FINITENESS OF R-EQUIVALENCE GROUPS OF SOME
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ABSTRACT. Let F be a field of charateristic different from 2. We construct
families of adjoint groups G of type 2D3 defined over F' (but not over k) such
that G(F')/R is finite for various fields F which are finitely generated over
their prime subfield. We also construct families of examples of such groups
G for which G(F)/R ~ Z /2Z when F = k(t), and k is (almost) arbitrary.
This gives the first examples of adjoint groups G which are not quasi-split nor
defined over a global field, such that G(F)/R is a non-trivial finite group.

INTRODUCTION

For an algebraic group G defined over a field F', let G(F)/R be the group of R-
equivalence classes introduced by Manin in [10]. The algebraic group G is called
R-trivial if G(L)/R = 1 for every field extension L/F. It was established by Colliot-
Thélene and Sansuc in [4] (see also [11, Proposition 1]) that the group G is R-trivial
if the variety of G is stably rational. Moreover, in [4], the following question was
raised:

Question: Let F be a field which is finitely generated over its prime subfield,
and let G be a connected linear algebraic group defined over F'. Assume that F' is
perfect or G is reductive. Is G(F)/R finite ?

The question was answered positively by Colliot-Thélene and Sansuc if G is quasi-
split (cf. Proposition 14, loc.cit) and by Gille for any reductive group G defined over
a global field in [5]. Lemma II.1.1 ¢) of [5] immediately implies that this question
has a positive answer if F' is a rational extension of a global field k and G is defined
over k. Various examples of classical adjoint groups which are not R-trivial were
constructed in [1] or [6],[11]. Throughout this paper, we will assume that F is a
field of characteristic different from 2 and we will focus on absolutely simple adjoint
groups of type 2Ds. If F/k is a finitely generated field extension, we construct an
infinite family of adjoint groups G of type 2D3 defined over F such that G(F)/R
is finite as soon as H? .(F/k, uz) is finite. If F = k(t), where k is an arbitrary field,
we will also give a family of examples of such groups for which G(F)/R ~Z /2 7.
This gives the first examples of adjoint groups G such that G(F')/R which are not
quasi-split nor defined over a global field, such that G(F)/R is a non-trivial finite

group.
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1. UNRAMIFIED COHOMOLOGY

Let X be a smooth proper irreducible variety defined over k. We denote by X
the set of points of codimension 1 in X. The ring Ox , is then a discrete valuation
ring. We will denote by v, the corresponding discrete valuation and by 7, a local
parameter. We have a residue map

0y + H"(k(X), p2) — H" ™ (k(2), p12),

where £(z) denotes the residue field Ox /(7). If u € Ox ., we will denote by @
its image in x(z).

The residue of a cohomology class a € H™(k(X), u2) can be computed as follows:
denote by k(X), the completion of k(X) with respect to the valuation on Ox ,.
Then 7, is also a local parameter for the unique discrete valuation on k(X), ex-
tending v,, and we have an injection H"(k(x), u2) — H™(k(X)qz, p2). Then we
have a decomposition

Resy(x), /k(x) (@) = ao + (1) Uy,

for some uniquely determined o; € H" %(k(x),u2). We then have the equality
Jy(a) = oy In particular, for every ay,--- ,an—1,b1, -+ ,bn—1 € O% ., we have

O ((m2) U (a1) -+ U (an-1)) = (@) - U (@n-1)
Oz ((b1) -+~ U (bn)) = 0

We say that o € H"(k(X), u2) is unramified at x if 0;(a)) = 0. In this case, the
class «aq is called the specialization of a at x, and is denoted by s,(«). It does
not depend on the choice of m,. If 9,(a) # 0, we say that « is ramified at x,
and that x is a pole of a. It is well-known that the set of poles of « is finite.
The unramified cohomology group H?.(k(X), puz2) is the subgroup of H™(k(X), 2)
consisting of classes which are unramified at every z € X, It is a birational
invariant of X. In particular, if X is a rational variety, then the restriction map
induces an isomorphism H"(k, po) ~ H (k(X), p2). Therefore if F/k is a finitely
generated extension, we can define the group of unramified elements H” (F/k, o)
by
Hy (B[R, p2) = Hyy, (K(X), p2),

where X is any irreducible smooth proper model of F/k. We refer to [2] for more
details.

