. 154], T is abelian-by-finite. Thus, M

contains an abelian normal subgroup A, say, of finite index. If A ⊂ F ∗, then we

obtain [M : F ∗] <∞ which contradicts Theorem 1. Therefore, A is noncentral and

A ⊆ F [A]∗ = K∗1 , where K1 is a field and so the result follows in this case.

Case 2: CharF = p > 0. Since M does not contain a noncyclic free subgroup,

by Tit’s Theorem [22], we conclude that every finitely generated subgroup of M con-

tains a soluble normal subgroup of finite index. Therefore, by a result of Wehrfritz

[23], M/Solv(M) is a torsion linear group, where Solv(M) is the unique maximal

soluble normal subgroup obtained by Zassenhaus-Maltsev Theorem [24]. Therefore,

by Schur’s Theorem, M/Solv(M) is locally finite. Set S = Solv(M). Now, as in

the above case, S contains an abelian normal subgroup B of finite index. Therefore,

M/B is locally finite and we have B ⊆ F [B] = K which completes the proof of this

case.

Now, assume that n > 1. If M is abelian, by Theorem 2, the result follows.

So, we may assume that M is nonabelian. By Lemma 1, we have that either M is

irreducible or there exists P ∈ GLn(D) such that P−1AdP ∈ M for any d ∈ D∗.

If the second case occurs, then M contains a copy of D∗. Now, by a result of [6],

we know that D∗ contains a noncyclic free subgroup and hence so does M . If the

first case happens, by Theorem [18, p. 9], we conclude that F [M ] is prime ring.

Now, by Lemma 2, C = CMn(D)(M) is a division ring. We note that Z(F [M ]) ⊆ C.

Therefore, Z(F [M ]) is an integral domain. Since [Z(F [M ]) : F ] < ∞ we conclude

that Z(F [M ]) is field. Now, F [M ] is a prime PI-ring and Z(F [M ]) is a field. Thus,
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by a result of [15, p. 47], F [M ] is simple ring and hence by Artin-Wedderburn’s

Theorem, we have F [M ] ' Mn1(D1), for some positive integer n1 and a division

ring D1. Since SLn(D) ⊆ N we have SLn1(D1) ⊆ (GLn(D)′ = SLn(D) ⊆ N . By

maximality of M in N , we may consider two cases.

Case 1: SLn1(D1) ⊆ M . If n1 > 1, by Theorem [18, p.154], either SLn1(D1)

contains a noncyclic free subgroup, or D1 is a locally finite field. In the first case

M contains a noncyclic free subgroup and so the result follows. The second case

implies that F is locally finite. This in turn asserts that D is algebraic over a finite

field and hence, by Jacobson’s Theorem [10, p.219], we conclude that D is a field

which is a contradiction. If n1 = 1, then D1 is noncommutative since otherwise M

is abelian which contradicts our assumption. Now, D
′
1 as a normal subgroup of D∗1

contain a noncyclic free subgroup. Therefore, M contain noncyclic free subgroup

and so the result follows in this case.

Case 2: SLn1(D1) *M . By maximality of M , we have MSLn1(D1) = N . Since

M and SLn1(D1) are contained in F [M ] we have N ⊆ F [M ]. Now, by Cartan-

Brauer-Hua Theorem [14], we have F [M ] = Mn(D). If M does not contain a

noncyclic free subgroup, we may consider the following subcases.

Subcase 1: CharF = 0. Since M does not contain a noncyclic free subgroup we

conclude, by Theorem 1 of [22], that M contains a soluble normal subgroup T of fi-

nite index, i.e. [M : T ] <∞. By Theorem [18, p. 14], F [T ] is semisimple. Since T is

a completely reducible linear group, by a result of [19, p. 154], T is abelian-by-finite.

Therefore, M contains an abelian normal subgroup A, say, of finite index. Now, by

a theorem of [18, p. 14], F [A] is commutative semisimple ring. Therefore, by Artin-

wedderburn’s Theorem, there exists a finite family {Ki}r1 of fields with F ∗ ⊂ K∗i for

all 1 ≤ i ≤ r such that F [A]'K1 × · · · × Kr. Thus, A ⊆ F [A]∗ ' K∗1 × · · · × K∗r ,

and so the result follows in this case.

Subcase 2: CharF = p > 0. Since M does not contain a noncyclic free sub-

group, by Tit’s Theorem [22], we conclude that every finitely generated subgroup
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of M contains a soluble normal subgroup of finite index. Therefore, by a result of

Wehrfritz [23], M/Solv(M) is a torsion linear group, where Solv(M) is the unique

maximal soluble normal subgroup obtained by Zassenhaus-Maltsev Theorem [24].

Therefore, by Schur’s Theorem, M/Solv(M) is locally finite. Set S = Solv(M).

Now, by a result of [18, p. 14], F [S] is semisimple. As in Subcase 1, S contains an

abelian normal subgroup B ,say, of finite index. Therefore, M/B is locally finite.

By Theorem [18, p. 14] F [B] is a commutative semisimple ring. Therefore, as in

Subcase 1, B ⊆ F [B]∗ ' K∗1 × · · · ×K∗r , and so the proof is complete. ¤

As a consequence of the above theorem, we may prove the following corollary

which is the main result of [12].

