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Introduction

In his book “Cohomologie galoisienne,” Serre formulates the following conjecture:

Conjecture II: ([22, §3.1]) For every simply connected semisimple linear algebraic
group G defined over a perfect field F of cohomological dimension at most 2, the
Galois cohomology set H1(F,G) is trivial.

Every simply connected semisimple group G over a field F is isomorphic to a
product of Weil transfers

G =

n∏

i=1

RKi/F (Gi)

where Gi is a simply connected absolutely simple group over a finite separable
extension Ki of F , and Shapiro’s lemma yields

H1(F,G) =

n∏

i=1

H1(Ki, Gi)

(see for instance [15, (26.8), (29.6)]). Since the cohomological dimension does not
change under finite separable extensions, it suffices to consider Conjecture II for
simply connected absolutely simple groups. This conjecture was proved for groups
of type 1An by Merkurjev–Suslin [25, Theorem 24.8] and for groups of type 2An,
Bn, Cn, Dn (with the exception of trialitarian D4), F4 and G2 by Bayer-Fluckiger–
Parimala [4].

In his Bourbaki talk [23], Serre proposed a stronger version of his Conjecture II,
taking into account imperfect fields. To state this stronger version, define for any
prime number p and any field F the p-separable dimension sdp F as follows (see
[12, §1.1], where sdp F is denoted dimsep

p F ):

- if charF 6= p, let sdp F = cdp F , the p-cohomological dimension of F ;
- if charF = p, consider the p-cohomology groups Hr

p (see [14], [6]) and let

sdp F be the least integer r ≥ 0 such that Hr+1
p (F ′) = 0 for every finite

separable extension F ′/F .
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Conjecture II (Strong version): ([23, §5.5]) Let G be a simply connected abso-
lutely simple group G defined over a field F . If sdp F ≤ 2 for every torsion prime
of the root system of G, then H1(F,G) = 1.

For the reader’s convenience, we quote from [23, §2.2] the list of torsion primes:

Type Torsion primes
An 2, prime divisors of n+ 1

Bn, Cn, Dn (n 6= 4), G2 2
D4, E6, E7, F4 2, 3

E8 2, 3, 5.

Note that the hypothesis on the separable dimension of F can be translated in more
elementary terms by a theorem of Gille [12, Théorème 7]: sdp F ≤ 2 if and only if
for every finite separable extension E/F , the reduced norm map of every p-primary
central simple E-algebra is surjective. It is mostly through this characterization
that the hypothesis on separable dimensions is used in this work.

The strong version of Conjecture II was proved by Serre for groups of type G2

[23, Théorème 11], and by Gille for groups of type 1An and F4 [12, Théorème 7,
Théorème 9] and for quasi-split groups of any type except E8 [13, Théorème 4].
Our main result is the following:

Theorem. The strong version of Conjecture II holds for groups of type 2An, Bn,
Cn, and Dn, except perhaps for trialitarian groups D4.

The proof is obtained by a case-by-case analysis in Corollaries 2.6, 3.12, 4.5, and
5.5. However, the pattern is the same in all cases: we consider an isogeny π : G→
Gad and derive from classification theorems for quadratic forms, involutions or
quadratic pairs that the image of the induced map π1 : H1(F,G) → H1(F,Gad) is
trivial. On the other hand, a theorem of Gille [13, Théorème 6] readily shows that
kerπ1 = 1, hence H1(F,G) = 1.

As this sketch of proof suggests, the essential part of our work in this paper goes
to the proof of classification theorems, which roughly say that hermitian forms of
various types, (generalized) quadratic forms, involutions and quadratic pairs are
classified by their “classical” invariants if the separable dimension of the base field
is at most 2. (The precise statements are given in Theorem 2.1 and Corollaries 2.3,
2.4, 3.9, 3.10, 4.3, 4.4, 5.2, and 5.3.) We thus follow the same approach as Bayer-
Fluckiger and Parimala, whose arguments in [4] also involved classification theorems
for hermitian forms. (The corresponding classification of involutions in character-
istic different from 2 was derived in [16].) Our main contribution is the inclusion of
the characteristic 2 case in these classification theorems. Actually, as compared to
[4], we shift the emphasis from hermitian forms to involutions and quadratic pairs
on central simple algebras, which allows us to give proofs valid in all characteristics.
We thus recover a significant part of the results in [4], by a method which avoids
Morita equivalence, and which therefore seems more transparent1 (at least to us).

In a first section, we give the main technical tools used in the classification
theorems. These tools revolve around the notion of Witt equivalence for involutions
and quadratic pairs. In the next sections, we successively tackle groups of type Bn,
2An, Cn, and Dn. For background information on involutions and quadratic pairs,

1For instance, we avoid the delicate justification that the form h0 can be chosen of the same
rank as h in the proofs of Theorems 4.2.1, 4.3.1, and 4.4.1 of [4].
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we refer to [15], whose notation is used throughout the paper. In particular, if
K/F is a separable quadratic extension of fields (of arbitrary characteristic), and if
a ∈ F×, we denote by (K, a)F the quaternion algebraK⊕Kz where conjugation by
z restricts to the nontrivial automorphism of K/F and z2 = a. If σ is an involution
on a central simple algebra A, we let

Sym(σ) = {a ∈ A | σ(a) = a},

Symd(σ) = {a+ σ(a) | a ∈ A},

Skew(σ) = {a ∈ A | σ(a) = −a}.

Appendix A yields detailed proofs of some results on Witt kernels which do not
appear in the literature in the required generality. In Appendix B, we recall the
basic notions of flat cohomology for the reader’s convenience.

1. Witt equivalence of involutions and quadratic pairs

1.1. Orthogonal sums. Let A be a central simple algebra over an arbitrary field
K and let σ be an involution (of any type) on A. Suppose A contains nonzero
idempotents e1, e2 such that e1 + e2 = 1 and σ(e1) = e1, σ(e2) = e2. The K-
algebras A1 = e1Ae1 and A2 = e2Ae2 are central simple and Brauer-equivalent
to A, and σ restricts to involutions σ1, σ2 on A1 and A2. Note that A1, A2 are
not subalgebras of A since their unity elements e1, e2 are not the unity 1 of A.
If A = EndD V for some division K-algebra D and some D-vector space V , the
subspaces V1 = e1(V ) and V2 = e2(V ) satisfy V = V1 ⊕V2, and there are canonical
identifications

A1 = EndD V1, A2 = EndD V2.

By [15, (4.2)], there is an involution θ on D and a hermitian or skew-hermitian
form h on V with respect to θ such that σ is the adjoint involution adh of h, in the
sense that

h
(
x, a(y)

)
= h(σ(a)(x), y) for x, y ∈ V and a ∈ A.

Since σ(e1) = e1 and σ(e2) = e2, it follows that V1 and V2 are orthogonal. Follow-
ing Dejaiffe [7], we call (A, σ) an orthogonal sum of (A1, σ1) and (A2, σ2). More
precisely, we set the following definition:

Definition 1.1. A central simple K-algebra with involution (A, σ) is an orthogonal
sum of central simple K-algebras with involution (A1, σ1) and (A2, σ2) if there are
orthogonal idempotents e1, e2 ∈ A such that e1+e2 = 1 and σ(e1) = e1, σ(e2) = e2,
and K-algebra isomorphisms

ϕ1 : A1
∼
→ e1Ae1, ϕ2 : A2

∼
→ e2Ae2

such that ϕi ◦ σi = σ ◦ ϕi for i = 1, 2. Using ϕ1 and ϕ2 to identify A1 and A2 to
subsets of A, we denote

(A, σ) = (A1, σ1) ⊞ (A2, σ2).

It is important to observe that an orthogonal sum is not uniquely determined
up to isomorphism by its summands. Indeed, for λ1, λ2 ∈ K×, the involution σ′

on A defined by

σ′(a) = (λ1e1 + λ2e2)σ(a)(λ−1
1 e1 + λ−1

2 e2)

is different from σ if λ1 6= λ2, but has the same restriction as σ to A1 and A2.
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Proposition 1.2. If a central simple K-algebra with involution (A, σ) is an or-
thogonal sum

(A, σ) = (A1, σ1) ⊞ (A2, σ2),

then A1, A2 are Brauer-equivalent to A and σ, σ1, σ2 have the same restriction to
K,

σ|K = σ1|K = σ2|K .

If σ|K = Id, then σ, σ1, σ2 have the same type (orthogonal or symplectic). More-
over,

degA = degA1 + degA2.

Proof. As observed before Definition 1.1, we may identify (A, σ) = (EndD V, adh)
and (A1, σ1) = (EndD V1, adh1

), (A2, σ2) = (EndD V2, adh2
) for some D-vector

space V = V1 ⊕ V2 and some hermitian or skew-hermitian form h = h1 ⊥ h2. The
proposition follows. �

Proposition 1.3. Let A1, A2 be Brauer-equivalent central simple K-algebras and
let σ1, σ2 be involutions of the same type on A1, A2 respectively. If σ1 and σ2

are unitary, assume moreover σ1|K = σ2|K . Then there exists a central simple
K-algebra A with involution σ such that

(A, σ) = (A1, σ1) ⊞ (A2, σ2).

Proof. Let D be a central division K-algebra Brauer-equivalent to A1 and A2.
There are D-vector spaces V1, V2 such that A1 = EndD V1 and A2 = EndD V2. By
[15, (4.2)], there is an involution θ on D and hermitian or skew-hermitian forms
h1, h2 on V1, V2 respectively such that σ1 = adh1

and σ2 = adh2
. Since σ1 and

σ2 have the same type, we may assume that h1 and h2 are both hermitian or both
skew-hermitian. Then (EndD(V1 ⊕ V2), adh1⊥h2

) is an orthogonal sum of (A1, σ1)
and (A2, σ2). �

To discuss orthogonal groups in characteristic 2, we need to use also orthogonal
sums of quadratic pairs. Recall from [15, (5.4)] that a quadratic pair on a central
simple K-algebra A of degree n (of arbitrary characteristic) is a pair (σ, f) con-
sisting of an involution σ of the first kind such that dimSym(σ) = 1

2n(n+ 1), and
f : Sym(σ) → K is a linear map related to the reduced trace TrdA by the following
condition:

f
(
x+ σ(x)

)
= TrdA(x) for x ∈ A.

If charK 6= 2, the conditions imply that σ is an orthogonal involution and

f(x) = 1
2 TrdA(x) for x ∈ Sym(σ).

The map f is thus determined by σ; it does not carry any additional structure in
this case.

If charK = 2, the involution σ is symplectic since the conditions imply that the
trace of every symmetric element is zero.

Definition 1.4. A central simple K-algebra with quadratic pair (A, σ, f) is an
orthogonal sum of central simple K-algebras with quadratic pair (A1, σ1, f1) and
(A2, σ2, f2) if

(A, σ) = (A1, σ1) ⊞ (A2, σ2)

and, identifying A1 and A2 with their images in A,

f |Sym(σ1) = f1, f |Sym(σ2) = f2.
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We then denote

(A, σ, f) = (A1, σ1, f1) ⊞ (A2, σ2, f2).

(See [11, p. 379] or [10].)

As for involutions, the direct sum is not uniquely determined by its summands.

Proposition 1.5. Let A1, A2 be Brauer-equivalent central simple K-algebras and
let (σ1, f1), (σ2, f2) be quadratic pairs on A1 and A2 respectively. There is a central
simple K-algebra A with quadratic pair (σ, f) such that

(A, σ, f) = (A1, σ1, f1) ⊞ (A2, σ2, f2).

