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Abstract

In this article, quadratic forms over a field of characteristic different
from two are generalised to so-called virtual forms over an arbitrary
field. These objects turn out to be useful for the study of the Milnor
K-theory of a field. The relation between both areas is established by
a sequence of maps corresponding to Delzant’s Stiefel-Whitney classes.

1 Introduction

Quadratic forms have manifold aspects and therefore they can be generalised
in various directions. The aim of this article is to transfer some of the alge-
braic theory of quadratic forms over fields into a more general context. To
this aim virtual forms over an arbitrary field are introduced. These objects
are are closely related to Milnor K-theory.

To give the idea let us consider a field F of characteristic different from 2.
The algebraic theory of quadratic forms over F , as it may be learned from [6]
or [10], starts with a few crucial observations. First of all, quadratic forms
over F can be diagonalised. Witt’s Cancellation Law then gives information
on the interplay between orthogonal sum and isometry. This leads to the def-
inition of the Witt ring W (F ) and the Witt-Grothendieck ring Ŵ (F ). Using
further Witt’s Chain Equivalence Theorem, which describes when exactly
two given diagonalisations belong to the same quadratic form, one obtains a
description of W (F ) and of Ŵ (F ) by means of generators and relations.

This abstract description of the Witt-Grothendieck ring Ŵ (F ) will be
taken as the guiding principle for the definition of a group G(F, `), the
Grothendieck group of `-forms, where now F is an arbitrary field and ` ∈ N.
If F is of characteristic different from 2, then G(F, 2) coincides with the

group Ŵ (F ). The definition of G(F, `) is based on Milnor K-theory. After
defining several operations on the elements of G(F, `), a descending sequence
of subgroups (Gn(F, `))n∈N is constructed, destined to replace the filtration
given by the powers of the fundamental ideal in the Witt-Grothendieck ring.
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While in general G(F, `) is not a commutative group for ` 6= 2, at least the
groups Gn(F, `) for n ≥ 2 are contained in the center of G(F, `). Moreover,
if ` is odd, then Gn(F, `) vanishes for n ≥ 3 and any element of G1(F, `) has
finite order dividing `. A sequence of maps from G(F, `) to the Milnor K-
groups modulo ` of the field F allows to use `-forms to investigate the Milnor
K-theory of F . These maps generalise Delzant’s Stiefel-Whitney classes (in
the way Milnor defines them in [8]). In certain cases, in particular for odd `,
it turns out that the group G1(F, `) can be described as a group extension of
the first by the second Milnor K-group modulo `. As an application of some
of the new concepts an alternative proof of a result in K-theory due to B.
Kahn is given. Finally, a notion of isotropy is introduced.

Part of the results presented here have been announced in [1].

Throughout this article F denotes a field, F× its multiplicative group,
and ` a nonnegative integer.

2 Milnor K-theory

Let us recall the basic definitions from Milnor K-theory (cf. [8]) and fix some

notation. Let n, ` ∈ N. Let K
(`)
n F denote the nth K-group modulo ` of the

Milnor K-theory of F . To be explicite, K
(`)
n F is the additive abelian group

which is generated by so-called symbols {a1, . . . , an}, where a1, . . . , an ∈ F×,
which are subject to the following relations:

(M1) the natural map { } : (F×)n −→ KnF is Z-multilinear;

(M2) {a1, . . . , an} = 0 whenever ai + ai+1 = 1 in F for some i < n;

(M3) ` ·K(`)
n F = 0 .

Obviously (M3) can be ignored if ` = 0. In fact, K
(0)
n F is just the

‘full’ Milnor K-group usually denoted by KnF , and K
(`)
n F corresponds to its

quotient modulo `. Note that K
(`)
1 F is just the group F×/F×` in additive

notation if one identifies the element {x} of K
(`)
1 F with the class xF×` in

F×/F×`. For n = 0 the first two relations have no relevance, so K
(`)
0 F

is a cyclic group generated by the empty symbol {}, and in view of (M3)

we identify K
(`)
0 F = Z/`Z. In K

(`)
2 F , it follows from (M1) and (M2) that

{−a, a} = 0 and {a, b} = −{b, a} = {b−1, a} hold for a, b ∈ F× (cf. [8, §1]).

We denote K
(`)
∗ F =

⊕
i≥0

K
(`)
i F and K̂

(`)
∗ F =

∏
i≥0

K
(`)
i F . With

{a1, . . . , ar} · {ar+1, . . . , ar+s} = {a1, . . . , ar, ar+1, . . . , ar+s}
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one has a natural multiplication in both K
(`)
∗ F and K̂

(`)
∗ F . Hence K

(`)
∗ F

and K̂
(`)
∗ F are endowed with a natural structure as algebras over the ring

K
(`)
0 F = Z/ `Z, and K

(`)
∗ F is a graded algebra.

3 Chain equivalence

We consider finite sequences of elements in F×. We denote by Sn(F ) the
set of all such sequences of length n and by [a1, . . . , an] the sequence with
entries a1, . . . , an ∈ F×. We use the sign ¦ to denote the concatenation of two
sequences: for α = [a1, . . . , ar] ∈ Sr(F ) and α′ = [ar+1, . . . , ar+s] ∈ Ss(F ) we
set α ¦ α′ = [a1, . . . , ar, ar+1, . . . , ar+s] ∈ Sr+s(F ).

We introduce now, for any n ≥ 1, an equivalence relation on Sn(F ) which
depends on the (fixed) integer ` ≥ 0. This relation is introduced first for
n = 1 and n = 2 and then extended in a canonical way to arbitrary n.

Let a, a′ ∈ F×. We consider the sequences [a] and [a′] in S1(F ) to be
equivalent in this relation (depending on `) and write [a] `∼ [a′] in case that

{a} = {a′} holds in K
(`)
1 F , that is, if a′ = x`a for some x ∈ F×. Let now

a, b, a′, b′ ∈ F×. We write

[a, b] `∼ [a′, b′] if

{
{ab} = {a′b′} in K

(`)
1 F and

{a, b} = {a′, b′} in K
(`)
2 F .

We thus have defined an equivalence relation on Sn(F ) for n = 1, 2.
Let now n > 2. We say that the two sequences α = [a1, . . . , an] and

β = [b1, . . . , bn] in Sn(F ) are simply `-equivalent and write α
`≈ β if there

exists a positive integer k < n such that [ak, ak+1] `∼ [bk, bk+1] and such that

we have {ai} = {bi} in K
(`)
1 F for 1 ≤ i < k and for k + 1 < i ≤ n. This

relation is not transitive in general. In order to obtain an equivalence relation
`∼ we take the transitive closure of

`≈ . We say that α, β ∈ Sn(F ) are chain
`-equivalent and write α `∼ β if

α
`≈ γ1

`≈ γ2
`≈ . . .

`≈ γr
`≈ β

holds for a suitable choice of γ1, . . . , γr ∈ Sn(F ), r ≥ 1. For ` = 0 we just
speak of simple equivalence and chain equivalence and we write ∼ and ≈,
accordingly; note that simple (resp. chain) equivalence implies simple (resp.
chain) `-equivalence modulo any ` > 0.

The definition of chain `-equivalence is motivated by a fundamental re-
sult in the algebraic theory of quadratic forms, Witt’s Chain Equivalence
Theorem (cf. [6, Chap. I, §5]), which can be reformulated in the following
way.
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3.1 Proposition. Assume that char(F ) 6= 2. Two sequences [a1, . . . , an] and
[b1, . . . , bn] in Sn(F ) are chain 2-equivalent if and only if the quadratic forms
a1X

2
1 + . . .+ anX

2
n and b1X

2
1 + . . .+ bnX

2
n over F are isometric.

Proof: For n = 1 the statement is obvious. Now we inspect the case n = 2.
For any c, d ∈ F×, the symbols {cd} ∈ K

(2)
1 F and {c, d} ∈ K

(2)
2 F are

invariants of the quadratic form cX2 + dY 2 up to isometry. Hence, if the
quadratic forms a1X

2 + a2Y
2 and b1X

2 + b2Y
2 are isometric, then we have

[a1, a2]
2∼ [b1, b2].

