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Abstract

In this paper, we give another proof of a theorem by Klyachko
([Kl]), which asserts that Zariski’s conjecture holds for a special class
of tori over an arbitrary ground field.

1 Introduction

The main purpose of this paper is to give a much simpler proof of a theorem
due to Klyachko ([Kl]; see also [Vo], chap. 2, 6.3), which is here theorem
2.4. To achieve this, we first prove a generalization of a theorem due to
Voskresenskii ([Vo], chap. 2, 5.1, corollary). To be more precise, we show
stable rationality for a certain class of algebraic tori over a given field k,
strictly containing the cyclotomic ones. What is more, we give an effective
way of presenting the character module of these tori as the kernel of a
surjection between permutation modules (that is, lattices that contain a
basis which is permuted by the action of the absolute Galois group of k).
Recall that, according to loc. cit., chap. 2, 4.7, theorem 2 , the existence
of such a surjection is a necessary and sufficient condition for a torus to
be stably rational. All the basic material concerning algebraic tori and
rationality questions related to these is contained in loc. cit., chap.2; we
shall assume that the reader is familiar with this reference.
In the following section, the symbol ⊗ alone means ⊗Z. If k is a field with
separable closure ks, we denote by Γk the profinite group Gal(ks/k). Let Γ
be a profinite group. By a Γ-lattice, we mean a free Z-module of finite rank,
endowed with a continuous action of Γ. We will say simply ’exact sequence’
instead of ’exact sequence of Γ-lattices’.

2 Stably rational and rational algebraic tori

To begin this section, we prove an elementary but crucial lemma.
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Lemma 2.1 Let Γ be a profinite group. Let Ai, Bi, Ci, i = 1, 2 be Γ-lattices,
fitting into two exact sequences

0 −→ Ai
ji−→ Bi

πi−→ Ci −→ 0.

Assume we are given si : Ci −→ Bi, and d1, d2 two coprime integers, such
that πi ◦ si = diId, i = 1, 2. Let

A3 = A1 ⊗A2,

B3 = (B1 ⊗B2)⊕ (C1 ⊗ C2),

and
C3 = (C1 ⊗B2)⊕ (B1 ⊗ C2).

Then there is an exact sequence

0 −→ A3
j3−→ B3

π3−→ C3 −→ 0,

together with a morphism s3 : C3 −→ B3, satisfying π3 ◦ s3 = d1d2Id.

Proof. We have an exact sequence

0 −→ A1⊗A2 −→ B1⊗B2
(π1⊗Id)⊕(Id⊗π2)−→ (C1⊗B2)⊕(B1⊗C2)

π−→ C1⊗C2 −→ 0,

where π = Id⊗ π2 − π1 ⊗ Id.
Select integers u, v such that vd2 − ud1 = 1. Then the map

s : C1 ⊗ C2 −→ (C1 ⊗B2)⊕ (B1 ⊗ C2),

c1 ⊗ c2 7→ (vc1 ⊗ s2(c2), us1(c1)⊗ c2)

is a splitting of π. Hence we have an exact sequence

0 −→ A3
j3−→ B3

π3−→ C3 −→ 0

as stated, where

π3 : (B1 ⊗B2)⊕ (C1 ⊗ C2)
((π1⊗Id)⊕(Id⊗π2),s)−→ (C1 ⊗B2)⊕ (B1 ⊗C2).

The last assertion is obvious: if ri : Bi −→ Ai (i = 1, 2) are such that
ri ◦ ji = diId, then

r3 := (r1 ⊗ r2, 0) : B3 −→ A3

satisfies r3 ◦ j3 = d1d2Id.¤

From this we can derive the following
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Theorem 2.2 Let k be a field, and X1, ..., Xr be finite Γk-sets. For i =
1, ..., r, denote by Ji the kernel of the canonical surjection ZXi πi−→ Z. Let
J = ⊗iJi. If the orders of the Xi are two by two coprime, then we have an
exact sequence

0 −→ J −→
⊕

I∈I0

ZΠi∈IXi π−→
⊕

I∈I1

ZΠi∈IXi −→ 0,

where Ii is the set of subsets of {1, ..., r} whose cardinality is congruent to
r − i mod 2. In particular, a k-torus with character module isomorphic to
J is stably rational over k. What is more, let d denote the product of the
orders of the Xi, i = 1, ..., r. Then there exists

s :
⊕

I∈I1

ZΠi∈IXi −→
⊕

I∈I0

ZΠi∈IXi

such that π ◦ s = dId.

Proof. For i = 1, ..., r, we have a canonical map

si : Z −→ ZXi ,

1 7→
∑

x∈Xi
x,

which satisfies πi ◦ si = diId, where di is the order of Xi. The proof is then
an easy induction using the previous lemma and the obvious isomorphism
ZX ⊗ ZY ' ZX×Y , for any two finite sets X and Y . ¤

As a particular case of this theorem, we recover a result due to Voskresenskii
([Vo], chap. 2, 5.1 corollary).