Proof. We may mimic the arguments in the proof of Proposition 1.3, using gener-
alized quadratic forms as in [11]. Alternatively, form an orthogonal sum

(A, σ) = (A1, σ1) ⊞ (A2, σ2)

and, identifying A1 = e1Ae1, A2 = e2Ae2 for some symmetric orthogonal idempo-
tents e1, e2 such that e1 + e2 = 1, define

f(x) = f1(e1xe1) + f2(e2xe2) for x ∈ Sym(σ).

�

Remark. In the notation of the proof, the map f is uniquely determined by the con-
dition that f |Sym(σ1) = f1 and f |Sym(σ2) = f2, since every x ∈ Sym(σ) decomposes
as

x = e1xe1 + e2xe2 + e1xe2 + e2xe1,

and f(e1xe2 + e2xe1) = TrdA(e1xe2) = 0.

1.2. Discriminant of an orthogonal sum. We may compare the invariants of
an orthogonal sum with the invariants of the summands; see [7] and [8] for results
in this direction. For our purposes, we need to consider only the discriminant
algebras of unitary involutions on central simple algebras of even degree. The
following result is due to Tamagawa [26, Theorem 3]. We include a proof (different
from Tamagawa’s) for completeness.

Proposition 1.6. Let σ be a unitary involution on a central simple K-algebra
A and let F ⊂ K be the subfield of σ-invariant elements. Suppose (A, σ) is an
orthogonal sum of central simple K-algebras with involution of even degree,

(A, σ) = (A1, σ1) ⊞ (A2, σ2).

Then the Brauer classes of the discriminant algebras are related by

[D(A, σ)] = [D(A1, σ1)] + [D(A2, σ2)]

in the Brauer group BrF .

Proof. Let F (X) be the function field of the Weil transfer of the Severi-Brauer
variety of A. By [19], the scalar extension map BrF → BrF (X) is injective.
Therefore, it suffices to prove the claim after scalar extension to F (X). We may
thus assume that A (hence also A1 and A2) is split, hence

(A, σ) = (EndK V, adh),

(A1, σ1) = (EndK V1, adh1
), (A2, σ2) = (EndK V2, adh2

)
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for some K-vector space V = V1 ⊕ V2 and some hermitian form h = h1 ⊥ h2 on
V . The discriminant algebras of σ, σ1 and σ2 are Brauer-equivalent to quaternion
F -algebras,

[D(A, σ)] = [(K, disch)F ],

[D(A1, σ1)] = [(K, disch1)F ], [D(A2, σ2)] = [(K, disch2)F ].

The lemma follows by the additivity of the quaternion symbol, since

disc(h1 ⊥ h2) = (disch1)(disch2).

�

1.3. Centralizers of quadratic subfields. A major tool in our proof of the clas-
sification theorems is a reduction to centralizers of quadratic subfields. In this
subsection, we consider this reduction from the viewpoint of orthogonal sums.

Let (A, σ) be a central simple K-algebra with involution (of any type) and let
L/K be a separable quadratic extension with nontrivial automorphism ι. Suppose
(A, σ) is an orthogonal sum

(A, σ) = (A1, σ1) ⊞ (A2, σ2)

and there are embeddings

ε1 : (L, ι) →֒ (A1, σ1), ε2 : (L, ι) →֒ (A2, σ2),

i.e. K-algebra embeddings of L in A1, A2 respectively such that

ε1 ◦ ι = σ1 ◦ ε1, ε2 ◦ ι = σ2 ◦ ε2.

The involutions σ1, σ2 then restrict to unitary involutions σ̃1, σ̃2 on the centralizers
Ã1 = CentA1

L, Ã2 = CentA2
L of L in A1 and A2.

Proposition 1.7. The embeddings ε1, ε2 induce an embedding

ε1 ⊞ ε2 : (L, ι) →֒ (A, σ).

Moreover, letting σ̃ denote the restriction of σ to the centralizer Ã of L in A,

(Ã, σ̃) = (Ã1, σ̃1) ⊞ (Ã2, σ̃2).

Proof. Let e1, e2 ∈ A be orthogonal σ-symmetric idempotents such that e1+e2 = 1
and

ϕ1 : A1
∼
→ e1Ae1, ϕ2 : A2

∼
→ e2Ae2

be K-algebra isomorphisms under which σ1, σ2 correspond to the restriction of σ.
For x ∈ L, define

(ε1 ⊞ ε2)(x) = ϕ1 ◦ ε1(x) + ϕ2 ◦ ε2(x) ∈ A.

This map is an embedding (L, ι) →֒ (A, σ). The idempotents e1, e2 centralize the
image of L and ϕ1, ϕ2 restrict to isomorphisms

ϕ̃1 : Ã1
∼
→ e1Ãe1, ϕ̃2 : Ã2

∼
→ e2Ãe2,

so

(Ã, σ̃) = (Ã1, σ̃1) ⊞ (Ã2, σ̃2).

�
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1.4. Witt decomposition and cancellation. Let A be a central simple algebra
over an arbitrary field K, and let σ be an involution of symplectic or unitary type
on A. Recall from [15, §6] that σ is called hyperbolic if A contains an idempotent
e such that σ(e) = 1− e; it is called isotropic if A contains a non-zero right ideal I
such that σ(I)I = 0. To rephrase these conditions in terms of hermitian or skew-
hermitian forms, choose a representation of A by endomorphisms of a vector space
V over a division algebra D. The involution σ is then adjoint to a hermitian or
skew-hermitian form h on V ,

(1) (A, σ) = (EndD V, adh).

Then σ is hyperbolic (resp. isotropic) if and only if h is hyperbolic (resp. isotropic),
see [15, (6.2), (6.7)]. In particular, dimD V is even in this case, hence indA
(= degD) divides 1

2 degA (= 1
2 degD dimD V ). Note that if σ is symplectic, we

may choose a representation where h is alternating (i.e. even skew-hermitian), see
[15, (4.2)]. If σ is unitary, h may be chosen hermitian with respect to a unitary
involution on D. In both cases, a “Witt decomposition theorem” asserts that h
decomposes into an orthogonal sum of an anisotropic and a hyperbolic form, see
[21, Corollary 9.2, p. 268]. This observation yields the first part of the following
proposition:

Proposition 1.8. (1) Every central simple algebra A with symplectic or uni-
tary involution σ has an orthogonal sum decomposition

(A, σ) = (A0, σ0) ⊞ (A1, σ1)

where σ0 is anisotropic and σ1 is hyperbolic.
(2) Suppose a central simple algebra with symplectic or unitary involution σ

has an orthogonal sum decomposition

(A, σ) = (A0, σ0) ⊞ (A1, σ1)

where σ1 is hyperbolic. If σ is hyperbolic, then σ0 is hyperbolic.

Proof. As observed above, the first part follows from the Witt decomposition the-
orem for hermitian or skew-hermitian forms. To prove the second part, choose a
representation (1). The decomposition of (A, σ) yields an orthogonal decomposition
of h,

(V, h) = (V0, h0)
⊥
⊕ (V1, h1)

where h1 is hyperbolic. If h is hyperbolic, then h0 is hyperbolic by Witt cancellation,
see [21, Corollary 9.2, p. 268]. �

Remark. The second part of the proposition above may be regarded as a “Witt
cancellation theorem” for involutions. Note that only hyperbolic involutions can
be cancelled; Elomary has shown in [10] that general involutions do not admit
cancellation.

Definition 1.9. Two central simple algebras with symplectic or unitary involutions
(A, σ), (A′, σ′) are called Witt-equivalent if there are orthogonal sum decomposi-
tions

(A, σ) = (A0, σ0) ⊞ (A1, σ1), (A′, σ′) = (A′
0, σ

′
0) ⊞ (A′

1, σ
′
1)

where σ1, σ
′
1 are hyperbolic, and an isomorphism of algebras with involution

(A0, σ0) ≃ (A′
0, σ

′
0).
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From Proposition 1.8, it follows that σ is hyperbolic if (A, σ) is Witt-equivalent to
a central simple algebra with hyperbolic involution.

Similar notions are defined for quadratic pairs. A quadratic pair (σ, f) on a
central simple F -algebra A is called hyperbolic if A contains an idempotent e such
that

(2) f(x) = TrdA(ex) for x ∈ Sym(σ),

see [15, (6.14)]. It is called isotropic if A contains a nonzero right ideal I such that

σ(I)I = 0 and f
(
I ∩ Sym(σ)

)
= 0,

see [15, (6.5)].

Remark 1.10. Condition (2) implies σ(e) = 1 − e. More precisely, for any ℓ ∈ A
the following conditions are equivalent:

(a) TrdA(ℓx) = f(x) for all x ∈ Symd(σ),
(b) σ(ℓ) = 1 − ℓ.

Indeed, for y ∈ A we have f(y + σ(y)) = TrdA(y), hence (a) is equivalent to

TrdA(ℓy) + TrdA(ℓσ(y)) = TrdA(y) for all y ∈ A.

Since TrdA(ℓσ(y)) = TrdA(σ(ℓ)y), the last equation can be rewritten as

TrdA

(
(ℓ+ σ(ℓ))y

)
= TrdA(y) for all y ∈ A.

It is equivalent to (b) because the bilinear form TrdA(xy) is regular.

The condition for isotropy or hyperbolicity of a quadratic pair can be translated
in terms of generalized quadratic forms, see [11, Proposition 1.7 and Corollary 1.8].
Since hyperbolic quadratic pairs are adjoint to hyperbolic quadratic forms, it follows
that indA divides 1

2 degA if A carries a hyperbolic quadratic pair. In view of the
Witt decomposition and cancellation theorems for generalized quadratic forms (see
[21, Corollary 9.2, p. 268]), the following result can be proved along the same lines
as Proposition 1.8:

Proposition 1.11. (1) Every central simple algebra A with quadratic pair (σ, f)
has an orthogonal sum decomposition

(A, σ, f) = (A0, σ0, f0) ⊞ (A1, σ1, f1)

where (σ0, f0) is anisotropic and (σ1, f1) is hyperbolic.
(2) Suppose a central simple algebra with quadratic pair (σ, f) has an orthogonal

sum decomposition

(A, σ, f) = (A0, σ0, f0) ⊞ (A1, σ1, f1)

where (σ1, f1) is hyperbolic. If (σ, f) is hyperbolic, then (σ0, f0) is hyper-
bolic.

Definition 1.12. Two central simple F -algebras with quadratic pair (A, σ, f),
(A′, σ′, f ′) are called Witt-equivalent if there are orthogonal sum decompositions

(A, σ, f) = (A0, σ0, f0) ⊞ (A1, σ1, f1), (A′, σ′, f ′) = (A′
0, σ

′
0, f

′
0) ⊞ (A′

1, σ
′
1, f

′
1)

where (σ1, f1), (σ′
1, f

′
1) are hyperbolic, and an isomorphism of algebras with qua-

dratic pairs

(A0, σ0, f0) ≃ (A′
0, σ

′
0, f

′
0).
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1.5. The Witt kernel of odd-degree and quadratic extensions. A key tool
to prove the classification theorems in Sections 3, 4, and 5 is the description of
involutions and quadratic pairs which become hyperbolic under odd-degree or qua-
dratic extensions. For odd-degree extensions, we have the following analogues of
the weak version of Springer’s theorem:

Theorem 1.13. Let K be an arbitrary field. Let (A, σ) be a central simple K-
algebra with involution of symplectic or unitary type, and let F ⊂ K be the subfield
of σ-invariant elements (so F = K if σ is symplectic). Let E/F be an odd-degree
field extension and AE = A ⊗F E, σE = σ ⊗ IdE. If σE is hyperbolic, then σ is
hyperbolic.