Conversely, assume that [a1, a2]
2∼ [b1, b2]. Since {a1, a2} = {b1, b2} holds

in K
(2)
2 F , the 3-dimensional quadratic forms −a1X

2 − a2Y
2 + a1a2Z

2 and
−b1X

2 − b2Y
2 + b1b2Z

2 are isometric, by [3, Theorem 1.8] and Witt Can-
cellation (cf. [6, Chap. I, 4.2]). Since in addition we have b1b2 = a1a2x

2 for
some x ∈ F×, using Witt Cancellation and multiplying by −1 we see that
a1X

2 + a2Y
2 and b1X

2 + b2Y
2 are isometric.

So far we have shown that 2-equivalence for elements in S2(F ) charac-
terises isometry for the corresponding diagonal quadratic forms in two vari-
ables over F . Now, for arbitrary n ≥ 2, by Witt’s Chain Equivalence Theo-
rem (cf. [6, Chap. I, §5]) isometry for quadratic diagonal forms in n variables
is entirely determined by isometry for 2-dimensional diagonal subforms. This
completes the proof. ¤

3.2 Remark. Assume that ` ≥ 2 and that F contains a primitve `th root
of unity ζ. In this case, the Merkurjev-Suslin Theorem (cf. [7]) implies that

symbols in K
(`)
2 F are in one-to-one correspondence with isomorphism classes

of cyclic algebras of degree ` over F . More precisely, given a, b ∈ F ×, the
symbol {a, b} is identified with the symbol algebra (a, b)F,ζ. By definition,
(a, b)F,ζ is the central simple F -algebra of degree ` generated by elements
u, v which are subject to the relations u` = a, v` = b, and vu = ζuv.

Therefore, under the assumptions on ` and F , chain `-equivalence can be
described in terms of classical algebraic structures not involving K-theory.

Permuting the entries of a sequence does not necessarily yield a sequence
which is chain equivalent (modulo `) to the original one. More particularly,

for a, b ∈ S2(F ), one has [a, b] `∼ [b, a] if and only if 2 · {a, b} = 0 in K
(`)
n F .

3.3 Lemma. For any a, b ∈ F×, one has [a, b] ∼ [b−1, ab2] ∼ [a2b, a−1].

Proof: Note first that the product of both entries is the same for any of the
three given sequences in S2(F ). It is further easy to check the equalities

{a, b} = {b−1, ab2} = {a2b, a−1}
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in K2F . This yields the statement. ¤

3.4 Corollary. If a = ±1, then [a, b] ∼ [b, a] for any b ∈ F×.

Proof: Since a−1 = a, this is clear from the lemma. ¤
A generalisation of the last statement will be obtained in (3.9) below.

Let S0(F ) denote the singleton set consisting of the empty sequence [ ].
Let further

S(F ) =
⋃

n∈N
Sn(F ) .

Hence (S(F ), ¦) is the free monöıd generated by F×.

We are going to consider operations on sequences and how they behave
with respect to chain equivalence. We say that a map

Φ : S(F ) −→ S(F )

is compatible with chain `-equivalence if it preserves lengths of sequences and
if, for any n ∈ N and any α, β ∈ Sn(F ), the relation α `∼ β implies that
Φ(α) `∼ Φ(β). We say that Φ as above is compatible if it is compatible with
chain `-equivalence for every ` ∈ N. A compatible map Φ may or may not be
an endomorphism of the monöıd S(F ), and it does not need to be injective
nor surjective.

Examples of compatible maps are given by rising the coefficients of a
sequence to some power and by reversing the order of the coefficients.

Let α = [a1, . . . , an] ∈ Sn(F ). For any z ∈ Z, we write αz for the sequence
[a z1 , . . . , a

z
n]. In particular, α−1 = [a−1

1 , . . . , a−1
n ]. Furthermore, we denote by

α̃ the sequence with the entries of α in reversed order, i.e. α̃ = [an, . . . , a1].

3.5 Proposition.

(a) For any z ∈ Z, the rule α 7−→ αz defines a compatible endomorphism
of S(F ). In particular, α 7−→ α−1 is a compatible involution on S(F ).

(b) The rule α 7−→ α̃ defines a compatible involution on S(F ).

Proof: Only the compatibility (with respect to arbitrary `) requires a proof.
In view of the definitions, one needs to verify compatibility only for sequences
α, β ∈ Sn(F ) where n ≤ 2, thus to show for those that α `∼ β entails αz `∼ βz

for any z ∈ Z, as well as α̃ `∼ β̃. For n = 1 this is obvious.
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Let now α, β ∈ S2(F ) with α `∼ β. Using that, for any u, v ∈ F× and
any z ∈ Z, one has

{u zv z} = z · {uv} in K
(`)
1 F and {u z, v z} = z2 · {u, v} in K

(`)
2 F ,

one sees that αz `∼ βz, for any z ∈ Z. Similarily, using that {v, u} = −{u, v}
in K

(`)
2 F for any u, v ∈ F×, one sees that α̃ `∼ β̃. ¤

Given a sequence α = [a1, . . . , an] ∈ Sn(F ) and an element c ∈ F×,
we denote by c ∗ α the sequence [cε1a1, . . . , c

εnan], where εi = (−1)i for
i = 1, . . . , n. We call c ∗ α the conjugate of α by c. Note that conjugation
is bijective, but it is in general not an endomorphism of the monöıd S(F ).
However, (−1) ∗ α = [−a1, . . . ,−an], so conjugation by −1 is an automor-
phism of S(F ). As we shall see now, conjugation by an element of F× is a
compatible operation on S(F ).

3.6 Proposition. Let α, β ∈ Sn(F ), c ∈ F×, and ` ∈ N. Then α `∼ β if
and only if c ∗ α `∼ c ∗ β.

Proof: By the definition of chain `-equivalence, the statement needs to
be proven only for n = 2. For any a, b, c ∈ F×, we have {c−1a, cb} =

{c−1,−ab} + {a, b} in K
(`)
2 F . Therefore, if a, b, a′, b′ ∈ F× are such that

[a, b] `∼ [a′, b′], i.e. {ab} = {a′b′} in K
(`)
1 F and {a, b} = {a′, b′} in K

(`)
2 F ,

then we obtain {c−1a, cb} = {c−1a′, cb′} and [c−1a, cb] `∼ [c−1a′, cb′]. This
proves one direction. Replacing c by c−1 then immediately yields the converse
direction. ¤

For a sequence α = [a1, . . . , an] in Sn(F ), we denote by α∗ the sequence
[−a−1

n , . . . ,−a−1
1 ] in Sn(F ). This defines an involution

∗ : S(F ) −→ S(F ) , α 7−→ α∗ .

3.7 Corollary. The involution ∗ : S(F ) −→ S(F ) is compatible.

Proof: The map ∗ is compatible, because it is the combination of three
compatible operations on S(F ) (which actually commute with each other),
namely α 7→ α−1, α 7→ α̃, and α 7→ (−1) ∗ α. ¤

For α ∈ Sn(F ) and r ∈ N we put r × α = α ¦ . . . ¦ α ∈ Srn(F ).

3.8 Proposition. For any α ∈ Sn(F ) one has α ¦ α∗ ∼ n× [1,−1] .

Proof: It follows from the definition of chain equivalence on S2(F ) that
[a,−a−1] ∼ [1,−1] holds for any a ∈ F×. Since [1,−1] commutes up to chain
equivalence with any element of S(F ) by (3.4), the result follows. ¤
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After having considered operations on S(F ) which turned out to be com-
patible with chain equivalence, we may now ask which operations stabilise
the equivalence classes of certain sequences.

3.9 Proposition. Let a1, . . . , an ∈ F× be such that a1 · · ·an = ±1. Then

[a1, . . . , an] ∼ [a−1
n , a−1

1 , . . . , a−1
n−1] .

Moreover, if n is odd, then

[a1, . . . , an] ∼ [a−1
1 , . . . , a−1

n ] ∼ [an, a1, . . . , an−1] .

Proof: Using n−1 times Lemma (3.3) we obtain

[a1, . . . , an] ∼ [a1, . . . , ana
2
n−1, a

−1
n−1]

∼ . . .

∼ [an(a1 · · ·an−1)2, a−1
1 , . . . , a−1

n−1] .

Since by hypothesis (a1 · · ·an−1)2 = a−2
n , the first part of the statement fol-

lows. This also shows the second equivalence of the second part of the state-
ment, which thus holds without condition on n.

Finally, if n is odd, then applying n times the first part yields

[a1, . . . , an] ∼ [a−1
1 , . . . , a−1

n ] .
¤

3.10 Remark. Possibly the whole statement of the proposition is true for
every n. The second part, which here is under the hypothesis that n is odd,
can easily be proven for even n under the assumption that [a1, . . . , an] is
chain equivalent to a sequence having one entry equal to ±1.