Notice that for any finitely generated field extension F/k, the elements lying in
the image of Resp), : H"(k,p2) — H"(F,u2) are unramified. Such elements
are called constant. Notice also that if « € H™(F, ug) is constant, then we have
sz(@r) = Resy()/x(a) for all z € XD,

2. R-EQUIVALENCE GROUPS OF ADJOINT GROUPS OF TYPE 2Ds

2.1. A result of Merkurjev. In this section, we recall Merkurjev’s computation
of the group of R-equivalence classes of some absolutely simple adjoint classical
groups of type 2D (cf. [11]). Let (A, o) be a F-central simple algebra of degree 6
with an orthogonal involution, so we can write A = M3(Q), where @ is a quaternion
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F-algebra, and let PGO™ (A, o) be the connected component of PGO(A, o), the
group-scheme of projective similitudes of (A, o).

Assume that A is not split, disc(c) € F*/F*? is not trivial, and that the Clifford
algebra C(A, o) has index 2. If L = F(y/disc(o)) then Ay (or equivalently Qp)
is split. Hence we can write @ ~ (disc(0),a), for some o € F*. Let 1,4,7,4j be
the corresponding standard basis for @, and let v be the canonical (symplectic)
involution on Q. The involution o is adjoint to a skew-hermitian form (V,h) over
(Q,7), where V is a right @Q-vector space of dimension 3.

The skew-hermitian form h represents xi for some x € F*, so we can write h =
K L (xi) for some skew-hermitian form (V' h') over (Q,~) of trivial discriminant,
where V is a right Q-vector space of dimension 2.

Set (A',0") := (Endg(V’),0n/). Then C(A’,0’) = Q1 x Q2, for some quaternion
F-algebras Q1 and Q2 satisfying Q1 ® Q2 = Q in Br(F'). Moreover, (Q1)r, ~ (Q2)L
and C(A,0) = (Q;)r in Br(L) (so (Q;)r is not split for i =1, 2).

Proposition 1. Under the previous notation, we have the following group isomor-
phism:

PGO™(A,0)(F)/R = Nyp(L*) N\Nrd(Qy) - Ned(Q3 ) /Np/r(L*) N Nrd(Q)
For a proof of all these facts, see [11, Section 3]. Notice that in [11], Merkurjev

described more generally the group G(F')/R, when G is an absolutely simple adjoint
classical group defined over F.

2.2. Finiteness of some R-equivalence groups.

2.2.1. Some useful lemmas. We will assume that (A, o) is as in the previous section.
We start to investigate the finiteness of PGO™ (4, 0)(F)/R. Keeping the notation
above, we will identify this group to

Np/p(L*) NNrd(Q7) - Nrd(Q3) /Ny r(L™) NNrd(Q])
If X € Np/p(L*) N Nrd(Q7) - Nrd(Q5), we will denote by [A] its class modulo
Ny p(L*) NNrd(Q, ). We start with an easy lemma:
Lemma 2. Let F' be any field of characteristic different from 2. Then the map
¢ : PGOT(A,0)(F)/R — H*(F, j12), [\ = (A) U[Q1]
is a well-defined injective group homomorphism.
Proof. Since (Nrdg, (Q7)) U [Q1] = 0, this map is a well-defined group homomor-

phism . If A € Np,/p(L*) N Nrdg, (Q7) - Nrdg, (Q5) satisfies (A\) U [Q1] = 0, then
A € Nrdg, (Q) by a well-known theorem of Merkurjev [12], so [A\] = 1. O

Remark 3. In view of this lemma, we just have to investigate the finiteness of the
image of .

We now assume until the end that X is a smooth irreducible proper model of F
defined over k.
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Lemma 4. Assume that Q1 and Qz have no common pole, and let x € XV . Then

0 if © is not a pole of [Q1] or [Q2]
Ox(N)U[Qi]) = 0 or sa[Q2] if 2 is a pole of [Q1]
0 or s,[Q1] if x is a pole of [Qa]

Proof. Notice that since A = N ,p(2) for some z € L* and that (Q1)r ~ (Q2)z,
we get

(A U[@1] = Corpp((2) U[@1]1) = Corp/r((2) U[Q2]r) = (A) U[Q2].