Theorem 1.14. Let (A, σ, f) be a central simple algebra with quadratic pair over an
arbitrary field F , and let E/F be an odd-degree field extension. Let AE = A⊗F E,
σE = σ ⊗ IdE, fE = f ⊗ IdE. If the quadratic pair (σE , fE) is hyperbolic, then
(σ, f) is hyperbolic.

Theorem 1.13 is easily derived from the analogous statement for hermitian forms,
due to Bayer-Fluckiger and Lenstra [3, Proposition 1.2]. The transfer argument
used in [3] can be adapted to generalized quadratic forms to yield Theorem 1.14.
For completeness, we spell out in Appendix A (see Section A.2) detailed proofs
along the lines of [3, Proposition 1.2], focusing on involutions and quadratic pairs
instead of hermitian forms and generalized quadratic forms.

For (separable) quadratic extensions, the key results are the following:

Theorem 1.15. Let K be an arbitrary field, let (A, σ) be a central simple K-algebra
with involution of symplectic or unitary type, and let F ⊂ K be the subfield of σ-
invariant elements (so F = K if σ is symplectic). Let L/F be a separable quadratic
extension with non-trivial automorphism ι and let AL = A ⊗F L, σL = σ ⊗ IdL.
The involution σL on AL is hyperbolic if and only if there is an embedding (L, ι) →֒
(A, σ).

Theorem 1.16. Let (A, σ, f) be a central simple algebra with quadratic pair over an
arbitrary field F , and let L/F be a separable quadratic extension. Let AL = A⊗F L,
σL = σ ⊗ IdL and fL = f ⊗ IdL. If there is an embedding ε : L →֒ A such that

(3) TrdA(ε(ℓ)x) = TL/F (ℓ)f(x) for all x ∈ Sym(σ) and ℓ ∈ L,

then (σL, fL) is hyperbolic. The converse holds except if A is split and (σ, f) is
adjoint to a quadratic form of odd Witt index.

Remark. Note that (3) implies ε ◦ ι = σ ◦ ε, since for x = y + σ(y) it yields

TrdA

(
ε(ℓ)(y + σ(y))

)
= TL/F (ℓ)TrdA(y).

Expanding the left side as

TrdA(ε(ℓ)y) + TrdA(y · σε(ℓ)) = TrdA

(
y(ε(ℓ) + σε(ℓ))

)
,

we obtain

TrdA(yTL/F (ℓ)) = TrdA

(
y(ε(ℓ) + σε(ℓ))

)
for y ∈ A and ℓ ∈ L.

Since the reduced trace bilinear form is nonsingular, it follows that ε(ℓ) + σε(ℓ) =
TL/F (ℓ), hence σε(ℓ) = ει(ℓ) for ℓ ∈ L.

If charF 6= 2, (3) is in fact equivalent to ε◦ ι = σ ◦ ε, as can be seen by reversing
the steps in the above argument with y = 1

2x.
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Particular cases of Theorems 1.15 and 1.16 are known: if charF 6= 2, Theo-
rem 1.16 and the symplectic case of Theorem 1.15 are proved in [5, Theorem 3.3],
and the unitary case of Theorem 1.15 in [17, Theorem 3.6]. If charF = 2, the
symplectic case of Theorem 1.15 and Theorem 1.16 can be found in [11, Proposi-
tions 4.1 and 4.2], except that the converse implication is proved under the addi-
tional hypothesis that σ or (σ, f) is anisotropic. Since none of the quoted references
establishes Theorems 1.15 and 1.16 in the generality we require, we give a complete
proof, featuring a characteristic-free approach, in Appendix A (see Section A.3).

2. Quadratic forms

Let (V, q) be a quadratic space over an arbitrary field F and let b : V × V → F
be the polar symmetric bilinear form, defined by

b(x, y) = q(x+ y) − q(x) − q(y) for x, y ∈ V .

The radical of b is

rad b = {x ∈ V | b(x, y) = 0 for all y ∈ V }.

The quadratic form q is called regular if either rad b = {0} or charF = 2 and
dim rad b = 1. The latter case occurs only if dimV is odd, since b is alternating
when charF = 2. Henceforth, all the quadratic forms are assumed to be regular.

2.1. Classification. The classical invariants of quadratic forms—the discriminant
and the Clifford invariant—are recalled next.

If charF 6= 2, we denote by disc q ∈ F×/F×2 the (signed) discriminant of q (see
for instance [21, p. 36]). If charF = 2, the discriminant is defined as follows: if
dimV is odd (hence dim rad b = 1), pick a non-zero vector x ∈ rad b and let

disc q = q(x)F×2 ∈ F×/F×2;

if dimV is even, disc q is the Arf invariant of q (see [21, p. 340]),

disc q = Arf(q) ∈ F/℘(F ),

where ℘(F ) = {λ2 − λ | λ ∈ F}.
The Clifford invariant c(q) is defined independently of the characteristic as the

Brauer class of the Clifford algebra or the even Clifford algebra,

c(q) =

{
[C(V, q)] ∈ Br(F ) if dimV is even,

[C0(V, q)] ∈ Br(F ) if dimV is odd.

We can now state the classification theorem for quadratic forms:

Theorem 2.1. If the reduced norm map of every quaternion F -algebra is surjec-
tive, then quadratic forms over F are classified up to isometry by their dimension,
discriminant and Clifford invariant.

Proof. The result was proved by Elman and Lam [9, Theorem 3.11] for fields of
characteristic different from 2 and by Sah [20, Theorem 3] for quadratic forms of
even dimension over fields of characteristic 2. For the rest of the proof,2 we assume
charF = 2 and consider forms of odd dimension. We use the following notation for
quadratic forms: for a, b ∈ F ,

[a] = ax2 and [a, b] = ax2 + xy + by2.

2We are indebted to Detlev Hoffmann for the following arguments.
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Since

x2 + (y2 + yz + az2) = (x+ y)2 + (y + az)z,

the change of variables x′ = x+ y, y′ = y + az, z′ = z yields

(4) [1] ⊥ [1, a] ≃ [1] ⊥ [0, 0].

Let q, q′ be odd-dimensional quadratic forms over F with

dim q = dim q′, disc q = disc q′, c(q) = c(q′).

Let a ∈ F× be a representative of disc q. The restriction q0 of q (resp. q′0 of q′) to
an orthogonal complement of the radical is a regular even-dimensional quadratic
form such that

q ≃ [a] ⊥ q0, q′ ≃ [a] ⊥ q′0.

Let d (resp. d′) be a representative of disc(a · q0) (resp. disc(a · q′0)). It is easy to
see that

c(q) = c(a · q0) = c([1, d] ⊥ a · q0), c(q′) = c(a · q′0) = c([1, d′] ⊥ a · q′0),

see for instance [18, Lemma 2, Proposition 5]. By the classification theorem for
even-dimensional forms it follows that

[1, d] ⊥ a · q0 ≃ [1, d′] ⊥ a · q′0.

Adding [1] to each side and using (4), we obtain

[1] ⊥ [0, 0] ⊥ a · q0 ≃ [1] ⊥ [0, 0] ⊥ a · q′0.

Since even-dimensional regular forms can be cancelled by [1, Folgerung, p. 160], it
follows that

[1] ⊥ a · q0 ≃ [1] ⊥ a · q′0.

Multiplying each side by a, we obtain q ≃ q′. �

Remark 2.2. The reduced norm map of every quaternion F -algebra is surjective if
sd2 F ≤ 2: this is a special case of a theorem of Merkurjev–Suslin if charF 6= 2
and of Gille if charF = 2, see [12, Théorème 7]. Therefore, Theorem 2.1 applies in
particular when sd2 F ≤ 2.

The classification of hermitian forms over separable quadratic extensions or
quaternion algebras is easily derived from Theorem 2.1 by means of a transfer
argument due to Jacobson (see [21, p. 348]), as we proceed to show.

Suppose first K/F is a separable quadratic extension. Let N(K/F ) ⊂ F× be
the image of the norm map NK/F : K× → F×. For every hermitian form h on a
K-vector space V of dimension n, the discriminant disch is defined by choosing a
basis (ei)1≤i≤n of V and letting

disch = (−1)n(n−1)/2 det
(
h(ei, ej)

)
1≤i,j≤n

·N(K/F ) ∈ F×/N(K/F ),

see [15, p. 114].

Corollary 2.3. If the reduced norm map of every quaternion F -algebra is surjec-
tive (for instance if sd2 F ≤ 2), then hermitian forms over K are classified up to
isometry by their dimension and discriminant.
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Proof. For every hermitian form h on a K-vector space V , let qh : V → F be the
quadratic form defined by

qh(x) = h(x, x) for x ∈ V .

If h and h′ are hermitian forms such that

dim h = dimh′, disch = disch′,

then the formulas3 in [21, p. 350] show that

dim qh = dim qh′ , disc qh = disc qh′ , c(qh) = c(qh′).

Therefore, Theorem 2.1 yields qh ≃ qh′ , and it follows from [21, Theorem 10.1.1]
that h ≃ h′. �

Now, let Q be a quaternion division F -algebra and let V be a finite-dimensional
right Q-vector space. A hermitian form h on V (for the conjugation involution on
Q) is even (or trace-valued) if h(x, x) ∈ F for x ∈ V . If charF 6= 2, every hermitian
form is even since only F is fixed under the conjugation involution. If charF = 2,
even hermitian forms are called alternating or even skew-hermitian in [15, §4].

Corollary 2.4. If the reduced norm map of every quaternion F -algebra is surjective
(for instance if sd2 F ≤ 2), then even hermitian forms over Q are classified up to
isometry by their dimension.

Proof. For every even hermitian form h on a Q-vector space V , let qh : V → F be
the quadratic form defined by

qh(x) = h(x, x) for x ∈ V .

Using an orthogonal basis of h, it is easily seen that

dim qh = 4 dimh, disc qh =

{
1 if charF 6= 2,

0 if charF = 2,

c(qh) =

{
0 if dimh ≡ 0 mod 2,

[Q] if dimh ≡ 1 mod 2.

Therefore, if h and h′ are even hermitian forms with dimh = dimh′, then

dim qh = dim qh′ , disc qh = disc qh′ , c(qh) = c(qh′).

By Theorem 2.1, it follows that qh ≃ qh′ . The same arguments as in [21, Theo-
rem 10.1.1] then show that h ≃ h′. �

2.2. Conjecture II for groups of type Bn. The simply connected absolutely
simple groups of type Bn are isomorphic to spin groups Spin(V, q), where (V, q)
is a quadratic space of dimension 2n + 1. Let O+(V, q) be the special orthogonal
group of (V, q) and let χ : Spin(V, q) → O+(V, q) be the vector representation. We
have an exact sequence (see for instance [15, §23])

(5) 1 → µ2 → Spin(V, q)
χ
−→ O+(V, q) → 1.

3The formula for c(qh) in [21, p. 350] should be (δ, disc h) instead of (δ, det h).
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It yields the following exact sequence in (flat) cohomology (see Appendix B):

O+(V, q)(F )
δ0

−→ H1(F,µ2) →H1(F,Spin(V, q))
χ1

−→

→ H1(F,O+(V, q))
δ1

−→ H2(F,µ2).

(6)

Recall from [15, §29.E] that the elements in H1(F,O+(V, q)) can be identified
with the isometry classes of quadratic forms q′ on V such that disc q′ = disc q. The
following lemma dates back to Springer [24] for the case where charF 6= 2. We
include its short proof (in arbitrary characteristic) for the reader’s convenience.

Lemma 2.5. For q′ ∈ H1(F,O+(V, q)),

δ1(q′) = c(q′) − c(q) ∈ 2 Br(F ) = H2(F,µ2).