3.11 Proposition. Let α = [a1, . . . , an] ∈ Sn(F ) with (a1 · · ·an) = ±1.
Then for any β ∈ Sm(F ) one has α ¦ β ∼ β ¦ αε, where ε = (−1)m.

Proof: We may assume that m = 1, so that β = [c] for some c ∈ F×. Using
Lemma (3.3) n times we obtain

α ¦ β = [a1, . . . , an, c] ∼ [a1, . . . , an−1, ca
2
n, a

−1
n ]

∼ . . .

∼ [c(a1 · · ·an)2, a−1
1 , . . . , a−1

n ] = β ¦ α−1 ,

because (a1 · · ·an)2 = 1, by the hypothesis. ¤
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4 Virtual forms

We say that two sequences α, α′ ∈ S(F ) are stably chain `-equivalent if

α ¦ (r × [1,−1]) `∼ α′ ¦ (r × [1,−1])

holds for some r ∈ N. We write M(F, `) for the set of equivalence classes in
S(F ) modulo this equivalence relation. The elements of this set are called
virtual forms of degree ` over F , or `-forms for short. For α ∈ S(F ) we
denote by 〈α〉 the `-form given by α. If α = [a1, . . . , an] then we may write
〈a1, . . . , an〉 instead of 〈α〉. The class of the empty sequence [ ] is also consid-
ered as an element of M(F, `), and it is denoted by 0 and called the trivial
form.

It is not clear whether stable chain `-equivalence is really a coarser equiv-
alence relation than chain `-equivalence.

4.1 Question. For α, α′ ∈ S(F ), does 〈α〉 = 〈α′〉 imply that α `∼ α′?

We define a (not necessarily commutative) operation + on M(F, `). For
α, β ∈ S(F ), we set

〈α〉+ 〈β〉 = 〈α ¦ β〉 .
Note that it follows from (3.4) that this operation is well-defined and associa-
tive. Therefore (M(F, `),+) is a monöıd with neutral element 0. For n ∈ N
and ϕ ∈M(F, `), we denote by n× ϕ the n-fold sum ϕ+ . . .+ ϕ.

4.2 Lemma. The monöıd (M(F, `),+) satisfies the cancellation law.

Proof: Given α, α′, β ∈ S(F ) such that 〈α〉 + 〈β〉 = 〈α′〉 + 〈β〉, we claim
that 〈α〉 = 〈α′〉. We may restrict to the case where β ∈ S1(F ), i.e. 〈β〉 = 〈b〉
for some b ∈ F×. Note that 〈b〉 + 〈−b−1〉 = 〈b,−b−1〉 = 〈1,−1〉 by (3.8).
Therefore 〈α〉+ 〈β〉 = 〈α′〉+ 〈β〉 implies that 〈α〉+ 〈1,−1〉 = 〈α′〉+ 〈1,−1〉.
This means that α¦ [1,−1] and α′ ¦ [1,−1] are stably chain `-equivalent. The
same then holds for α and α′ so that 〈α〉 = 〈α〉. This shows that cancellation
on the right is possible. The proof of cancellation on the left is analogous. ¤

We write H for the `-form 〈1,−1〉. Note that 〈a,−a−1〉 = H for any
a ∈ F× by (3.8). We denote by G(F, `) the set of formal differences

ϕ − n×H

where ϕ ∈ M(F, `) and n ∈ N. Since by (3.4) the `-form n × H lies in the
center of M(F, `) for any n ∈ N, the operation + extends naturally to G(F, `)
and gives it the structure of a monöıd. Since M(F, `) satisfies the cancellation
law, the same is true for G(F, `) and M(F, `) can be seen as a submonöıd of
G(F, `) by identifying an `-form ϕ with the difference ϕ − 0×H.
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4.3 Proposition. G(F, `) is a group.

Proof: We have to show that, for arbitrary n ∈ N and α ∈ S(F ), the
difference 〈α〉 − n×H has an inverse in G(F, `). In fact, if m is the length
of the sequence α, then the inverse is given by 〈α∗〉+ (n−m)×H, because
〈α〉+ 〈α∗〉 = m×H by (3.8). ¤

4.4 Example. Let us assume that char(F ) 6= 2 and consider the case ` = 2.
By (3.1) and Witt’s Cancellation Theorem, 2-forms over F correspond bijec-
tively to isometry classes of regular quadratic forms over F . In particular,
Question (4.1) has a positive answer in this case and G(F, 2) is isomorphic

to the Witt-Grothendieck group Ŵ (F ).

We call G(F, `) the Grothendieck group of `-forms over F . Note that this
group is not abelian unless 2 ·K(`)

2 F = 0 (e.g. for ` = 2).

4.5 Lemma. For any a, b ∈ F×, we have 〈a, b〉 = 〈b−1, ab2〉 = 〈a2b, a−1〉.
Proof: This is immediate from (3.3). ¤

We next prove a universal property for the group G(F, `).

4.6 Lemma. Let (G, ◦) be a group and g : F× −→ G a map. Assume that
the following hold for any a, b, a′, b′ ∈ F×:

• if {a} = {b} in K
(`)
1 F , then g(a) = g(b) in G;

• if {ab} = {a′b′} in K
(`)
1 F and {a, b} = {a′, b′} in K

(`)
2 F , then

g(a) ◦ g(b) = g(a′) ◦ g(b′) in G.

Then there is a unique group homomorphism Γ : G(F, `) −→ G such that
Γ(〈a〉) = g(a) for every a ∈ F×.

Proof: We can define a homomorphism of monöıds S(F ) −→ G by the rule
[a1, . . . , an] 7−→ g(a1) ◦ . . . ◦ g(an). In view of the two conditions and since G
is a group, it is obvious that the image of a sequence α ∈ S(F ) under this
homomorphism depends on α only up to stable chain `-equivalence. This
yields a homomorphism M(F, `) −→ G which maps the `-form 〈a1, . . . , an〉
to g(a1)◦. . .◦g(an). Since the group G(F, `) is generated by M(F, `) and since
G is a group, it is clear that this map extends to a map Γ : G(F, `) −→ G
with the desired property. The uniqueness of Γ is obvious. ¤

4.7 Remark. The lemma shows that (G(F, `),+) is equal to the group
defined by generators and relations in the following way. G(F, `) is generated
by elements 〈a〉 with a ∈ F×, and the defining relations are:
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(V1) 〈a〉 = 〈b〉 if {a} = {b} in K
(`)
1 F ;

(V2) 〈a〉 + 〈b〉 = 〈a′〉 + 〈b′〉 if

{
{ab} = {a′b′} in K

(`)
1 F and

{a , b} = {a′ , b′} in K
(`)
2 F .

We will frequently use these rules without particular mention.

Let ϕ be an `-form over F , say ϕ = 〈a1, . . . , ar〉. We shall refer to r as the

rank of ϕ and denote it by rk(ϕ). We further put d1(ϕ) = {a1 · · ·ar} ∈ K(`)
1 F

and call this the determinant of ϕ. This yields two group homomorphisms

rk : G(F, `) −→ Z ,
d1 : G(F, `) −→ K

(`)
1 F .

The scrupulous reader may apply (4.6) to check that these homomorphisms
are actually well-defined. Note that the group G(F, `) is generated by the
`-forms of rank one.

For an `-form ϕ given by ϕ = 〈α〉 with α ∈ S(F ), we use the notations
ϕ∗ = 〈α∗〉, ϕz = 〈αz〉 for z ∈ Z, in particular ϕ−1 = 〈α−1〉, and further
c ∗ ϕ = 〈c ∗ α〉 for c ∈ F×. By (3.5), (3.6), and (3.7), these operations on
`-forms are well-defined.

4.8 Proposition. For any `-form ϕ over F , we have:

(a) ϕ+ ϕ∗ = rk(ϕ)×H ;

(b) (c ∗ ϕ)∗ =

{
c ∗ ϕ∗ if rk(ϕ) is even,

(c−1) ∗ ϕ∗ if rk(ϕ) is odd,
for any c ∈ F×.

Proof: Part (a) follows from (3.8), and (b) is easily checked. ¤
We may extend the conjugation operation to elements of G(F, `): for

a ∈ F×, ϕ ∈M(F, `), and m ∈ N, we put

c ∗ (ϕ−m×H) = c ∗ ϕ−m×H .