Let € XM, and assume first that [Q] and [Q2] are both unramified at 2. If (/\)
is unramified at z, then (A)U[Q1] is also unramified at z, that is 9, (A\) U[Q1]) =
If (N) is ramified at z, then write A = A\ A2, A; € Nrdg, (Q ). Then (A1) o ()\2)
ramified at z, since 9;((\)) = 0z((M)) + 9z((A2)) and 95 ((N;)) € Z/2Z. If (Ag) is
unramified at x, then 9, ((\)U[Q1]) = 0:((A2)U[Q1]) = 0. Now assume that (A2) is
ramified at z, so (A1) is unramified at z. Since [Q2] is unramified at x as well, then
9z () U[@n]) = 82((A) U [Qa]) = 92((M) U [Q2]) = 0. Hence 5((A) U[Qu]) = 0 if
x is not a pole of [Q1] or [Q2].

Now assume that z is a pole of [@1], so [Q2] is unramified at z by assumption. If
(A) is unramified at z then 6 (M U[@Q1]) = 0:((M) U[Q2]) = 0. If (N) is ramified
U

at z, then 9, ((A\) U [Q1]) = 0:((N) U [Q2]) = 5:([Q2]). If z is a pole of [Q2], then
similar computations show that 9, ((A) U[Q1]) =0 or s, ([Q1])-

O

2.2.2. The case where H> (F/k, u2) is finite.

Proposition 5. Assume that [Q1] and [Q2] have no common pole. If H3 (F/k, ji2)
is finite, then PGO™ (A, 0)(F)/R is finite.

Proof. By assumption, the kernel of the map
(On)zexm :Im(p) — [ H(x
zeX ™)

is finite. By the previous lemma, its image is finite as well, so we are done by
Remark 3.

O
Examples 6. The group H3, (F/k, u2) is finite in the following cases (and therefore
the previous proposition may be applied):
1) H3(k, p2) is finite and X is a smooth conic over k
2) k is a finite field and X is a smooth proper variety of dimension 2 over k

3) k is either a local field (i.e. a finite extension of Q,), R or C and X is a proper
smooth geometrically irreducible curve over k

4) k is a number field and X is a smooth proper geometrically irreducible curve
over k.
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Case 1) readily follows from Proposition 3 and Proposition A.1 of [7]. Case 2)
follows from Theorem 0.8 of [8]. Now let us consider Case 3): if k is a local field,
it follows from Corollary 2.9. of [8]. If k = R, it follows from a result of Colliot-
Théléne and Parimala (see [3]). Finally, if K = C, then k(X) has cohomological
dimension at most 1 and therefore H?(k(X), u2) = 0. In case 4), it readily follows
from Theorem 0.8 of [8] that we have an injective homomorphism

ng(k(X)7/1’2) — H HSr(kU(X)7M2)7
veP(k)

where P (k) denotes the set of all places of k. By Corollary 2.9 of [8], H3,.(ky(X), p2)
is zero if X has good reduction with respect to v. Since X has good reduction with
respect to all but finitely many places, it follows from Case 3) that H3,.(k(X), p2) =
H3,.(F/k,u2) is finite.

The reader may find more finiteness results for H2 (F/k, u2) in [2].

2.2.3. The case where H3 (F/k,pa) ~ H3(k,u2). We give here another family of
examples. Keeping notation of the previous sections, we will assume that @; and
@2 have no common poles. We then set

S1 = {z € X|z is a pole of Q3 such that s;([Q1]) # 0}
Sy = {z € X|z is a pole of Q1 such that s,([Q2]) # 0}

Proposition 7. Assume that [Q1] and [Q2] have no common pole, and let n; be
the number of elements of S;. Assume that H3 (F/k,pa) ~ H3(k,p2) (e.g. F/k is
rational) and that there exists xo € XV satisfying the following conditions:

1) One of the class [Q;] is unramified at xo and the corresponding specialization is
zero

2) The restriction map Res,(z0)/k : H*(k, p2) — H?(k(x0), p2) is injective.
Then PGO™ (A, 0)(F)/R is finite, and its cardinality is at most 2772,

Proof. Without any loss of generality, we may assume for example that [@Qq] is
unramified at 2o € X and that s,,([Q1]) = 0. Assume that (\) U [Q1] € Im(p)
lies in the kernel of the map

(8I)m€X(1) : Im(p) — H H2(li(x),u2)
reX @)

By assumption (A\) U [@1] is constant, so we have

52((A) U [Q1]) = Res 2y ((N) U[@1]) for all 2 € X

Since 9z, ([Q1]) = $4,([@1]) = 0, we have Resy(x), /rx)((A) U [@1]) = 0, and
therefore s, ((A) U [Q1]) = Res.(zq),x((A) U [Q1]) = 0. Since the restriction map
ReSy(z0)/k : H? (K, p2) — H?(k(x0), p2) is injective, we get (A\)U[Q1] = 0. Therefore
[\] =1€ PGOT(4,0)(F)/R by Lemma 2. It follows that we have an injection