Proof. Consider the even Clifford algebraC0(V, q) and the associated group schemes
GL1(C0(V, q)) of invertible elements and AutF (C0(V, q)) of F -algebra automor-
phisms. By the Skolem-Noether theorem, there is an exact sequence

(7) 1 → Gm → GL1(C0(V, q))
Int
−−→ AutF (C0(V, q)) → 1

where the homomorphism Int maps every invertible element to the corresponding
inner automorphism.

By the functorial property of Clifford algebras, every isometry in O+(V, q) in-
duces an automorphism of the even Clifford algebra C0(V, q), hence there is a
commutative diagram relating (5) and (7), where the middle vertical map is the
inclusion:

1 −−−−→ µ2 −−−−→ Spin(V, q)
χ

−−−−→ O+(V, q) −−−−→ 1
y

y
yρ

1 −−−−→ Gm −−−−→ GL1(C0(V, q))
Int

−−−−→ Aut(C0(V, q)) −−−−→ 1.

It yields the following commutative diagram, where the vertical map on the right
is the inclusion 2 Br(F ) →֒ Br(F ):

H1(F,O+(V, q))
δ1

−−−−→ H2(F,µ2)

ρ1

y
y

H1
(
F,Aut(C0(V, q))

) ∂1

−−−−→ H2(F,Gm).

Elements in H1
(
F,AutF (C0(V, q))

)
can be identified with isomorphism classes of

central simple F -algebras of the same degree asC0(V, q), and for q′ ∈ H1(F,O+(V, q))
the image ρ1(q′) is represented by C0(V, q

′). Therefore,

δ1(q′) = ∂1ρ1(q′) = c(q′) − c(q).

�

Corollary 2.6. If sd2 F ≤ 2, then H1(F,Spin(V, q)) = 1 for every quadratic space
(V, q) of odd dimension.

Proof. Consider the exact sequence (6). If sd2 F ≤ 2, a theorem of Gille [13,
Théorème 6] shows that δ0 is surjective, hence kerχ1 = 1. Therefore, it suffices to
show that the image of χ1 is trivial or, equivalently, that ker δ1 = 1.
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Lemma 2.5 shows that the elements in ker δ1 are the isometry classes of quadratic
forms q′ on V such that disc q′ = disc q and c(q′) = c(q). By Theorem 2.1 and
Remark 2.2 these forms are isometric to q if sd2 F ≤ 2, hence ker δ1 = 1. �

3. Unitary involutions

In this section, B is a central simple algebra over a field K of arbitrary char-
acteristic, and τ is a unitary involution on B. We denote by F the subfield of
τ -invariant elements in K. Our main goal is to show how the discriminant algebra
D(B, τ) controls the hyperbolicity of τ when sd2 F ≤ 2. We shall then proceed to
prove classification results for hermitian forms over division algebras with unitary
involution.

Lemma 3.1. Suppose degB is even.

(1) If τ is hyperbolic, then the discriminant algebra D(B, τ) is split.
(2) Let M ⊂ B be a subfield of symmetric elements which is a separable ex-

tension of F , let B̃ = CentB M be the centralizer of M and τ̃ = τ |B̃ be

the restriction of τ to B̃. The algebra D(B, τ) is Brauer-equivalent to the

norm (i.e. corestriction) of D(B̃, τ̃),

[D(B, τ)] = [NM/F (D(B̃, τ̃))] in Br F.

(3) Let C be a central simple K-algebra and let θ be a unitary involution on C
such that θ|K = τ |K . Then

[D(B ⊗K C, τ ⊗ θ)] =

{
0 if degC is even,

[D(B, τ)] if degC is odd.

Proof. The first part is due to Tamagawa [26, Theorem 4]. We include a proof4 for
the reader’s convenience.

As in the proof of Proposition 1.6, we may find a field F (X) in which F is
algebraically closed, which splits B and such that the scalar extension map BrF →
BrF (X) is injective. Therefore, it suffices to prove the lemma in the case where B
is split. Choose a representation

(B, τ) = (EndK V, adh)

where h is a hermitian form on a K-vector space V . Then

[D(B, τ)] = (K, disch)F ,

see [15, (10.35)]. If τ is hyperbolic, then disch = 1 hence D(B, τ) is split, and (1)
is proved. If B contains a field M consisting of symmetric elements, then V carries
a KM -vector space structure. Let s : M → F be a non-zero F -linear map and let
sK : KM → K be its K-linear extension to KM . By [15, (4.10)], we may assume
h is the transfer of a hermitian form h′ on the KM -vector space V with respect to
the non-trivial automorphism of KM/M ,

h = sK∗(h
′) and (B̃, τ̃ ) = (EndKM V, adh′).

Then [D(B̃, τ̃)] = (KM, disch′)M . Since disch = NM/F (disch′) by [21, Theo-
rem 5.12, p. 51], the projection formula

NM/F (KM, disch′)M = (K,NM/F (disch′))F

4Tamagawa’s proof is different.
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completes the proof of (2).
To prove (3), we may use the same scalar extension argument to reduce to the

case where C is split as well as B. Choosing a representation

(C, θ) = (EndK W, adk)

for some hermitian form k on a K-vector space W , we have

(B ⊗K C, τ ⊗ θ) = (EndK(V ⊗K W ), adh⊗k).

With respect to K-bases of V and W , the matrix of h⊗ k is a Kronecker product
of the matrices of h and k. Therefore,

disc(h⊗ k) =

{
1 if dimK W is even,

disch if dimK W is odd.

Part (3) follows, since [D(B ⊗K C, τ ⊗ θ)] = (K, disc(h⊗ k))F . �

The main result of this section is the following:

Theorem 3.2. Let B be a central simple K-algebra of even degree with a unitary
involution τ , and let F ⊂ K be the subfield fixed under τ . If τ is hyperbolic, then
indB divides 1

2 degB and D(B, τ) is split. The converse holds if sd2 F ≤ 2.

Proof. If τ is hyperbolic, it was already observed in Section 1.4 that indB divides
1
2 degB. Moreover, D(B, τ) is split by Lemma 3.1, hence the first part is clear. In
the next two subsections, we prove the second part by induction on indB.

For the convenience of exposition, we define the following property of a field F :

U(d): A unitary involution τ on a central simple algebra B of index d and
even degree over a separable quadratic extension of F is hyperbolic if d
divides 1

2 degB and D(B, τ) is split.

We thus have to show that fields with sd2 F ≤ 2 satisfy U(d) for all d ≥ 1.

3.1. Reduction to 2-power index. To achieve index reduction, we use the fol-
lowing result:

Lemma 3.3. Let (B, τ) be as in Theorem 3.2.

(1) If indB is divisible by an odd prime, then there is an odd-degree separable
field extension E/F such that ind(B ⊗F E) < indB.

(2) If indB = 2k with k ≥ 1, then there is an odd-degree separable field exten-
sion E/F and a separable quadratic extension L/E linearly disjoint from
K such that ind(B ⊗F L) = 2k−1.

Proof. Let D be a central division K-algebra Brauer-equivalent to B, and let D1,
D2 ⊂ D be central division K-algebras such that D = D1 ⊗K D2, with degD1

a power of 2 (possibly degD1 = 1) and degD2 odd. Since B carries a unitary
involution, a theorem of Albert–Riehm–Scharlau [15, (3.1)] shows that

[NK/F (D)] = 0 in Br(F ),

hence NK/F (D1) ⊗F NK/F (D2) is split. Therefore, NK/F (D1) and NK/F (D2) are
both split, since their degrees are coprime,

degNK/F (D1) = (degD1)
2 and degNK/F (D2) = (degD2)

2.
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It follows by the Albert–Riehm–Scharlau theorem that D1 and D2 carry unitary
involutions θ1, θ2 such that

F = K ∩ Sym(θ1) = K ∩ Sym(θ2).

In case (1), we have D2 6= K. The set of elements in D2 which are separable
of degree degD2 over K is a Zariski-open subset U2 defined by the condition that
the discriminant of the reduced characteristic polynomial does not vanish. Scalar
extension to an algebraic closure of F shows that the open subset U2 ∩ Sym(θ2)
of Sym(θ2) is not empty. Since D2 6= K, the field F is infinite, hence the rational
points in Sym(θ2) are dense. We may therefore find an element x ∈ Sym(θ2) which
is separable of degree degD2 over K. Since θ2(x) = x, the coefficients of the
reduced characteristic polynomial of x are in F , hence F (x)/F is a separable field
extension of degree degD2. Moreover, K(x) is a maximal subfield of D2, hence
scalar extension to F (x) splits D2 and reduces the index of D. Part (1) of the
lemma is thus proved, with E = F (x).

In case (2), we have D2 = K and D = D1 6= K. Arguing as above, we may
find x ∈ Sym(θ1) such that F (x)/F is a separable field extension of degree degD.
Let R be a Galois closure of F (x)/F and let E ⊂ R be the subfield fixed under
a 2-Sylow subgroup of Gal(R/F ). Then E/F is a separable field extension of odd
degree, and R/E is a Galois extension whose Galois group is a 2-group. It follows
that E(x)/E is a separable 2-extension, hence we may find a subfield L ⊂ E(x)
such that L/E is a separable quadratic extension. Since the dimension of K(x)/F
is a power of 2, the extensions K(x)/F and E/F are linearly disjoint. Moreover,

K(x) ⊗F E = K ⊗F F (x) ⊗F E = K ⊗F E(x),

so K/F is linearly disjoint from E(x)/F hence also from L/F . As

L ⊂ F (x) ⊗F E ⊂ D ⊗F E,

we have ind(D ⊗F L) = 1
2 ind(D ⊗F E). The conditions are thus fulfilled, since

ind(D ⊗F E) = indD = indB as the degree of E/F is prime to the degree of
D. �

Corollary 3.4. Let d ≥ 1 be an integer. Suppose every separable odd-degree ex-
tension of a field F satisfies U(k) for every k < d. If d has an odd prime factor,
then U(d) holds for F .

Proof. Let τ be a unitary involution on a central simple K-algebra B of index d
and even degree over a separable quadratic extension K of F , such that τ |F = IdF .
Suppose d divides 1

2 degB and D(B, τ) is split. By Lemma 3.3, there is a separable
odd-degree extension E/F such that ind(B ⊗F E) < d. Since U(ind(B ⊗F E))
holds for E, it follows that τ ⊗ IdE is a hyperbolic involution on B ⊗F E. By
Theorem 1.13, τ is hyperbolic. �

3.2. The 2-power index case. In this subsection, we complete the proof of The-
orem 3.2. The key tool is the following:

Lemma 3.5. Let (B, τ) be as in Theorem 3.2. Suppose degB ≡ 0 mod 4, indB
divides 1

2 degB, and let degB = 4n. Assume that for every quaternion F -algebra
Q split by K there exists a central simple K-algebra B0 of even degree with unitary
involution τ0 such that

[B0] = [B] in BrK and [D(B0, τ0)] = [Q] in BrF .
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Assume moreover that there is a separable quadratic extension L/F , linearly disjoint
from K, with non-trivial automorphism ι, such that

(L, ι) →֒ (B, τ)

and that the centralizer B̃ = CentB L satisfies n[B̃] = 0 in BrKL. If D(B, τ) is
split, then there exists a central simple K-algebra with unitary involution (B′, τ ′)
Witt-equivalent to (B, τ), of degree divisible by 4, endowed with an embedding
(L, ι) →֒ (B′, τ ′), satisfying the following conditions:

(1) for the centralizer B̃′ = CentB′ L and τ̃ ′ = τ ′|B′ , the discriminant algebra

D(B̃′, τ̃ ′) is split;
(2) indB′ divides 1

2 degB′.