We denote the inverse of an element ξ ∈ G(F, `) by −ξ. (This should not
be confused with the element (−1) ∗ ξ.) If ξ, ζ ∈ G(F, `), then ξ− ζ is meant
to be ξ+ (−ζ). Furthermore, with ξ ∈ G(F, `) and n ∈ N, we write n× ξ for
the n-fold sum ξ + · · ·+ ξ.

4.9 Proposition. Let ϕ be an `-form over F with d1(ϕ)=0 or d1(ϕ)={−1}.
Then ϕ = ϕ−1. Moreover, if a1, . . . , an ∈ F× are such that ϕ = 〈a1, . . . , an〉,
then also ϕ = 〈an, a1, . . . , an−1〉.
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Proof: Let a1, . . . , an ∈ F× be such that ϕ = 〈a1, . . . , an〉. The hypothesis
on d1(ϕ) says that a1 · · ·an = ±c for some c ∈ F×`. Since `-forms remain
unchanged if one entry of a representing sequence is multiplied by an element
of F×`, we may assume that c = 1, whence a1 · · ·an = ±1. If n is odd, then
the claims now follow directly from (3.9). If n is even, then we apply (3.9)
to ϕ ⊥ 〈1〉 instead and use that 〈1〉 lies in the center of G(F, `). ¤

4.10 Corollary. The kernel of d1 : G(F, `) −→ K
(`)
1 F is contained in the

center of G(F, `).

Proof: Let ϕ and ψ be `-forms over F with d1(ϕ) = 0. Then ϕ+ψ = ψ+ϕε

with ε = ±1 by (3.11) and ϕε = ϕ by (4.9). Hence ϕ and ψ commute. ¤

4.11 Corollary. Let ϕ be an `-form of even rank and trivial determinant
over F . Then c2 ∗ ϕ = ϕ for any c ∈ F×.

Proof: Applying (4.9) to ϕ and to c ∗ ϕ yields

c ∗ ϕ = (c ∗ ϕ)−1 = c−1 ∗ ϕ−1 = c−1 ∗ ϕ ,

whence c2 ∗ ϕ = ϕ. ¤
For any `-form ϕ over F , we define its companion form ϕ◦ to be

ϕ◦ =

{
m×H + 〈c〉 if rk(ϕ) = 2m + 1,
m×H + 〈1, c〉 if rk(ϕ) = 2m + 2,

where c ∈ F× is chosen such that d1(ϕ) = d1(ϕ◦).

4.12 Proposition. Let ξ ∈ G(F, `). To have ξ = ϕ− ϕ◦ for some `-form ϕ
over F , it is necessary and sufficient that rk(ξ) = 0 and d1(ξ) = 0.

Proof: We write ξ = ϕ−m×H with ϕ ∈M(F, `) and m ∈ N. If rk(ξ) = 0
and d1(ξ) = 0, then rk(ϕ) = 2m and d1(ϕ) = d1(m×H) = {(−1)m}, so that
ϕ◦ = m × H and ξ = ϕ − ϕ◦. Conversely, for any `-form ϕ over F one has
rk(ϕ− ϕ◦) = 0 and d1(ϕ− ϕ◦) = d1(ϕ)− d1(ϕ◦) = 0. ¤

Given x ∈ R, let [x] denote the integral part of x, that is, the unique
integer such that [x] ≤ x < [x] + 1.

4.13 Proposition. Let ϕ be an `-form over F and let m =
[

1
2
(rk(ϕ)− 1)

]
.

There exist `-forms ϑ1, . . . , ϑm over F each of rank 4 and trivial determinant
such that

ϕ− ϕ◦ = (ϑ1 − 2×H) + · · ·+ (ϑm − 2×H) .
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Proof: We proceed by induction on m. If m = 0, then ϕ = ϕ◦ and thus the
statement holds trivially. Let now m > 0. We may write ϕ = ϕ′ + 〈x, y, z〉
for certain x, y, z ∈ F× and an `-form ϕ′. We put ϑ = 〈x, y, z, (xyz)−1〉 and
ψ = ϕ′ + 〈−xyz〉. Since d1(ϑ) = 0, we obtain ϕ + H = ϕ′ + ϑ + 〈−xyz〉 =
ψ + ϑ by (4.10). Since rk(ψ) = rk(ϕ) − 2 and d1(ϕ) = d1(ψ + H), we have
ϕ◦ = ψ◦ +H. Thus using (4.10) yields

ϕ− ϕ◦ = ψ − ψ◦ + ϑ− 2×H .

Now we apply the induction hypothesis to ψ. ¤

5 Pfister forms

For a ∈ F×, we put 〈〈a〉〉 = 〈1,−a〉 and call this a 1-fold Pfister form (of
degree `). Given n > 1 and a1, . . . , an ∈ F×, we define recursively

〈〈a1, . . . , an〉〉 = ϕ+ (a1 ∗ ϕ)∗ = ϕ+ a1 ∗ ϕ∗ where ϕ = 〈〈a2, . . . , an〉〉 ,

and we call 〈〈a1, . . . , an〉〉 an n-fold Pfister form. This is an `-form of rank 2n.
Note that, for a ∈ F×, we have 〈〈a〉〉 = 〈1〉+ (a ∗ 〈1〉)∗.
5.1 Lemma. For any a, b ∈ F×, we have 〈〈a, b〉〉 = 〈1,−a,−b, (ab)−1〉.
Proof: We compute 〈〈a, b〉〉 = 〈1,−b〉+ 〈a−1,−ab〉∗ = 〈1,−b, (ab)−1,−a〉 and
then use (4.9). ¤

Let a, b, c, d ∈ F×. In order to have that the `-forms 〈〈a, b〉〉 and 〈〈c, d〉〉
are equal, it is necessary to have {a, b} = {c, d} in K

(`)
2 F . This will become

obvious from (7.4), below. On the other hand, if one has {ab} = {cd} in

K
(`)
1 F and {a, b} = {c, d} in K

(`)
2 F , then it follows easily using (5.1) that

〈〈a, b〉〉 = 〈〈c, d〉〉.
5.2 Proposition. Assume that a, b, c ∈ F× are such that {a, b} = {b, c} in

K
(`)
2 F . Then 〈〈a, b〉〉 = 〈〈b, c〉〉.

Proof: Let a, b, c ∈ F× with {a, b} = {b, c}. By (4.9) and (4.5) we have
〈−a,−b, (ab)−1〉 = 〈−b, (ab)−1,−a〉 = 〈−b,−a−1, ab−1〉. With (5.1) we con-
clude that 〈〈a, b〉〉 = 〈〈b, a−1〉〉.

Using now that {a, b} = {b, c} = −{c, b} we obtain

{−a−1, b−1a} = {−a, b} = −{−c, b} = {−c, b−1} = {−c, (bc)−1} .

Therefore 〈−a−1, b−1a〉 = 〈−c, (bc)−1〉 and thus 〈〈b, a−1〉〉 = 〈〈b, c〉〉. ¤
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5.3 Corollary. If a, b ∈ F× are such that {a, b} = 0, then 〈〈a, b〉〉 = 2×H.

Proof: This is follows from (5.2), because {b, 1} = {1, 1} = 0. ¤

5.4 Question. Assume that a, b, c, d ∈ F× are such that {a, b} = {c, d} in
K

(`)
2 F . Does it follow that the `-forms 〈〈a, b〉〉 and 〈〈c, d〉〉 coincide?

In the case where ` = 2 6= char(F ), a positive answer to this question
is contained in [3, Theorem 1.8.]). We will see in (7.13) that the answer is
positive in several other cases, in particular for any odd `.

5.5 Problem. Let a, b, c, d ∈ F× be such that {a, b} = {c, d} in K
(`)
2 F .

It is not known whether in this situation one can always find a chain of
elements a1, . . . , an ∈ F× with a1 = a, a2 = b, an−1 = c, an = d and such that
{ai−1, ai} = {ai, ai+1} for 1 < i < n. For ` = 2 and char(F ) 6= 2 this is
possible and one can achieve this with n = 5 ([6, Chap. V, §4]). If ` = 3 and
if F contains a primitive 3rd root of unity (in particular char(F ) 6= 3), then
an analogous statement where n = 7 follows from [9, Corollary 2.2.].

6 Subgroups

We are going to define a sequence of subgroups (Gn(F, `))n∈N of G(F, `)
generalizing the powers of the fundamental ideal in the Witt-Grothendieck
ring of quadratic forms.