PGO* (4, 0)(F)/R— [] H(s(x) )
reX @)

The use of Lemma 4 leads to the conclusion. O
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Let us now consider the case where F' = k(t), where ¢ is an indeterminate over k,
so one may take X = Aj. A point = of A} of codimension 1 then corresponds to
a unique monic irreducible polynomial 7 k[t] and k(z) ~ k[t]/(7). In this case,
we will say that a cohomology class is (un)ramified at 7, and 9, and s, will be
respectively denoted by O, and s,. If m has odd degree, a classical restriction-
corestriction argument show that the restriction map H?3(k, pu2) — H3(k[t]/(7), p2)
is injective. Hence, from the previous proposition, we obtain:

Corollary 8. Let F' = k(t) and assume that [Q1] and [Q2] have no common pole.
Let n; be the number of elements of S;. Assume that there exists a monic irreducible
polynomial m € k[t] of odd degree such that one of the class [Q;] is unramified at
7 and the corresponding specialization is zero. Then PGO™ (A, 0)(F)/R is finite,
and its cardinality is at most 2™ T2,

Using this corollary, it is easy to construct an infinite family of non quasi-split
adjoint groups G of type 2Dj3 defined over k(t) (but not over k) such that G(k(t))/R
is finite for an (almost) arbitrary field k.

Example 9. Let k be a field of characteristic different from 2 and let F = k(t).
Let a,a € k™ and let m € k[t] be a monic irreducible polynomial satisfying the
following conditions:

1) (1) U(a)U(a) =0

2) The quaternion k-algebra (a, «) is not split over k() (In particular (a, «) is not
split over k, and therefore is not split over F, and o ¢ k*?).

3) There exists b € k such that 7(b) is a non-zero norm in k(y/«).

Let Q1 = (a,a) @ F, Q2 = (7,),Q = (am,a) and L = F(y/ar). Let 1,i,7,ij be
the standard basis of () and ~ its canonical involution. Notice that @ is a division
algebra, since 0r([Q]) = Res,(x)/x(a) # 0 (otherwise (a,a) would be split over
w())-

Let o be the involution on A = M3(Q) adjoint to the skew-hermitian form (j, —aj, i)
over (@,7). The skew-hermitian form b’ := (j, —aj) has trivial discriminant and
the corresponding adjoint involution ¢’ on A’ := M3(Q) can be written

o'~ 0 _ay ®p,

where p is the orthogonal involution on @ defined by

p(1) =1,p(i) =i and p(j) = —j
It is then easy to check that C(A’,0’) = Q1 X @2, using the formulas describing

Clifford algebras of tensor products of involutions (see[9], p.150 for example or [13]),
and the fact that disc(p) = a € F*/F*2,

Claim: PGO™"(A,0)(F)/R ~7/27 .

Indeed, [@1] has no pole and [@2] has exactly one pole. Notice also that 7 is not
a scalar multiple of ¢t — b, since 7(b) # 0 by assumption. Hence [Q2] is unramified
at t —b. Moreover we have s;_([Q2]) = (w(b)) U (o) = 0 by assumption. By
Corollary 8, we then get that |[PGO™(A,0)(F)/R| < 2. Now it is enough to
find a non trivial-class in PGO™ (A, 0)(F)/R. First of all, we clearly have —ar €
Np/p(L*). Moreover, since (—1) U (a) U (a) = 0, we have —1 € Nrdg, (Q7), so
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a=(—1)-(—a) € Nrd(Q7). Since —m € Nrdg,(Q5), we get —am = a - (—7) €
Np/p(L*) N Nrd(Q7) - Nrd(Q3 ). It remains to show that the R-equivalence class
of —ar is not trivial. For, it suffices to prove that ¢([—awn]) # 0; this is the case

since Ox((—am) U [Q1])) = (a, @) w(x) # 0.

Remark 10. The group PGO™ (A, o) obtained is not quasi-split since @Q is a divi-
sion algebra. Moreover, it is not defined over k. Otherwise [Q] would be unramified
at 7, which is not the case as we have seen above. To obtain concrete examples, one
may take for k£ any field such that —1 € £*2 such there exists a non split quaternion
algebra (a, «) over k, and for 7w any arbitrary monic irreducible polynomial of odd
degree satisfying 7 (0) = 1.
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