Proof. The centralizer B̃ has center KL and degree 1
2 degB = 2n. Let M ⊂ KL

be the subfield fixed under τ̃ . By [15, (10.30)] we have

[D(B̃, τ̃) ⊗M KL] = n[B̃] in BrKL,

hence the hypotheses imply that D(B̃, τ̃ ) is split by KL. It is therefore Brauer-
equivalent to a quaternion M -algebra Q0 containing K. By Lemma 3.1(2), we
have

[NM/F (D(B̃, τ̃))] = [D(B, τ)] in BrF .

Since we assume that D(B, τ) is split, it follows by the Albert–Riehm–Scharlau
theorem [15, (3.1)] that Q0 has unitary involutions fixing F . By [15, (4.14)], we
may find such a unitary involution which restricts to the non-trivial automorphism
of K/F . A theorem of Albert [15, (2.22)] then yields a quaternion F -algebra Q
containing K such that

Q0 ≃ Q⊗F M.

By hypothesis, we may find a central simple K-algebra B0 of even degree with a
unitary involution τ0 such that B0 is Brauer-equivalent to B and D(B0, τ0) to Q.
Let J be the (unique) symplectic involution on EndF L and set

B1 = B0 ⊗F EndF L, τ1 = τ0 ⊗ J.

Clearly, B1 is Brauer-equivalent to B, and τ1 is hyperbolic since J is hyperbolic.
Through the regular representation L →֒ EndF L, we may embed

(L, ι) →֒ (EndF L, J) →֒ (B1, τ1).

Let B̃1 = CentB1
L and τ̃1 = τ1|fB1

. We have

B̃1 = B0 ⊗F L = B0 ⊗F M and τ̃1 = τ0 ⊗ ι = τ0 ⊗ IdM ,

hence

(8) [D(B̃1, τ̃1)] = [D(B0, τ0) ⊗F M ] = [Q⊗F M ] = [D(B̃, τ̃)].

Since B and B1 are Brauer-equivalent and τ |K = τ1|K , we may consider an orthog-
onal sum (B′, τ ′) of (B, τ) and (B1, τ1), see Proposition 1.3. It is a central simple
K-algebra with involution which is Witt-equivalent to (B, τ), since τ1 is hyperbolic.
The sum of the embeddings of (L, ι) in (B, τ) and (B1, τ1) is an embedding

(L, ι) →֒ (B′, τ ′)

such that, using the˜notation for the centralizer,

(B̃′, τ̃ ′) = (B̃, τ̃ ) ⊞ (B̃1, τ̃1),
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by Proposition 1.7. It follows from Proposition 1.6 and (8) that

[D(B̃′, τ̃ ′)] = [D(B̃, τ̃)] + [D(B̃1, τ̃1)] = 0.

To complete the proof, we compute the degree of B′,

degB′ = degB + degB1 = 4n+ 2 degB0.

Since indB′ = indB = indB0 divides degB0 and 2n, it also divides 1
2 degB′. �

To enable us to use Lemma 3.5, we need examples where the hypothesis on the
existence of B0 holds.

Lemma 3.6. Let (B, τ) be as in Theorem 3.2. Suppose indB is a power of 2. If
sd2 F ≤ 2, then for every quaternion F -algebra Q split by K there exists a central
simple K-algebra B0 of even degree and a unitary involution τ0 on B0 such that
τ0|F = IdF and

[B0] = [B] in BrK, [D(B0, τ0)] = [Q] in BrF .

Proof. Let Q = (K, y)F for some y ∈ F×. By a theorem of Gille [12, Théorème 7],
the condition sd2 F ≤ 2 implies that the reduced norm map NrdB is surjective.
Let x ∈ B× be such that NrdB(x) = y. A theorem of Yanchevskĭı [28, Theorem 1]
then shows that x lies in the subgroup of B× generated by the invertible elements
in Sym(τ). Therefore, we may find invertible elements x1, . . . , xn ∈ Sym(τ) such
that

NrdB(x1 . . . xn) = y.

Adjoining some xi = 1 if necessary, we may assume n is even. Let B0 = Mn(B) =
Mn(F ) ⊗F B and let θ = t ⊗ τ , where t is the transpose involution on Mn(F ).
Clearly, B0 is Brauer-equivalent to B. Consider the following diagonal matrices in
B0:

∆0 = diag(x1, . . . , xn), ∆1 = diag(1,−1, . . . , 1,−1)

and the unitary involutions τ1, τ0 defined by

τ1(x) = ∆1θ(x)∆
−1
1 , τ0(x) = ∆0τ1(x)∆

−1
0 for x ∈ B0.

The involution τ1 is hyperbolic, hence D(B0, τ1) is split, by Lemma 3.1(1). On the
other hand, [15, (10.36)] yields

[D(B0, τ0)] = [D(B0, τ1)] + (K,NrdB0
(∆0))F ,

hence [D(B0, τ0)] = [Q]. �

Corollary 3.7. Fields F with sd2 F ≤ 2 satisfy U(2k) for all k ≥ 0.

Proof. We argue by induction on k. The case k = 0 follows from Corollary 2.3.
Let B be a central simple algebra with indB = 2k ≥ 2 over a separable quadratic
extension K of a field F with sd2 F ≤ 2, and let τ be a unitary involution on B
such that τ |F = IdF . Assume moreover degB ≡ 0 mod 2k+1 and D(B, τ) is split.
We have to show τ is hyperbolic.

By Lemma 3.3(2), we may find a separable odd-degree extension E of F and a
separable quadratic extension L of E such that

ind(B ⊗F L) = 2k−1.
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By the induction hypothesis, τ ⊗ IdL is hyperbolic. Let ι denote the non-trivial
automorphism of L/E and let BE = B ⊗F E, τE = τ ⊗ IdE . By Theorem 1.15,
there is an embedding of E-algebras with involution

(L, ι) →֒ (BE , τE).

The centralizer B̃E = CentBE
L is Brauer-equivalent to

BE ⊗E L = B ⊗F L.

Therefore, ind B̃E = 2k−1 and

(1
4 degB)[B̃E ] = 0 in BrKE.

Since D(BE , τE) = D(B, τ)⊗F E is split and sd2E ≤ 2, we may apply Lemmas 3.5
and 3.6 to find a central simple KE-algebra with unitary involution (B′, τ ′) Witt-
equivalent to (BE , τE) and an embedding (L, ι) →֒ (B′, τ ′) such that indB′ divides
1
2 degB′ andD(B̃′, τ̃ ′) is split. The algebra B̃′ is Brauer-equivalent to B′⊗EL hence

also to B ⊗F L since B′ is Brauer-equivalent to BE . Therefore, ind B̃′ = 2k−1.

Since sd2 L ≤ 2, the induction hypothesis shows that τ̃ ′ is hyperbolic. We may

therefore find an idempotent e ∈ B̃′ such that τ̃ ′(e) = 1 − e. Since B̃′ ⊂ B′

and τ̃ ′ = τ ′|fB′
, this idempotent lies in B′ and satisfies τ ′(e) = 1 − e, hence τ ′ is

hyperbolic. By Witt cancellation (Proposition 1.8), it follows that τE is hyperbolic,
since (B′, τ ′) is Witt-equivalent to (BE , τE). Now, E/F is an odd-degree extension,
so Theorem 1.13 shows that τ is hyperbolic. �

Conclusion of the proof of Theorem 3.2. To establish that fields with sd2 F ≤ 2
satisfy U(d) for all d ≥ 1, it now suffices to use induction and Corollaries 3.4 and
3.7: if d is a power of 2 the result follows from Corollary 3.7; if d is not a power
of 2 then it has an odd prime factor, hence induction and Corollary 3.4 prove that
U(d) holds for F . �

3.3. Classification of hermitian forms. In this subsection, we use Theorem 3.2
to obtain a classification result for hermitian forms over a division algebra with
unitary involution.

Let D be a central division algebra over an arbitrary field K. Suppose D carries
a unitary involution θ, and let F ⊂ K be the subfield of θ-invariant elements in
K. Let also ι = θ|K be the non-trivial automorphism of K/F . The discriminant
disch of a hermitian form h on a D-vector space V with respect to θ is defined as
in the case where D = K (see Section 2): considering a D-basis (ei)1≤i≤n of V , set
m = n degD = deg EndD V and

disch = (−1)m(m−1)/2 NrdMn(D)

(
h(ei, ej)

)
1≤i,j≤n

·N(K/F ) ∈ F×/N(K/F ).

Even though this element lies in the factor group F×/N(K/F ), the quaternion
F -algebra (K, disch)F is well-defined.

Lemma 3.8. If m is even,

[D(EndD V, adh)] =

{
[(K, disch)F ] if dimD V is even,

[(K, (−1)m/2 disch)F ] + [D(D, θ)] if dimD V is odd.
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Proof. Using the basis (ei)1≤i≤n of V , we may identify

EndD V = Mn(D) = Mn(F ) ⊗F D.

Under this identification, the involution adh is given by

adh(x) = ∆−1 · (t⊗ θ)(x) · ∆ for x ∈Mn(D),

where t is the transpose involution on Mn(F ) and

∆ =
(
h(ei, ej)

)
1≤i,j≤n

∈Mn(D).

By [15, (10.36)], it follows that

[D(EndD V, adh)] = [(K,Nrd ∆)F ] + [D(Mn(D), t⊗ θ)].

The last term on the right side is computed via Lemma 3.1(3):

[D(Mn(D), t⊗ θ)] =





[D(Mn(K), t⊗ ι)] if degD is odd and n is even,

0 if degD and n are even,

[D(D, θ)] if degD is even and n is odd.

To complete the proof, observe that

(Mn(K), t⊗ ι) ≃ (EndK Kn, ad〈1,...,1〉),

hence if n is even

[D(Mn(K), t⊗ ι)] = [(K, (−1)n/2)F ].

�

Corollary 3.9. Suppose sd2 F ≤ 2. Let h, h′ be hermitian forms on a D-vector
space V with respect to θ. The forms h, h′ are isometric if and only if disch =
disch′.

Proof. Since Witt cancellation holds for hermitian forms with respect to unitary
involutions by [21, Corollary 7.9.2], it suffices to prove that h ⊥ −h′ is hyperbolic
if and only if disch = disch′.

A computation yields

disc(h ⊥ −h′) = disch disch′,

hence Lemma 3.8 shows that disch = disch′ if and only if

[D(EndD(V ⊕ V ), adh⊥−h′)] = 0.

By Theorem 3.2, this equation holds if and only if adh⊥−h′ is hyperbolic, i.e. h ⊥
−h′ is hyperbolic. �

3.4. Classification of unitary involutions.

Corollary 3.10. Let B be a central simple algebra over an arbitrary field K, and
let τ , τ ′ be unitary involutions on B such that τ |K = τ ′|K . Let F ⊂ K be the
fixed subfield of τ |K and τ ′|K . Suppose sd2 F ≤ 2. If degB is odd, then τ and
τ ′ are conjugate. If degB is even, then τ and τ ′ are conjugate if and only if
D(B, τ) ≃ D(B, τ ′).
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Proof. Choose a representation B = EndD V for some vector space V over a central
division K-algebra D, and a unitary involution θ on D fixing F . By [15, (4.2)],
there are hermitian forms h, h′ on V with respect to θ such that

τ = adh, τ ′ = adh′ .

If degB is even, Lemma 3.8 shows that D(B, τ) ≃ D(B, τ ′) if and only if disch =
disch′. This condition is equivalent to h ≃ h′ by Corollary 3.9. Therefore, it implies
that τ and τ ′ are conjugate.

If degB is odd, let δ, δ′ ∈ F× be such that

disch = δN(K/F ), disch′ = δ′N(K/F ).