We put G0(F, `) = G(F, `). For n > 0, we define Gn(F, `) to be the group
generated by the differences ξ − c ∗ ξ where ξ ∈ Gn−1(F, `) and c ∈ F×.
Clearly Gn(F, `) is a subgroup of Gn−1(F, `).

6.1 Proposition. G1(F, `) is equal to the kernel of rk : G(F, `) −→ Z.

Proof: It is clear that every element ofG1(F, `) has trivial rank. On the other
hand, the kernel of rk is generated by the differences 〈a〉− 〈1〉 = 〈a〉−a ∗ 〈a〉
with a ∈ F×, and these belong to G1(F, `). ¤

6.2 Proposition. The groups Gn(F, `) with n ≥ 2 lie in the center of G(F, `).

Proof: For ξ ∈ G1(F, `) and c ∈ F×, we have rk(ξ) = 0, thus d1(c∗ξ) = d1(ξ)

and d1(ξ − c ∗ ξ) = 0. By (4.10) the kernel of d1 : G(F, `) −→ K
(`)
1 F is

contained in the center of G(F, `), so the statement follows. ¤

6.3 Lemma. For any a, b, c ∈ F×, one has

〈a, b, c, (abc)−1〉 = 〈〈−a,−b〉〉 + 〈〈−ab,−c〉〉 − 〈〈−1,−ab〉〉 .
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Proof: We compute

〈a, b, c, (abc)−1〉+ 〈〈−1,−ab〉〉 = 〈1, a, b, (ab)−1〉+ 〈1, ab, c, (abc)−1〉
= 〈〈−a,−b〉〉 + 〈〈−ab,−c〉〉

¤

6.4 Theorem. G2(F, `) is equal to the kernel of d1 : G1(F, `) −→ K
(`)
1 F .

Furthermore, G2(F, `) consists of all the differences ϕ−ϕ◦ with ϕ ∈M(F, `),
and it is generated by the differences 〈〈a, b〉〉 − 2×H with a, b ∈ F ×.

Proof: We denote by H the kernel of d1 : G1(F, `) −→ K
(`)
1 F . By (4.12), it

consists of the differences ϕ−ϕ◦ with ϕ ∈M(F, `). By (4.13), H is generated
by the differences ϑ−2×H where ϑ is an `-form over F of rank 4 and trivial
determinant. Note that any such form can be written as ϑ = 〈x, y, z, (xyz)−1〉
with x, y, z ∈ F×, and then

ϑ−2×H = (〈〈−x,−y〉〉−2×H)+(〈〈−xy,−z〉〉−2×H)−(〈〈−1,−xy〉〉−2×H) ,

by (6.3). Therefore H is already generated by the differences 〈〈a, b〉〉 − 2×H
with a, b ∈ F×. Since 〈〈a, b〉〉 − 2× H = 〈1,−b〉 − a ∗ 〈1,−b〉, it follows that
H is contained in G2(F, `). On the other hand, it is clear that G2(F, `) is

contained in H, the kernel of d1 : G1(F, `) −→ K
(`)
1 F . ¤

6.5 Corollary. For any n ≥ 1, the group Gn(F, `) is generated by the dif-
ferences π − 2n−1 ×H where π is an n-fold Pfister form.

Proof: For n = 1 this is easy to see and for n = 2 the statement is contained
in (6.4). We proceed by induction on n. Let n > 2. By definition, Gn(F, `)
is generated by the elements ξ − c ∗ ξ with ξ ∈ Gn−1(F, `) and c ∈ F×. We
want to show that ξ − c ∗ ξ is a sum of elements of the form π − 2n−1 × H
where π is an n-fold Pfister form. Applying the induction hypothesis to ξ
and using that Gn−1(F, `) is commutative by (6.2), we restrict to the case
where ξ = ρ− 2n−2 ×H for some (n−1)-fold Pfister form ρ. We obtain

ξ − c ∗ ξ = ρ− c ∗ ρ = ρ+ c ∗ ρ∗ − 2n−1 ×H ,

and since ρ+ c ∗ ρ∗ is an n-fold Pfister form, this finishes the proof. ¤

6.6 Question. Do we have
∞⋂
n=0

Gn(F, `) = 0?
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In the case where ` = 2 6= char(F ), the Arason-Pfister Hauptsatz gives a
positive answer to this question (cf. [6, Chap. X, §5]). There are other cases
where the answer is positive, in fact by rather simple reasons.

6.7 Theorem. Assume that ` is odd or that F× = F×2. Then G3(F, `) = 0.

Proof: By hypothesis, F×/F×` is 2-divisible. Therefore G3(F, `) is generated
by elements ξ − c2 ∗ ξ with c ∈ F× and ξ ∈ G2(F, `). Now, for ξ ∈ G2(F, `)
there is ϕ ∈ M(F, `) and m ∈ N such that d1(ϕ) = 0, rk(ϕ) = 2m, and
ξ = ϕ−m×H. Using (4.11), we obtain for any c ∈ F× that

ξ − c2 ∗ ξ = ϕ− c2 ∗ ϕ = 0 ,

and this finishes the proof. ¤

6.8 Proposition. The commutator subgroup of G(F, `) is generated by the
elements of the shape 〈〈a2, b〉〉 − 〈〈1, 1〉〉 with a, b ∈ F×.

Proof: Let ξ, ζ ∈ G(F, `). We want to compute the commutator of ξ and

ζ. We choose a, b ∈ F× such that d1(ξ) = {a} and d1(ζ) = {b} in K
(`)
1 F . It

follows that ξ ≡ 〈a〉 and ζ ≡ 〈b〉 modulo the center of G(F, `). This yields

ξ + ζ − ξ − ζ = 〈a〉+ 〈b〉 − 〈a〉 − 〈b〉 = 〈a, b,−a−1,−b−1〉 − 〈〈1, 1〉〉 .

Furthermore, we have

〈a, b,−a−1,−b−1〉 = 〈a,−a, a−2b,−b−1〉 = 〈1,−a2, a−2b,−b−1〉 = 〈〈a2, b〉〉.

Therefore ξ + ζ − ξ − ζ = 〈〈a2, b〉〉 − 〈〈1, 1〉〉, and the statement follows. ¤

6.9 Corollary. If ` is odd, then G2(F, `) is the commutator subgroup of
G(F, `).

Proof: If ` is odd, then the generators of G2(F, `) given by (6.5) can all be

written as 〈〈1, 1〉〉−〈〈a2, b〉〉 (for given c, b ∈ F×, one may set a = c
`+1

2 in order
to have 〈〈c, b〉〉 = 〈〈a2, b〉〉). ¤

6.10 Theorem. If −1 ∈ F×`, then `× ξ = 0 for any ξ ∈ G1(F, `).

Proof: Assuming that −1 ∈ F×`, we have 〈−x〉 = 〈x〉 for any x ∈ F×.
Let d ∈ F×. Induction on i shows that the equalities 〈di−1, d〉 = 〈di, 1〉

and i × (〈d〉 − 〈1〉) = 〈di〉 − 〈1〉 hold for any i ≥ 1. In particular, for
ξ = 〈d〉 − 〈1〉 we have that `× ξ = 0.
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Let a, b ∈ F× and i ≥ 1. Using (5.2) and (4.10), we compute

〈〈ai, b〉〉 + 〈〈a, b〉〉 = 〈〈b, (aib)−1〉〉+ 〈〈a, b〉〉
= 〈1, 1, b, a−ib−1, ai, a, b, (ab)−1〉
= 〈1, 1, b, a−ib−1, ai+1, 1, b, (ab)−1〉
= 〈b, a−ib−1, 1, ai+1, b, 1, 1, (ab)−1〉
= 〈b, a−ib−1, 1, ai+1, b, (ai+1b)−1, ai+1b, (ab)−1〉
= 〈b, a−ib−1〉+ 〈〈ai+1, b〉〉+ 〈ai+1b, (ab)−1〉
= 〈〈ai+1, b〉〉+ 〈b, a−ib−1, ai+1b, (ab)−1〉 .