Corollary 2.3 Let k be a field, and l/k a Galois extension with cyclic Ga-
lois group G of ordrer n = p1...pr, where the pi are prime numbers. Let σ
be a generator of this Galois group, and T/k the nth cyclotomic torus, i.e.
the torus with character group isomorphic to Z[X]/φn(X), where φn(X) is
the nth cyclotomic polynomial, the action of σ being given by multiplication
by X (in other words, the character group of T is isomorphic to the ring
of integers of the nth cyclotomic extension of Q, with the action of σ being
given by multiplication by a primitive nth root of unity). Then T is stably
rational over k.
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Proof. For i = 1, ..., r, let Xi be the unique quotient of G isomorphic to
Z/pi. With the notations of the preceding theorem, the Γk-module J is
isomorphic to the character module of T (this is just the fact that the ring
of integers of the nth cyclotomic extension of Q is naturally isomorphic to
the tensor product of the rings of integers of the pthi cyclotomic extensions
of Q), whence the claim.¤

We are now able to give a simple proof of the following theorem.

Theorem 2.4 (Klyachko) Let k be a field, and X, Y two finite Γk-sets, of
coprime orders p and q, respectively. Consider the two basic exact sequences

0 −→ JX −→ ZX −→ Z −→ 0,

0 −→ JY −→ ZY −→ Z −→ 0.

Then, a k-torus T with character module isomorphic to J := JX ⊗ JY is
rational over k.

Proof. Select integers u, v such that up − vq = 1. Theorem 2.2 gives the
following presentation of J :

0 −→ J −→ ZX×Y ⊕ Z π−→ ZX ⊕ ZY −→ 0,

where π(x ⊗ y, 0) = (x, y) and π(0, 1) = (u
∑
x∈X x, v

∑
y∈Y y). Let E/k

(resp. F/k) be the etale extension of k corresponding to X (resp. to Y ).
Then, in terms of tori, this exact sequence reads as

1 −→ RE/k(Gm)×RF/k(Gm)
i−→ RE⊗kF/k(Gm)×Gm −→ T −→ 1,

where R denotes Weil scalar restriction. The map i is given on the k-points
of the considered tori by the following formula:

i(x, y) = (x⊗ y,NE/k(x)uNF/k(y)v), x ∈ E∗, y ∈ F ∗.

Thus, we have a generically free action of the algebraic k-group H :=
RE/k(Gm) × RF/k(Gm) on the k-vector space V := (E ⊗k F ) ⊕ k, such
that T is birational to the quotient V/H (of course, such a quotient is de-
fined up to birational equivalence only).
Assume that p < q. Let G/k be the algebraic k-group GLk(E)×RF/k(Gm)
(E being viewed as a k-vector space). I claim that the action of H on V
can be naturally extended to an action of G on V (H being viewed as a
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subgroup of G the obvious way). Indeed, this new action is given on the
k-points by the formula, for g = (φ, y) ∈ G(k), v = (e⊗ f, λ) ∈ V :

g.v = (φ(e) ⊗ yf,det(φ)uNF/k(y)vλ).

This action is generically free. Indeed, this is an easy consequence of the
equality up− vq = 1 and of the following lemma.

Lemma 2.5 Let G act on E ⊗k F the obvious way. Then the stabilizer of
a generic element is the subgroup Gm of G given, on the level of k-points,
by elements of the form (x, x−1) ∈ GLk(E)× F ∗, for x ∈ k∗.

We postpone the proof until the end of this section. Assuming this lemma,
we have a birational G-equivariant isomorphism V ' (V/G)×G, where the
action of G on the right is given by translation. Indeed, this is a direct
consequence of Hilbert’s theorem 90, asserting that H 1(l, G) = 1 for any
field extension l of k. Hence we have birational isomorphisms

T ' V/H ' V/G×G/H.

It is clear that the k-variety G/H = GLk(E)/RE/k(Gm) is k-rational. As in
Klyachko’s original proof, the key point is here that the k-variety (defined
up to birational equivalence) V/G is independent of E (seen as an etale
k-algebra). Hence, the birational equivalence class of T is independent of
E; we may therefore assume that E is split, i.e. that the action of Γk on
X is trivial. But then J is isomorphic to JY

p−1, hence T is birational to
(RF/k(Gm)/Gm)p−1, which is a rational variety (it is an open subvariety of

(Pq−1
k )p−1). ¤

Proof of lemma 2.5. We may assume that F is split, i.e. F = kq as an
etale k-algebra. Let fi, i = 1, ..., q denote the canonical k-basis of F .
Consider an element w =

∑
i ei ⊗ fi ∈ E ⊗k F in general position. Let

g = (φ, (λ1, ..., λq)) ∈ GLkE × F ∗ be such that g.w = w. This amounts to
saying that φ(ei) = λ−1

i ei for all i. Since p < q and since w is in general po-
sition, e1, ..., ep form a basis of E with respect to which the i’th component
of ep+1 is non zero for all i = 1, ..., p. This readily implies that the λi are all
equal to some scalar λ and that φ = λ−1Id, thus proving the claim. ¤
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