Then disc(δh) = disc(δ′h′) = 1, hence δh ≃ δ′h′ by Corollary 3.9. On the other
hand, adδh = adh = τ and adδ′h′ = adh′ = τ ′, so τ and τ ′ are conjugate. �

3.5. Conjecture II for groups of outer type An. Every simply connected ab-
solutely simple group of type 2An over a field F is isomorphic to SU(B, τ) for some
central simple algebra B of degree n + 1 over a quadratic extension K of F and
some unitary involution τ on B fixing F . Denote by µ the center of SU(B, τ).
There is an exact sequence

1 → µ → SU(B, τ)
π
−→ PGU(B, τ) → 1

inducing the following exact sequence in (flat) cohomology:

(9) PGU(B, τ)(F )
δ0

−→ H1(F,µ) → H1(F,SU(B, τ))
π1

−→ H1(F,PGU(B, τ)).

Recall from [15, §29.D] that H1(F,PGU(B, τ)) can be identified with the set of
isomorphism classes of triples (B′, τ ′, ϕ) consisting of a central simple algebra B′

of degree n + 1 over a quadratic extension K ′ of F , a unitary involution τ ′ on B′

fixing F and an F -algebra isomorphism ϕ : K ′ → K.

Lemma 3.11. If n is even, the image of π1 is the set of isomorphism classes of
triples (B, τ ′, IdK) where τ ′ is a unitary involution on B fixing F . If n is odd, the
image of π1 is the set of isomorphism classes of triples (B, τ ′, IdK) where τ ′ is a
unitary involution such that D(B, τ ′) ≃ D(B, τ).

Proof. By [15, §29.D], the setH1(F,SU(B, τ)) is in one-to-one correspondence with
the set of equivalence classes

{(s, z) ∈ Sym(τ) ×K× | NrdB(s) = NK/F (z)}/≈

where (s, z) ≈ (s′, z′) if and only if there exists b ∈ B× such that

s′ = bsτ(b) and z′ = NrdB(b)z.

The image under π1 of the class of (s, z) is represented by the triple (B, τ ′, IdK)
where τ ′ = Int(s) ◦ τ . If n is odd, [15, (10.36)] yields

(10) [D(B, τ ′)] = [D(B, τ)] + [(K,NrdB(s))F ] in Br(F ).

Since NrdB(s) = NK/F (z), the last term vanishes and thereforeD(B, τ ′) ≃ D(B, τ).

The image of π1 is therefore contained in the set described in the statement of the
lemma.

To prove the reverse inclusion, let τ ′ be an arbitrary unitary involution on B
fixing F . By [15, (2.18)], there exists a unit s ∈ Sym(τ) such that τ ′ = Int(s) ◦
τ . If n is odd and D(B, τ ′) ≃ D(B, τ), (10) shows that the quaternion algebra
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(K,NrdB(s))F splits, hence there exists z ∈ K× such that NrdB(s) = NK/F (z).

The isomorphism class of (B, τ ′, IdK) is the image under π1 of the class of (s, z).
If n is even, we have

NrdB(NrdB(s)s) = NrdB(s)n+2 = NK/F (NrdB(s)(n/2)+1).

The isomorphism class of (B, τ ′, IdK) is the image under π′ of the class of the pair
(NrdB(s)s,NrdB(s)(n/2)+1). �

Corollary 3.12. If sdp F ≤ 2 for p = 2 and for every prime factor of n+ 1, then
H1(F,SU(B, τ)) = 1.

Proof. A theorem of Gille [13, Théorème 6] shows that the map δ0 in (9) is surjec-
tive, hence kerπ1 = 1. On the other hand, Corollary 3.10 and Lemma 3.11 show
that im π1 = 1. �

4. Symplectic involutions

4.1. Classification. The main result of this section is the following:

Theorem 4.1. Let A be a central simple algebra of even degree over an arbitrary
field F , and let σ be a symplectic involution on A. If σ is hyperbolic, then indA
divides 1

2 degA. The converse holds if sd2 F ≤ 2.

The fact that indA divides 1
2 degA if σ is hyperbolic was already observed in

Section 1.4. The proof of the converse follows the same general pattern as Theo-
rem 3.2, which is the corresponding result for unitary involutions: we use induction
on indA to restrict to the centralizer of a quadratic extension, and thus reduce to
the unitary case. The main technical tool is the following lemma:

Lemma 4.2. Let (A, σ) be a central simple F -algebra with symplectic involution.
Assume degA ≡ 0 mod 8 and A contains a separable quadratic extension L of F
such that σ|L is the non-trivial automorphism ι of L/F , i.e.

(L, ι) →֒ (A, σ).

If the reduced norm map NrdA : A× → F× is surjective, there exists a central simple
F -algebra with symplectic involution (A′, σ′) and an embedding (L, ι) →֒ (A′, σ′)
with the following properties:

(1) degA′ ≡ 0 mod 4;
(2) (A′, σ′) is Witt-equivalent to (A, σ);

(3) for Ã′ = CentA′ L and σ̃′ = σ′|fA′
, the discriminant algebra D(Ã′, σ̃′) is

split.

Moreover, if indA divides 1
2 degA, then indA′ divides 1

2 degA′.

Proof. Let Ã = CentA L and σ̃ = σ|Ã. We have deg Ã = 1
2 degA, so deg Ã is even.

We may thus consider the discriminant algebra D(Ã, σ̃). By [15, (10.30)],

[D(Ã, σ̃) ⊗F L] = (1
2 deg Ã)[Ã],

hence the hypothesis that degA ≡ 0 mod 8 implies that D(Ã, σ̃) is split by L.
Therefore, we may find y ∈ F× such that

(11) [D(Ã, σ̃)] = (L, y)F .

Let D be a central division F -algebra which is Brauer-equivalent to A and let ρ
be an orthogonal involution on D. Since Nrd(A×) = Nrd(D×) = F×, there exists
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x ∈ D× such that NrdD(x) = y. The following dimension count argument due
to Dieudonné [15, p. 266] shows that x is the product of two symmetric elements:
since dimSym(ρ) > 1

2 dimD,

Sym(ρ) ∩ (xSym(ρ)) 6= {0},

hence we may find non-zero elements s1, s2 ∈ Sym(ρ) such that s1 = xs2, i.e.
x = s1s

−1
2 .

Let ∆ = diag(s1,−s
−1
2 ) ∈M2(D) = M2(F ) ⊗F D. Define an orthogonal involu-

tion σ1 on M2(D) by

σ1(x) = ∆ · (t⊗ ρ)(x) · ∆−1 for x ∈M2(D),

where t is the transpose involution on M2(F ). By [15, (7.3)],

(12) discσ1 = NrdM2(D)(∆)F×2 = NrdD(s1s
−1
2 )F×2 = yF×2.

Let J be the (unique) symplectic involution on EndF L ≃ M2(F ). Let also
A0 = M2(D) ⊗F EndF L and σ0 = σ1 ⊗ J , a symplectic involution on A0 which
is hyperbolic since J is hyperbolic. The regular representation L → EndF L is an
embedding

(L, ι) →֒ (EndF L, J) →֒ (A0, σ0).

Using the˜notation for the centralizer, we have

Ã0 = M2(D) ⊗F L and σ̃0 = σ1 ⊗ ι.

Therefore, [15, (10.33)] yields

[D(Ã0, σ̃0)] = (L, discσ1)F + (1
2 deg Ã0)[D].

Since degA0 = 4 degD, the last term on the right side vanishes. By (11) and (12),
it follows that

(13) [D(Ã0, σ̃0)] = [D(Ã, σ̃)].

Since A0 and A are Brauer-equivalent and σ0, σ have the same type, we may
consider an orthogonal sum

(A′, σ′) = (A, σ) ⊞ (A0, σ0),

see Proposition 1.3. This sum is Witt-equivalent to (A, σ) since σ0 is hyperbolic,
and

(14) degA′ = degA+ degA0 ≡ 0 mod 4.

The direct sum of the embeddings of L in A and A0 is an embedding

(L, ι) →֒ (A′, σ′)

such that, by Proposition 1.7,

(Ã′, σ̃′) = (Ã, σ̃) ⊞ (Ã0, σ̃0).

By Proposition 1.6 and (13),

[D(Ã′, σ̃′)] = [D(Ã, σ̃)] + [D(Ã0, σ̃0)] = 0.

Since indA = indA′ and degA0 = 4 degD = 4 indA, it follows from (14) that
indA′ divides 1

2 degA′ if indA divides 1
2 degA. �
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Proof of Theorem 4.1. We argue by induction on indA, considering separately the
cases where indA = 1 or 2. If indA = 1 the result is clear (without any hypothesis
on sd2 F ) since symplectic involutions on split algebras are hyperbolic. If indA = 2,
then A is Brauer-equivalent to a quaternion division F -algebra D, and we may
choose a representation

(A, σ) = (EndD V, adh)

where h is an even hermitian form on the even-dimensional D-vector space V with
respect to the conjugation involution on D. By Corollary 2.4, h (hence also σ) is
hyperbolic.

Now, suppose indA = 2k with k ≥ 2. Since indA divides 1
2 degA, it follows that

degA ≡ 0 mod 8. We show that σ is hyperbolic by induction on k.
The same arguments as in Lemma 3.3(2) (or [4, Lemma 3.3.3]) yield a separable

odd-degree extension E/F and a separable quadratic extension L/E such that
ind(A ⊗F L) = 2k−1. By the induction hypothesis, the involution σL = σ ⊗ IdL

on AL = A ⊗F L is hyperbolic. Therefore, Theorem 1.15 yields an embedding of
E-algebras with involution

(L, ι) →֒ (AE , σE).

Since sd2 F ≤ 2, a theorem of Gille [12, Théorème 7] shows that the reduced norm
map on AE is surjective. We may therefore apply Lemma 4.2 to find a central
simple E-algebra with symplectic involution (A′, σ′) which is Witt-equivalent to

(AE , σE) and such that D(Ã′, σ̃′) is split. Moreover, indA′ = indAE = 2k divides
1
2 degA′, so degA′ ≡ 0 mod 2k+1 and deg Ã′ ≡ 0 mod 2k. On the other hand,

since Ã′ is Brauer-equivalent to A′ ⊗F L, we have ind Ã′ = 2k−1, hence ind Ã′

divides 1
2 deg Ã′. By Theorem 3.2, it follows that σ̃′ is hyperbolic, hence there is

an idempotent e ∈ Ã′ such that σ̃′(e) = 1 − e. This idempotent also lies in A′ and
satisfies σ′(e) = 1 − e, hence σ′ is hyperbolic. As (AE , σE) is Witt-equivalent to
(A′, σ′), the involution σE also is hyperbolic. Theorem 1.13 then shows that σ is
hyperbolic, since the degree of E/F is odd. �

We next apply Theorem 4.1 to obtain a classification of skew-hermitian forms
and symplectic involutions.

Let D be a central division algebra over an arbitrary field F , and let θ be an
orthogonal involution on D. Recall from [15, (4.2)] that the adjoint involutions of
alternating skew-hermitian forms with respect to θ are symplectic.

Corollary 4.3. Suppose sd2 F ≤ 2 and let V be a D-vector space. Any two alter-
nating skew-hermitian forms h, h′ on V with respect to θ are isometric.

Proof. Since Witt cancellation holds for alternating skew-hermitian forms by [21,
Corollary 7.9.2], it suffices to prove that h ⊥ −h′ is hyperbolic or, equivalently, that
adh⊥−h′ is hyperbolic. This follows from Theorem 4.1 since ind EndD(V ⊕ V ) =
degD divides 1

2 deg EndD(V ⊕ V ) = dimD V degD. �

Corollary 4.4. Suppose sd2 F ≤ 2. Any two symplectic involutions σ, σ′ on a
central simple F -algebra A are conjugate.