Since {a−ib−1, ai+1b} = {a−ib−1, a} = {a, b} = {b−1, ab} in K
(`)
2 F , we have

further that 〈a−ib−1, ai+1b〉 = 〈b−1, ab〉. Therefore we obtain

〈〈ai, b〉〉+ 〈〈a, b〉〉 = 〈〈ai+1b〉〉 + 〈b, b−1, ab, (ab)−1〉 = 〈〈ai+1, b〉〉 + 〈〈1, 1〉〉.
By induction on i we deduce that

i × (〈〈a, b〉〉 − 〈〈1, 1〉〉) = 〈〈ai, b〉〉 − 〈〈1, 1〉〉.
Since 〈〈a`, b〉〉 = 〈〈1, 1〉〉, we have in particular for ξ = (〈〈a, b〉〉 − 〈〈1, 1〉〉) that
`× ξ = 0.

Since G2(F, `) is an abelian group, generated by elements (〈〈a, b〉〉−〈〈1, 1〉〉)
with a, b ∈ F×, the previous implies that `×ξ = 0 holds for any ξ ∈ G2(F, `).

Let now ξ ∈ G1(F, `) be arbitrary. With d ∈ F× such that d1(ξ) = {d} in

K
(`)
1 F and ζ = ξ − 〈d〉+ 〈1〉 we have ζ ∈ G2(F, `). By what we have shown,

` × ζ = 0 and ` × (〈d〉 − 〈1〉) = 0. Since ζ lies in the center of G(F, `), it
follows that `× ξ = `× (ζ + 〈d〉 − 〈1〉) = 0. ¤

Let R(`)F denote the subgroup of F× consisting of those x ∈ F× satisfying
{x, y} = 0 in K

(`)
2 F for any y ∈ F×. We call R(`)F the `-radical of F . Note

that F×` ⊂ R(`)F . Let R̄(`)F denote the corresponding subgroup of K
(`)
1 F ,

consisting of the symbols {r} with r ∈ R(`)F . In the case where char(F ) 6= 2,
the group R(2)F was introduced by Kaplansky in [5] and called ‘the radical
of F ’ and denoted by R(F ).

6.11 Proposition. If ` is odd, then the center of G(F, `) is equal to the

preimage of R̄(`)F under d1 : G(F, `) −→ K
(`)
1 F .

Proof: Let ξ ∈ G(F, `). Let d ∈ F× be such that d1(ξ) = {d}. Then ξ ≡ 〈d〉
modulo the center of G(F, `). Thus ξ is in the center of G(F, `) if and only
if the identity 〈d, e〉 = 〈e, d〉 holds for every e ∈ F×. But for any e ∈ F× we
have the equivalences

〈d, e〉 = 〈e, d〉 ⇐⇒ {d, e} = {e, d} ⇐⇒ 2 · {d, e} = 0 ⇐⇒ {d, e} = 0 .

Therefore ξ belongs to the center of G(F, `) if and only if d ∈ R(`)F . ¤
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7 Delzant classes

Stiefel-Whitney classes of quadratic forms were defined by Delzant in [2]
and later addapted by Milnor in [8] in such way that these maps take their
values in K-groups instead of Galois cohomology groups. Here they will be
generalised to what shall be named Delzant classes. They are disigned as a
tool to perform computations in Milnor K-theory.

We denote by U(F, `) the multiplicative group of the ring K̂
(`)
∗ F and by

U1(F, `) the subgroup consisting of the elements with constant term equal to

1 (in K
(`)
0 F = Z/`Z ). By (4.6), there is a unique group homomorphism

d : G(F, `) −→ U 1(F, `)

which maps 〈x〉 to 1 + {x}, for any x ∈ F×. We call d the Delzant homo-
morphism (modulo `).

For any n ∈ N let dn : G(F, `) −→ K
(`)
n F be the composition of d with

the projection from K̂
(`)
∗ F to the nth component K

(`)
n F . In other terms, for

ξ ∈ G(F, `) we write

d(ξ) =

∞∑

n=0

dn(ξ)

with dn(ξ) ∈ K(`)
n F (n ∈ N); we call dn(ξ) the n-th Delzant class of ξ. Note

that d0 : G(F, `) −→ K
(`)
0 F is the constant map 1 and d1 : G(F, `) −→ K

(`)
1 F

is the determinant homomorphism defined earlier.
The interest of these maps in the study of K-groups lies in the fact that

K
(`)
n F is generated by the image of dn : G(F, `) −→ K

(`)
n F . Indeed K

(`)
n F

(n ≥ 1) is generated by symbols and any symbol {a1, . . . , an} is equal to the
nth Delzant class of the `-form 〈a1, . . . , an〉.

7.1 Proposition. For any ϕ ∈M(F, `) and n > rk(ϕ), one has dn(ϕ) = 0.

Proof: Let ϕ be an `-form of rank r over F . With a1, . . . , ar ∈ F× such
that ϕ = 〈a1, . . . , ar〉, we see that d(ϕ) = (1 + {a1}) · · · (1 + {ar}) lies in⊕r

i=0 K
(`)
i F , whence dn(ϕ) = 0 for n > r. ¤

7.2 Proposition. For any ξ1, . . . , ξk ∈ G(F, `) one has

dn(ξ1 + · · ·+ ξk) =
∑

i1,...,ik≥0

i1+···+ik=n

(di1(ξ1) · · ·dik(ξk)) .

Proof: This is straightforward from the definitions of d and dn (n ≥ 1). ¤
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7.3 Lemma. Let a, b ∈ F×. Then d (〈〈1, 1〉〉−〈〈a, b〉〉) = 1− {a, b}.
Proof: One easily checks that d(〈〈a, b〉〉) = 1 + {a, b} + {−1,−1} and
d(〈〈1, 1〉〉) = 1 + {−1,−1} = (1 − {a, b}) · d(〈〈a, b〉〉). The statement now
follows because d : G(F, `) −→ U 1(F, `) is a group homomorphism. ¤

7.4 Proposition. The restricted map d2 : G2(F, `) −→ K
(`)
2 F is a surjective

homomorphism. For any a, b ∈ F×, it maps 〈〈a, b〉〉 − 〈〈1, 1〉〉 to {a, b}.
Proof: For any ξ, ζ ∈ G(F, `) we obtain from (7.2) that

d2(ξ + ζ) = d2(ξ) + d1(ξ)d1(ζ) + d2(ζ) .

The term d1(ξ)d1(ζ) is zero in case one of ξ and ζ belongs to G2(F, `). There-

fore d2 : G2(F, `) −→ K
(`)
2 F is a homomorphism. It follows from (7.3) that

d2 (〈〈a, b〉〉 − 〈〈1, 1〉〉) = {a, b} for any a, b ∈ F×. Using (6.5), the surjectivity
is now obvious. ¤

7.5 Corollary. One has G2(F, `) = 0 if and only if K
(`)
2 F = 0, and in this

case G(F, `) is commutative and G1(F, `) is isomorphic to F×/F×`.

Proof: If G2(F, `) = 0, then K
(`)
2 F = 0 by (7.4). Conversely, assume that

K
(`)
2 F vanishes. Then (5.3) and (6.4) together imply that G2(F, `) = 0. In

this case d1 : G1(F, `) −→ K
(`)
1 F is an isomorphism, whence G1(F, `) ∼=

K
(`)
1 F ∼= F×/F×`, and using (6.8) it follows that G(F, `) is commutative. ¤

The next aim is to show that G3(F, `) is equal to the kernel of the homo-

morphism d2 : G2(F, `) −→ K
(`)
2 F .

7.6 Lemma. Let a, b, c ∈ F×. Then

〈〈a, b, c〉〉 = 〈〈a, c〉〉+ 〈〈b, c〉〉 − 〈〈ab, c〉〉+ 2×H .
Proof: Since 〈〈a, b, c〉〉 = 〈〈b, c〉〉+ a ∗ 〈〈b, c〉〉∗, the statement follows from

a ∗ 〈〈b, c〉〉∗ = 〈−a−1bc, ac−1, (ab)−1,−a〉
(4.5)
= 〈a−1c,−(ab)c−1, (ab)−1,−a〉

(4.9)
= 〈−a, a−1c,−(ab)c−1, (ab)−1〉
= 〈−a, a−1c〉+ 〈−c−1, c〉+ 〈−(ab)c−1, (ab)−1〉 −H
= 〈1,−a, a−1c,−c−1〉+ 〈c,−(ab)c−1, (ab)−1,−1〉 − 2×H
= 〈〈c−1, a〉〉+ 〈〈c−1, ab〉〉∗ − 2×H
= 〈〈a, c〉〉 − 〈〈c−1, ab〉〉+ 2×H
= 〈〈a, c〉〉 − 〈〈ab, c〉〉 + 2×H .