Corollary 3. Let D be a noncommutative finite dimensional F -central division

algebra. Assume that M is a maximal subgroup of GLn(D) with n ≥ 1. Then,

either M contains a noncyclic free subgroup or there exists a finite family {Ki}r1 of

fields with F ∗ ⊂ K∗i ⊂ M for all 1 ≤ i ≤ r such that M/A is finite if CharF = 0

and M/A is locally finite if Charf = p > 0, where A = K∗1 × · · · ×K∗r .

Proof. If M does not contain a noncyclic free subgroup, by Theorem 3 and a result

of [18, p. 14], we have F [A]∗ ' K∗1×· · ·×K∗r . If F [A]∗ ⊆M , then the result follows.

If L = F [A]∗ * M , by maximality of M , we obtain LM = GLn(D). Therefore, L

is normal in GLn(D), i.e., SLn(D) ⊂ L. But this contradicts the fact that SLn(D)

contains a noncyclic free subgroup and so the result follows. ¤

The first author is indebted to the Institute for Studies in Theoretical Physics and

Mathematics (IPM) for partial support (Grant No. 83160044). The second author

thanks Professor Ulf Rehmann for his hospitality during his stay at the Bielefeld

University in March 2006.

References

[1] S. Akbari, R. Ebrahimian, H. Momenaee Kermani and A. Salehi Golsefidy,

The group of units of an Artinian ring, Algebra Colloquium, 9:1 (2002) 81–88.

11



[2] S. Akbari, M. Mahdavi-Hezavehi and M. G. Mahmudi, Maximal subgroups of

GL1(D), Journal of Algebra, 217 (1999) 422–433.

[3] E. Artin, Geometric algebra, Interscience Pub., New York, 1957.

[4] K. Chiba, Generalized rational identities of subnormal subgroups of skew fields,

Proc. Amer. Math. Soc., 124 (6) (1996) 1649–1653.

[5] P. K. Draxl, Skew fields, LMS Lecture Note Series, No. 81, Cambridge Uni-

versity Press, (1982).

[6] J. Goncalves, and A. Mandel, Are there free groups in division rings, Israel J.

Math. Vol. 51, No. 1, (1986), 69-80.

[7] J. Goncalves, Free groups in subnormal subgroups and the residual nilpotence

of the group of units of group rings, Can. Math. Bull. 27(1982), 365-370.

[8] I. N. Herstein, Multiplicative commutators in division rings II, Rend. Circ.

Mat. Palermo II, 29(1980), 485-489.

[9] D. Kiani and M. Mahdavi-Hezavehi, Identities and maximal subgroups of

GLn(D),Algebra Colloquium, Volume 12 (2005), Number 3, 461–470.

[10] T. Y. Lam, A first course in non-commutative rings, GTM, No. 131, Springer-

Verlag, (1991).

[11] A. E. Lichtman, On subgroups of the multiplicative group of skew fields, Proc.

Amer. Math. Soc. 63(1977), 15-16.

[12] M. Mahdavi-Hezavehi, Tits alternative for maximal subgroups of GLn(D), J.

Algeb., 271(2004), 518-528.

[13] M. Mahdavi-Hezavehi, M.G. Mahmudi, S. Yasami, Fintely generated subnor-

mal subgroups of GLn(D) are central, J. Algeb., 225, 517-521 (2000).

[14] Alex Rosenberg, The Cartan-Brauer-Hua Theorem for matrix and local matrix

rings, Proc. Amer. Mat. Soc., 7(1956), 891-898.

[15] L. H. Rowen, Polynomial identities in ring theory, 1980.

12



[16] L. Rowen, Ring theory, Volume II, Academic Press, INC, (1988).

[17] W. R. Scott, Group theory, Dover Publication, INC, 1964.

[18] M. Shirvani and B. A. F. Wehrfritz, Skew linear group, LMS Lecture Note

Series, No. 118, (1986)

[19] D. A. Suprunenko, Soluble and nilpotent linear groups, Translations of Math-

ematical Monographs, Vol. 9, (1963).

[20] D. A. Suprunenko, Matrix groups, Translations of Math. Mono., Amer. Math.

Soc., Providence, Rhode Island, (1976).

[21] D. A. Suprunenko, Matrix groups, Translations of Math. Mono., Amer. Math.

Soc., Providence, Rhode Island, (1976).

[22] J. Tits, Free subgroup in linear groups, J. of Algebra, 20, 250-270 (1972).

[23] B. A. F. Wehrfritz, 2-generator conditions in linear groups, Archiv. Math. 22,

237-240 (1971).

[24] A. E. Zalesskii, Linear group, in “Algebra IV”, part II( A. I. Kostrikin I.

R. Shafarevich, Eds.), Encyclopedia of Mathematics and Science. Springer

Verlag, Berlin/New York, 1993.

D. Kiani, Department of Pure Mathematics, Faculty of Mathematics and Computer Science,

Amirkabir University of Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Tehran,

Iran, and Institute for Studies in Theoretical Physics and Mathematics (IPM)

M. Mahdavi-Hezavehi, Department of Mathematical Sciences, Sharif University of Technology,

P. O. Box 11365-9415, Tehran, Iran, and Fakultät für Mathematik, Universität Bielefeld, Postfach

100131, D-33501 Bielefeld, Germany

13