Proof. Choose a representation A = EndD V for some vector space V over a central
division F -algebra D. Let also θ be an orthogonal involution on D. Then σ = adh

and σ′ = adh′ for some alternating skew-hermitian forms h, h′ on V by [15, (4.2)].
Corollary 4.3 shows that h ≃ h′, hence σ and σ′ are conjugate. �
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4.2. Conjecture II for groups of type Cn. Every simply connected absolutely
simple group of type Cn over a field F is isomorphic to the symplectic group
Sp(A, σ) for some central simple F -algebra A of degree 2n and some symplectic
involution σ on A. There is an exact sequence

1 → µ2 → Sp(A, σ)
π
−→ PGSp(A, σ) → 1

and an induced exact sequence in (flat) cohomology:

PGSp(A, σ)(F )
δ0

−→ H1(F,µ2) → H1(F,Sp(A, σ))
π1

−→ H1(F,PGSp(A, σ)).

Corollary 4.5. If sd2 F ≤ 2, then H1(F,Sp(A, σ)) = 1.

Proof. By a theorem of Gille [13, Théorème 6], the map δ0 is surjective, hence
kerπ1 = 1. To complete the proof, we show imπ1 = 1.

Note that π factors through the inclusion

Sp(A, σ) →֒ GSp(A, σ).

By [15, (29.23)], the set H1(F,GSp(A, σ)) can be identified with the set of conju-
gacy classes of symplectic involutions on A. Corollary 4.4 then yields

H1(F,GSp(A, σ)) = 1,

hence imπ1 = 1. �

5. Quadratic pairs

5.1. Classification. For the next theorem, recall from [15, (8.10)] that the dis-
criminant of a quadratic pair (σ, f) on a central simple F -algebra A determines the
center of the Clifford algebra C(A, σ, f). In particular, if the discriminant is trivial,
then C(A, σ, f) decomposes as a direct product of two central simple F -algebras,

C(A, σ, f) ≃ C+ × C−.

Theorem 5.1. Let F be an arbitrary field and let (σ, f) be a quadratic pair on a
central simple F -algebra of even degree. If (σ, f) is hyperbolic, then indA divides
1
2 degA, disc(σ, f) is trivial and one (at least) of the components C± of C(A, σ, f)
is split. The converse holds if sd2 F ≤ 2.

Proof. If (σ, f) is hyperbolic, then indA divides 1
2 degA as was observed in Sec-

tion 1.4. Moreover, disc(σ, f) is trivial and one of the components of C(A, σ, f) is
split by [15, (8.31)].

To prove the converse, we argue by induction on indA. If indA = 1, then
A is split and the theorem follows from Theorem 2.1. For the rest of the proof,
assume indA = 2k with k ≥ 1, hence degA is divisible by 2k+1. Arguing as
in Lemma 3.3(2) (or by [4, Lemma 3.3.3]), we may find a separable odd-degree
extension E/F and a separable quadratic extension L/E such that indAL = 2k−1.
Note that indAE = 2k since the degree of E/F is odd, hence AE is not split.
By the induction hypothesis, the quadratic pair (σL, fL) is hyperbolic. Therefore,
Theorem 1.16 yields an embedding ε : L →֒ AE such that

TrdAE
(ε(ℓ)x) = TL/E(ℓ)fE(x) for all x ∈ Sym(σE) and ℓ ∈ L.

Let Ã = CentAE
L be the centralizer of ε(L) and let σ̃ = σ|Ã, a unitary involution

on Ã. Since k ≥ 1 and 2k+1 divides degA, we have degA ≡ 0 mod 4. It follows
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from [11, Lemma 4.5]5 that, substituting for (A, σ, f) a Witt-equivalent algebra with

quadratic pair if necessary, we may assume that D(Ã, σ̃) is split. Since ind Ã =

indAL = 2k−1 divides 1
2 deg Ã = 1

4 degA and sd2E ≤ 2, Theorem 3.2 shows that
σ̃ is hyperbolic. Therefore (σE , fE) is hyperbolic by [11, Lemma 4.3], hence (σ, f)
is hyperbolic by Theorem 1.14. �

Following the pattern of Sections 3 and 4, we now derive from Theorem 5.1 the
classification of generalized quadratic forms.

Let D be a central division algebra over an arbitrary field F , and let V be a
D-vector space. Assume degD dimD V is even, and consider the factor group

BD = Br(F )/{0, [D]}.

For generalized quadratic forms q, q′ on V with disc q = disc q′, the quadratic pair
(σ, f) adjoint to q ⊥ −q′ has trivial discriminant, hence

C(EndD(V ⊕ V ), σ, f) = C+ × C−

for some central simple F -algebras C+, C−. Since degD dimD V is even, it follows
that deg EndD(V ⊕ V ) ≡ 0 mod 4, hence by [15, (9.12)]

2[C] = 2[C′] = 0 and [C+] + [C−] = [D] in Br(F ).

Therefore, [C+] and [C−] have the same image in BD, and we may set

c(q, q′) = image of [C+] or [C−] in BD.

This relative invariant of q and q′ was first defined by Bartels through Galois co-
homology under the assumption that charF 6= 2, see [2, Section 7]. The definition
above comes from [11, Section 2].

Corollary 5.2. Suppose sd2 F ≤ 2. The forms q, q′ are isometric if and only if
disc q = disc q′ and c(q, q′) = 0.

Proof. The forms q, q′ are isometric if and only if the quadratic pair (σ, f) adjoint
to q ⊥ −q′ is hyperbolic. By Theorem 5.1, this condition holds if and only if one
(at least) of the components C± is split, i.e. c(q, q′) = 0. �

Corollary 5.3. Suppose sd2 F ≤ 2. Quadratic pairs (σ, f), (σ′, f ′) on a cen-
tral simple F -algebra A of even degree are conjugate if and only if C(A, σ, f) ≃
C(A, σ′, f ′) as F -algebras.

Proof. The “only if” part is clear. We only sketch the arguments for the “if”
part and refer to [16, Proposition 6] and [11, Theorem 5.3] for details. Choose a
representation A = EndD V and quadratic forms q, q′ on V whose adjoint quadratic
pairs are (σ, f) and (σ′, f ′). For any λ ∈ F×, let (σλ, fλ) be the quadratic pair on
M2(A) = EndD(V ⊕ V ) adjoint to q ⊥ 〈−λ〉q′. Since C(A, σ, f) ≃ C(A, σ′, f ′), we
have disc q = disc q′, hence there are central simple F -algebras C+

λ , C−
λ such that

C(M2(A), σλ, fλ) ≃ C+
λ × C−

λ .

The hypothesis C(A, σ, f) ≃ C(A, σ′, f ′) further implies that the center Z of
C(A, σ, f) splits one of C+

λ , C−
λ . If it splits C+

λ , then there exists µ ∈ F× such that

[C+
λ ] = [(Z, µ)F ].

5The arguments in §4 of [11] hold without change in characteristic different from 2.
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Then C+
λµ splits, hence c(q, 〈λµ〉q′) = 0 and it follows from Corollary 5.2 that

q ≃ 〈λµ〉q′. Since (σ′, f ′) is also adjoint to 〈λµ〉q′, we conclude that (σ, f) and
(σ′, f ′) are conjugate. �

5.2. Conjecture II for groups of type Dn. The simply connected absolutely
simple groups of type Dn (trialitarian D4 excluded) over a field F are isomorphic
to spin groups Spin(A, σ, f) where A is a central simple F -algebra of degree 2n
and (σ, f) is a quadratic pair on A. Let µ be the center of Spin(A, σ, f). There is
an exact sequence (see [15, §31.A])

(15) 1 → µ → Spin(A, σ, f)
χ
−→ PGO+(A, σ, f) → 1

and an induced exact sequence in (flat) cohomology

PGO+(A, σ, f)(F )
δ0

−→H1(F,µ) →

→ H1(F,Spin(A, σ, f))
χ1

−→ H1(F,PGO+(A, σ, f)).

(16)

Let Z be the center of the Clifford algebra C(A, σ, f). Recall from [15, §29.F] that
the elements in H1(F,PGO+(A, σ, f)) can be identified with the F -isomorphism
classes of 4-tuples (A′, σ′, f ′, ϕ) consisting of a central simple F -algebra A′ of de-
gree 2n, a quadratic pair (σ′, f ′) on A′ and an isomorphism ϕ : Z ′ → Z from the
center Z ′ of C(A′, σ′, f ′) to Z.

Lemma 5.4. If (A′, σ′, f ′, ϕ) represents an element in the image of χ1, then A′ ≃ A
and ϕ extends to an F -algebra isomorphism C(A′, σ′, f ′) ≃ C(A, σ, f).

Proof. As in the proof of Lemma 2.5, we relate the exact sequence (15) to the exact
sequence derived from the Skolem-Noether theorem, using the homomorphism ρ
arising from the functorial property of Clifford algebras:

1 −−−−→ µ −−−−→ Spin(A, σ, f)
χ

−−−−→ PGO+(A, σ, f) −−−−→ 1
y

y
yρ

1 −−−−→ GL1(Z) −−−−→ GL1(C(A, σ, f))
Int

−−−−→ AutZ(C(A, σ, f)) −−−−→ 1.

There is an induced commutative diagram

H1(F,PGO+(A, σ, f))
δ1

−−−−→ H2(F,µ)

ρ1

y
y

H1
(
F,AutZ(C(A, σ, f))

) ∂1

−−−−→ H2(F,GL1(Z)).

If (A′, σ′, f ′, ϕ) represents an element in imχ1 = ker δ1, then

(17) ∂1 ◦ ρ1(A′, σ′, f ′, ϕ) = 1.

To compute the left side, recall from [15, (29.13)] that H1
(
F,AutZ(C(A, σ, f))

)

can be identified with the set of F -isomorphism classes of pairs (C,ψ) consisting of
an F -algebra C and an F -algebra embedding ψ : Z →֒ C which become isomorphic
over the separable closure of F to the pair (C(A, σ, f), i) where i : Z →֒ C(A, σ, f)
is the inclusion. Under this identification, ρ1(A′, σ′, f ′, ϕ) is represented by the pair
(C(A′, σ′, f ′), ϕ−1). On the other hand, GL1(Z) can be viewed as the Weil transfer
of the multiplicative group over Z, and we have by Shapiro’s lemma

H2(F,GL1(Z)) = H2(F,RZ/F (Gm,Z )) = H2(Z,Gm,Z ) = Br(Z).
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Under these identifications,

∂ ◦ ρ1(A′, σ′, f ′, ϕ) = [C(A′, σ′, f ′) ⊗Z′ Z] − [C(A, σ, f)] in Br(Z),

where the tensor product is taken with respect to ϕ. Therefore, (17) yields

C(A′, σ′, f ′) ⊗Z′ Z ≃ C(A, σ, f) as Z-algebras,

hence ϕ extends to an F -algebra isomorphism C(A′, σ′, f ′) ≃ C(A, σ, f).
To prove A′ ≃ A, observe that the map χ1 factors through the canonical map

H1(F,GO+(A, σ, f)) → H1(F,PGO+(A, σ, f)).

From the description of the set on the left in [15, §29.F], it follows that the image
consists of F -isomorphism classes of 4-tuples (A′, σ′, f ′, ϕ) where A′ = A. �

Corollary 5.5. If sd2 F ≤ 2, then H1(F,Spin(A, σ, f)) = 1.

Proof. Consider the exact sequence (16). By a theorem of Gille [13, Théorème 6]
the map δ0 is surjective, hence kerχ1 = 1. On the other hand, if (A′, σ′, f ′, ϕ)
represents an element in imχ1, then by Lemma 5.4 and Corollary 5.3

(A′, σ′, f ′, ϕ) ≃ (A, σ, f, IdZ).