¤
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7.7 Corollary. For any x, y, z ∈ F×, one has the following congruences
modulo G3(F, `):

〈〈xy, z〉〉+ 2×H ≡ 〈〈x, z〉〉+ 〈〈y, z〉〉 (1)

〈〈x, yz〉〉+ 2×H ≡ 〈〈x, y〉〉+ 〈〈x, z〉〉 (2)

Proof: The lemma immediately yields (1). To obtain (2), one uses that
〈〈x, yz〉〉 = 〈〈yz, x−1〉〉 by (5.2). ¤

7.8 Lemma. For any a, b, c ∈ F× and n ≥ 1 one has

dn (〈〈a, b, c〉〉 − 4×H) =

{
{−1}n−3 · {a, b, c} if 4 | n ,

0 otherwise.

Proof: For any n ≥ 1, let sn denote the term on the right hand side in the
claimed equality. It is easily checked that

(
1 +

∞∑
n=1

sn

)
· (1− {ab, c}+ {−1, a, b, c}) = 1− {ab, c} .

Using (7.6) and (7.3) we obtain that

d (〈〈a, b, c〉〉 − 4×H) = (1− {a, c})−1 · (1− {b, c})−1 · (1− {ab, c})
= (1− {ab, c}+ {−1, a, b, c})−1 · (1− {ab, c}) .

Therefore d (〈〈a, b, c〉〉 − 4×H) = (1 +
∞∑
n=1

sn). ¤

7.9 Theorem. G3(F, `) is the kernel of d2 : G2(F, `) −→ K
(`)
2 F .

Proof: By (7.4), the restriction of d2 to G2(F, `) is a homomorphism. It
follows from (6.5) and (7.8) that d2 is trivial on G3(F, `). Hence we obtain a

homomorphism d2 : G2(F, `)/G3(F, `) −→ K
(`)
2 F which maps the difference

〈〈a, b〉〉 − 〈〈1, 1〉〉 to the symbol {a, b}.
Now we consider the pairing F××F× −→ G2(F, `)/G3(F, `) which asso-

ciates to a pair (a, b) the class of 〈〈a, b〉〉−〈〈1, 1〉〉. Since 〈〈a, b〉〉 = 〈〈1, 1〉〉 when-

ever {a, b} = 0, this induces a homomorphism K
(`)
2 F −→ G2(F, `)/G3(F, `)

which is inverse to d2. Thus d2 is an isomorphism. ¤

7.10 Remark. From (7.9) we readily obtain an exact sequence

0 −→ K
(`)
2 F

(d2)−1

−→ G1(F, `)/G3(F, `)
d1−→ K

(`)
1 F −→ 0 .

This turns out to be the group extension constructed from the 2-cocycle
K

(`)
1 F ×K(`)

1 F −→ K
(`)
2 F given by the multiplication in K

(`)
∗ F .
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7.11 Corollary. If −1 ∈ F×`, then the kernel of d : G1(F, `) −→ U1(F, `)
is equal to G3(F, `).

Proof: The kernel of d : G1(F, `) −→ U1(F, `) is contained in the kernel

of d2 : G2(F, `) −→ K
(`)
2 F , whence in G3(F, `), by (7.9). Assume now that

−1 ∈ F×`, i.e. {−1} = 0 in K
(`)
1 F . Since {−1} = 0 in K

(`)
1 F , (7.8) yields

that d(π− 4×H) = 1 for any 3-fold Pfister form π over F . Using (6.5), this
implies that d is trivial on G3(F, `). ¤

7.12 Corollary. The homomorphism d : G1(F, `) −→ U1(F, `) is injective
in each of the following cases:

• ` is odd ;

• F× = F×2 and ` > 0 ;

• char(F ) = 2 and F is perfect.

Proof: In any of these cases we have −1 ∈ F×`, so that the previous corollary
applies. Hence the kernel of d : G1(F, `) −→ U1(F, `) is equal to G3(F, `).
The statement then follows, because G3(F, `) = 0 by (6.7). ¤

7.13 Remark. If d : G1(F, `) −→ U1(F, `) is injective, then we have imme-
diately a positive answer to (5.4).

7.14 Proposition. The homomorphism d : G1(F, `) −→ U1(F, `) is surjec-

tive if and only if K
(`)
3 F = 0.

Proof: Given a symbol σ in K
(`)
3 F , it is easy to see that 1+σ lies in the image

of d if and only if σ = 0. This shows that the condition in the statement is
necessary.

Assume now that K
(`)
3 F = 0. The elements of U 1(F, `) then are of the

shape 1 + α+ β with α ∈ K(`)
1 F and β ∈ K(`)

2 F . Let such α and β be given.
There is an element ξ ∈ G2(F, `) such that β = d2(ξ). Let d ∈ F× be such

that α = {d} in K
(`)
1 F . For ζ = ξ + 〈d〉 − 〈1〉 ∈ G1(F, `), we obtain

d(ζ) = d(ξ) · d(〈d〉 − 〈1〉) = (1 + β) · (1 + α) = 1 + α + β ,

since β · α ∈ K(`)
3 F = 0. Therefore the condition is sufficient. ¤

7.15 Conjecture. If K
(`)
3 F = 0, then d : G1(F, `) −→ U1(F, `) is an iso-

morphism.
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We finish this section by a result on interdependencies among the different
Delzant classes of a form. It generalises [8, Remark 3.4].

7.16 Theorem. Let n be a positive integer. Let n1 > . . . > nk be the
decreasing sequence of 2-powers such that n = n1 + · · ·+ nk. Then for any
`-form ϕ over F one has the equality

dn(ϕ) = dn1(ϕ) · · · dnk(ϕ) .

Proof: We put d∗n(ϕ) = dn1(ϕ) · · ·dnk(ϕ) and want to prove that d∗n(ϕ) =
dn(ϕ). If rk(ϕ) = 1 this is trivial. We proceed by induction on rk(ϕ).

Assume now that rk(ϕ) > 1 and write ϕ = ψ + 〈x〉. For any m ≥ 1, we
have by the induction hypothesis

d∗m(ψ) = dm(ψ) ,

and we know further from (7.1) and (7.2) that

dm(ϕ) = dm(ψ) + dm−1(ψ) · {x} .
We compute

dn(ϕ) = dn(ψ) + dn−1(ψ) · {x}
= d∗n(ψ) + d∗n−1(ψ) · {x}
= d∗n−nk(ψ) ·

(
dnk(ψ) + d∗nk−1(ψ) · {x}

)

= d∗n−nk(ψ) · (dnk(ψ) + dnk−1(ψ) · {x})
= d∗n−nk(ψ) · dnk(ϕ)

= dn1(ψ) · · ·dnk−1
(ψ) · dnk(ϕ) .

To finish the proof, we shall show for 1 ≤ i < k that

dni(ψ) · dnk(ϕ) = dni(ϕ) · dnk(ϕ) .

Since ni is a 2-power greater than nk, the element ξ = d∗ni−1(ψ) · {x} in K
(`)
∗ F

is a multiple of dnk−1(ψ) · {x} as well as of dnk(ψ). Using that ζ2 = {−1}m ·ζ
holds for any ζ ∈ K(`)

m F and m ≥ 0, it follows that

d∗nk−1(ψ) · {x} · ξ = {−1}nk · ξ = dnk(ψ) · ξ .
Since d∗nk−1(ψ) = dnk−1(ψ), we obtain that

dnk(ϕ) · ξ = (dnk(ψ) + dnk−1(ψ) · {x}) · ξ = 0 .

Since further ξ = dni−1(ψ) · {x}, we conclude that

dni(ϕ) · dnk(ϕ) = (dni(ψ) + dni−1(ψ) · {x}) · dnk(ϕ) = dni(ψ) · dnk(ϕ) ,

which is what we claimed above. ¤
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8 Vanishing of higher K-groups

To illustrate how virtual forms and Delzant classes can be used to do com-
putations in Milnor K-theory, we give an alternative proof of a result due
to B. Kahn which, under the hypothesis that −1 ∈ F×`, relates the ‘symbol
length’ of K

(`)
2 F to the vanishing on higher K-groups modulo `.

8.1 Proposition. Let ξ ∈ K(`)
2 F and m ∈ N. The following are equivalent:

(i) ξ is a sum of m symbols in K
(`)
2 F .

(ii) There exists an `-form ϕ of rank 2m+2 over F such that ξ = d2(ϕ−ϕ◦).

(iii) There exists an `-form ϕ of rank 2m+1 and of determinant {(−1)m+1}
over F such that ξ = d2(ϕ− ϕ◦).

Proof: The implication (iii⇒ ii) is obvious.
(ii⇒ i) Assume that ξ = d2(ϕ−ϕ◦), where ϕ is an `-form of rank 2m+2

over F . By (4.13), there exist `-forms ϑ1, . . . , ϑm over F , each of rank 4 and
of trivial determinant, such that ϕ−ϕ◦ = (ϑ1−〈〈1, 1〉〉)+ · · · +(ϑm−〈〈1, 1〉〉).
For i = 1, . . . , m we put ξi = d2(ϑi − 〈〈1, 1〉〉) and obtain ξ = ξ1 + · · · + ξm.
Now, if ϑ = 〈x, y, z, (xyz)−1〉, then d2(ϑ− 〈〈1, 1〉〉) = {−xy,−yz}. Therefore

ξ1, . . . , ξm are symbols in K
(`)
2 F , so ξ is a sum of m symbols.

(i ⇒ iii) Assume that ξ is a sum of m symbols in K
(`)
2 F . We show

by induction on m that there exists an `-form ϕ of rank 2m + 1 and of
determinant d1(ϕ) = {(−1)m+1} such that ξ = d2(ϕ− ϕ◦). If m = 0, this is
trivial. We assume now that m > 0 and write ξ = ζ+{a, b}, where a, b ∈ F ×
and ζ is a sum of m − 1 symbols in K

(`)
2 F . By induction hypothesis, there

exists an `-form ψ of rank 2m − 1 and of determinant {(−1)m} such that
ζ = d2(ψ − ψ◦). We write ψ = ψ′ + 〈c〉. Now we consider the `-form
ϕ = ψ′+ 〈x, y, z〉, where x, y, z ∈ F× shall be fixed later. Clearly, ϕ has rank
2m + 1. In order to have d1(ϕ) = {(−1)m+1}, we need to have xyz = −c.
We compute

ϕ− ϕ◦ = ψ′ + 〈x, y, z〉 − ψ◦ −H
= ψ′ + 〈x, y, z〉+ 〈(xyz)−1,−xyz〉 − ψ◦ − 2×H
= (ψ′ + 〈c〉 − ψ◦) + (〈x, y, z, (xyz)−1〉 − 〈〈1, 1〉〉
= (ψ − ψ◦) + (〈x, y, z, (xyz)−1〉 − 〈〈1, 1〉〉)

and obtain then

d2 (ϕ− ϕ◦) = d2 (ψ − ψ◦)+d2

(
〈x, y, z, (xyz)−1〉 − 〈〈1, 1〉〉

)
= ζ+{−xy,−yz} .
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Hence, d2(ϕ − ϕ◦) = ξ holds as soon as we have {−xy,−yz} = {a, b}.
Together with the condition that xyz = −c, this can be achieved by putting
x = −b−1c, y = abc−1 and z = a−1c. ¤

8.2 Theorem (Kahn). Let m ∈ N and assume that −1 ∈ F×`. If every

element of K
(`)
2 F is equal to a sum of m symbols, then K

(`)
n F = 0 for any

n ≥ 2m + 2.

Proof: It obviously suffices to prove the claim for n = 2m+2. By hypothesis,
we have {−1} = 0 in K

(`)
1 F . As a consequence, for any `-form ϕ of trivial

determinant over F we have the equality d(ϕ−ϕ◦) = d(ϕ). We shall use this
observation below.

Suppose on the contrary that K
(`)
n F 6= 0. Hence there exist a1, . . . , an ∈

F× such that {a1, . . . , an} 6= 0 in K
(`)
n F . We set a = (a1 · · ·an)−1 and

ϕ = 〈a1, . . . , an, a〉. Using that n is even, an easy computation yields that
dn(ϕ) = {a1, . . . , an}.

Suppose now, that the element d2(ϕ) ∈ K(`)
2 F can be written as a sum

of m symbols. By (8.1), there exists an `-form ψ over F of rank 2m + 1
and of trivial determinant such that d2(ϕ) = d2(ψ). It follows that ϕ − ϕ◦
and ψ − ψ◦ represent the same class in G2(F, `)/G3(F, `). With (7.11) we
conclude that d(ϕ) = d(ψ). In particular, we have

dn(ψ) = dn(ϕ) = {a1, . . . , an} 6= 0 .

However, since n = 2m+ 1 = 2 this is in contradiction to (7.1). ¤

8.3 Remark. The original statement in [4, Section 3] is in slightly different
terms. The proof given there uses divided power operations instead of virtual
forms and Delzant classes.

Under the assumption that −1 ∈ F×`, it follows from [4, Appendix A]

that the commutative ring K
(`)
∗∗ F =

⊕∞
i=0 K

(`)
2i F is endowed with a system of

divided powers. That is, there is a unique collection of maps

[i] : K
(`)
2mF −→ K

(`)
2imF , x 7−→ x[i],

for i,m ≥ 0, with the following properties:

(1) s[0] = 1 and s[1] = s,

(2) (st)[i] = sit[i],

(3) s[i]t[j] =
(
i+j
j

)
(st)[i+j],
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(4) (s+ t)[k] =
∑
i+j=k

s[i]t[j],

(5) (s[i])[j] = (ij)!
i!j!i

s[ij],

(6) s[i] = 0 if s is a symbol and i ≥ 2.

It is not just by chance that both strategies apply to prove Kahn’s theo-
rem. In fact, using the above rules for divided powers, one can easily prove
the following link between divided powers and the Delzant classes of virtual
forms: assuming that −1 ∈ F×`, one has for any `-form ϕ over F and for
any i ≥ 1 the identities

d2i(ϕ) = (d2(ϕ))[i] and d2i+1(ϕ) = d1(ϕ) · d2i(ϕ).

9 Isotropy and representation

We generalise the concept of isotropy from quadratic forms to virtual forms.

Let ϕ be an `-form over F . We say that ϕ is isotropic, if ϕ = ψ +H for
some `-form ψ over F , otherwise we say that ϕ is anisotropic. Furthermore,
we say that ϕ is hyperbolic, if ϕ = m×H for some m ≥ 1.

Let F ′/F be a field extension. Given an `-form ϕ = 〈a1, . . . , am〉 over F
we denote by ϕF ′ the corresponding `-form 〈a1, . . . , am〉 over F ′. Obviously
passing from ϕ to ϕE defines a homomorphism G(F, `) −→ G(F ′, `).

One may ask whether some well-known theorems about the isotropy be-
havior of quadratic forms under field extensions can be generalised in some
way to virtual forms.

9.1 Question. Let F ′/F be a finite field extension of degree prime to `. Does
any anisotropic `-form over F remain anisotropic after extension to F ′?

9.2 Question. Let ` be a prime and assume that F contains an `th root of
unity. Let F ′ = F (

√̀
d) for some d ∈ F \ F×` and ϕ ∈ M(F, `). Is it true

that ϕF ′ is isotropic if and only ϕ contains a subform β with rk(β) = 2 and
d1(β) = {(−d)i} with 0 ≤ i < `?

In the case where ` = 2 6= char(F ), both questions above have a positive
answer, by Springer’s Theorem (cf. [6, Chap. VII, §2]) and by [6, Chap. VII,
§3].

Let a ∈ F× and let ϕ be an `-form over F . If ϕ can be written as 〈a〉+ψ
(resp. as ψ+〈a〉) for some `-form ψ, then we say that ϕ left-represents (resp.
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right-represents) a; it is easy to see that this is equivalent to saying that the
form 〈−a−1〉 ⊥ ϕ (resp. ϕ ⊥ 〈−a−1〉) is isotropic. Note that an isotropic
form (left- and right-)represents any element of F×.

9.3 Proposition. Let ϕ be an `-form over F and a ∈ F×.

(a) If ϕ has even rank, then ϕ left-represents a if and only if it right-
represents a−1.

(b) If ϕ has odd rank, then ϕ left-represents a if and only if it right-
represents a.

(c) If d1(ϕ) = 0 or d1(ϕ) = {−1}, then ϕ left-represents a if and only if it
right-represents a.

Proof: Parts (a) and (b) follow from (3.3) and (c) is clear from (4.9). ¤
In view of the proposition, if ϕ has odd rank or trivial determinant, one

may say that ϕ represents some element a ∈ F× if it left-represents a.
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