Therefore imχ1 = 1 and the proof is complete. �

Appendix A. The Witt kernel of odd-degree and separable

quadratic extensions

In this appendix, we give the proofs of the results stated in Section 1.5.

A.1. Metabolic involutions. Besides hyperbolic involutions, we need in Sec-
tion A.2 the weaker notion of metabolic involution, which we define below after
the following easy observation on idempotents in central simple algebras:

Lemma A.1. Let A be a central simple algebra of even degree over a field F and
let e, e′ ∈ A be two idempotents. Any two of the following conditions imply the
third one:

(a) ee′ = 0,
(b) (1 − e′)(1 − e) = 0,
(c) dimF eA+ dimF e

′A = dimF A.

In particular, if dimF eA = dimF e
′A = 1

2 dimF A, then ee′ = 0 if and only if
(1 − e′)(1 − e) = 0.

Proof. Condition (a) is equivalent to e′ = (1 − e)e′, hence also to e′A ⊂ (1 − e)A.
Likewise, condition (b) is equivalent to the reverse inclusion (1 − e)A ⊂ e′A. Since

A = eA⊕ (1 − e)A,

we have dimF (1 − e)A = dimF A− dimF eA, hence condition (c) is equivalent to

dimF e
′A = dimF (1 − e)A.

The lemma is now clear. �
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Definition A.2. Let A be a central simple algebra of even degree over an arbitrary
field F . An involution µ (of any type) on A is called metabolic if A contains an
idempotent e such that µ(e)e = 0 and

(18) dimF eA = 1
2 dimF A.

Since

(19) dimµ(e)A = dimµ(Ae) = dimAe = dim eA,

it follows by Lemma A.1 that

(20) (1 − e)(1 − µ(e)) = 0.

Note that if the idempotent e satisfies µ(e)e = 0 and (20), then Lemma A.1 and
(19) show that it also satisfies (18). Therefore, we may substitute (20) for (18) in
the requirements for e.

If A is represented as in (1) as the algebra of endomorphisms of some hermitian
or skew-hermitian space (V, h), the involution µ = adh is metabolic if and only if V
contains a totally isotropic subspace U with dimD U = 1

2 dimD V (or, equivalently,

U⊥ = U).

Proposition A.3. A symplectic or unitary involution is metabolic if and only if it
is hyperbolic.

Proof. If µ is symplectic or unitary, we may find x ∈ A such that µ(x) = 1 − x,
see [15, (2.6), (2.17)]. If e ∈ A is an idempotent such that µ(e)e = 0 and dim eA =
1
2 dimA, let

e′ = e− exµ(e).

Computation shows that e′ is an idempotent. Moreover,

µ(e′) = µ(e) − eµ(x)µ(e) = µ(e) − eµ(e) + exµ(e).

In view of (20), the right side is 1 − e′, hence µ is hyperbolic.
Conversely, any idempotent e ∈ A such that µ(e) = 1−e clearly satisfies µ(e)e =

0 and (1 − e)(1 − µ(e)) = 0. �

Corollary A.4. Let K be an arbitrary field. Let (A, σ) be a central simple K-
algebra with involution of symplectic or unitary type, and let F ⊂ K be the subfield
of σ-invariant elements (so F = K if σ is symplectic). If B is a central simple
F -algebra with a metabolic orthogonal involution µ, then the involution σ ⊗ µ on
A⊗F B is hyperbolic.

Proof. To simplify notation, let τ = σ ⊗ µ. Let e ∈ B be an idempotent such that
µ(e)e = 0 and (1 − e)(1 − µ(e)) = 0, and let e′ = 1 ⊗ e ∈ A ⊗ B. This is an
idempotent such that τ(e′)e′ = 0 and (1 − e′)(1 − τ(e′)) = 0, hence τ is metabolic.
Moreover, since µ is orthogonal, τ has the same type as σ, hence the corollary
follows from Proposition A.3. �

The next proposition gives a corresponding result for quadratic pairs. Recall
from [15, (5.18)] that if (σ, f) is a quadratic pair on a central simple F -algebra A
and µ is an orthogonal involution on a central simple F -algebra B, a quadratic pair
(σ ⊗ µ, f∗) is defined on A⊗F B by the condition

f∗(x⊗ y) = f(x)TrdB(y) for x ∈ Sym(σ) and y ∈ Sym(µ).

Proposition A.5. The quadratic pair (σ ⊗ µ, f∗) is hyperbolic if µ is metabolic.
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Proof. Let e ∈ B be an idempotent such that µ(e)e = 0 and (1 − e)(1 − µ(e)) = 0,
and let ℓ ∈ A be such that

TrdA(ℓx) = f(x) for x ∈ Sym(σ).

Let e′ = 1 ⊗ e− ℓ⊗ eµ(e). To prove the proposition, we show that

(21) f∗(z) = TrdA⊗B(e′z) for z ∈ Sym(σ ⊗ µ).

By Remark 1.10, we have σ(ℓ) = 1− ℓ, hence the same computation as in the proof
of Proposition A.3 yields

(σ ⊗ µ)(e′) = 1 − e′.

By Remark 1.10, it follows that (21) holds for z ∈ Symd(σ ⊗ µ). Since

Sym(σ ⊗ µ) = Symd(σ ⊗ µ) + Sym(σ) ⊗ Sym(µ)

by [15, (5.17)], it suffices to prove (21) for z ∈ Sym(σ) ⊗ Sym(µ).
For x ∈ Sym(σ) and y ∈ Sym(µ), we have

TrdA⊗B(e′ · x⊗ y) = TrdA(x)TrdB(ey) − TrdA(ℓx)TrdB(eµ(e)y).

Since TrdA(x) = 2f(x) = 2 TrdA(ℓx), the right side is

(22) f(x)
(
2 TrdB(ey) − TrdB(eµ(e)y)

)
.

Now, use TrdB(ey) = TrdB(µ(ey)) = TrdB(µ(e)y) to rewrite (22) in the form

f(x)TrdB((e+ µ(e) − eµ(e))y).

Since (1 − e)(1 − µ(e)) = 0 we have e+ µ(e) − eµ(e) = 1, hence finally

TrdA⊗B(e′ · x⊗ y) = f(x)TrdB(y),

proving (21) for z = x⊗ y. �

A.2. The Witt kernel of an odd-degree extension. We now turn to the proof
of Theorems 1.13 and 1.14, and use the notation of these theorems. Arguing by
induction on the number of generators, we may restrict to the case where E/F is a
simple extension. Let E = F (u), dimF E = n, and define a linear map s : E → F
by

s(α0 + α1u+ · · · + αn−1u
n−1) = α0 for α0, . . . , αn−1 ∈ F .

Consider the symmetric bilinear form b : E × E → F defined by

b(x, y) = s(xy) for x, y ∈ E.

This form is regular, so we may consider the adjoint orthogonal involution adb on
EndF E. The regular representation E → EndF E is an embedding

(E, IdE) →֒ (EndF E, adb).

Composing s with the embedding F →֒ E, we may view s as an idempotent in
EndF E. For x, y ∈ E,

b(x, s(y)) = s(x)s(y) = b(s(x), y),

hence adb(s) = s. Let E0 = ker s and s0 = 1− s. Let also b0 be the restriction of b
to E0.

Lemma A.6. The involution adb0 is metabolic.

Proof. The span of u, . . . , u(n−1)/2 is a totally isotropic subspace of E0 of dimension
1
2 dimE0. Any projection on this subspace is an idempotent e such that adb0(e)e = 0

and dimF (eEndF E0) = 1
2 dimF EndF E. �
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Proposition A.7. Let (A, σ) be a central simple algebra with involution as in The-
orem 1.13. The algebra with involution (A⊗F EndF E, σ ⊗ adb) is Witt-equivalent
to (A, σ). Similarly, every central simple algebra with quadratic pair (A, σ, f) as in
Theorem 1.14 is Witt-equivalent to (A⊗F EndF E, σ⊗ adb, f∗), where f∗ is defined
as in Proposition A.5.

Proof. For every symmetric idempotent e ∈ EndF E, we may identify

e(EndF E)e = EndF im e,

and the restriction of adb to this algebra is the adjoint involution with respect to
the restriction of b to im e. In particular, for e = s and e = s0,

s(EndF E)s = EndF F = F and s0(EndF E)s0 = EndF E0,

and the restriction of adb to these algebras is IdF , resp. adb0 . Tensoring with A,
we obtain

(1 ⊗ s)(A⊗F EndF E)(1 ⊗ s) = A

and

(1 ⊗ s0)(A⊗F EndF E)(1 ⊗ s0) = A⊗F EndF E0,

hence an orthogonal sum decomposition

(A⊗F EndF E, σ ⊗ adb) = (A, σ) ⊞ (A⊗F EndF E0, σ ⊗ adb0).

The first part follows, since the last summand is hyperbolic by Lemma A.6 and
Corollary A.4.

If (σ, f) is a quadratic pair on a central simple F -algebra A, we obtain likewise
an orthogonal sum decomposition

(A⊗F EndF E, σ ⊗ adb, f∗) = (A, σ, f) ⊞ (A⊗F EndF E0, σ ⊗ adb0 , f∗),

and the second part follows by Lemma A.6 and Proposition A.5. �

Proof of Theorem 1.13. The regular representation E → EndF E yields an embed-
ding

(E, IdE) →֒ (EndF E, adb).

Tensoring with (A, σ), we obtain

(AE , σE) →֒ (A⊗F EndF E, σ ⊗ adb).

If σE is hyperbolic, we may find an idempotent e ∈ AE such that σE(e) = 1 − e.
Viewing this idempotent in A⊗ EndF E, we also have

(σ ⊗ adb)(e) = 1 − e,

hence σ ⊗ adb is hyperbolic. It follows that σ is hyperbolic since (A, σ) and (A⊗F

EndF E, σ ⊗ adb) are Witt-equivalent by Proposition A.7. �

Proof of Theorem 1.14. The proof follows the same pattern as the proof of Theo-
rem 1.13. The regular representation of E yields an embedding

(AE , σE) →֒ (A⊗F EndF E, σ ⊗ adb).

The main point is to show that (σ⊗ adb, f∗) is hyperbolic if (σE , fE) is hyperbolic.
The conclusion then follows from Proposition A.7.

Let e ∈ AE be an idempotent such that

(23) fE(x) = TrdAE
(ex) for all x ∈ Sym(σE).
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To complete the proof, we show that

(24) f∗(z) = TrdA⊗EndE(ez) for all z ∈ Sym(σ ⊗ adb).

Since σE(e) = 1− e by Remark 1.10, we have (σ⊗ adb)(e) = 1− e. Therefore, as in
the proof of Proposition A.5, it suffices to prove (24) for z ∈ Sym(σ) ⊗ Sym(adb).
Thus, we aim to prove

(25) f(x)Tr(y) = TrdA⊗End E(e · x⊗ y) for x ∈ Sym(σ) and y ∈ EndF E.

Let ρv ∈ EndE denote the image of v ∈ E under the regular representation, i.e.
ρv(w) = vw for v, w ∈ E. Using the basis 1, u, . . . , un−1 of E, it is easily seen that
(ρui ◦ s ◦ ρuj )0≤i,j≤n−1 is a basis of EndE, hence EndE is spanned by elements of
the form ρv ◦ s ◦ ρw with v, w ∈ E. Moreover, computation shows

Tr(ρv ◦ s) = s(v) for v ∈ E.

Claim. For a ∈ AE , TrdA⊗EndE(a · 1 ⊗ s) = s
(
TrdAE

(a)
)
.

Since both sides are linear in a, it suffices to prove the claim for a = a0 ⊗ v with
a0 ∈ A and v ∈ E. Then

Trd(a · 1 ⊗ s) = TrdA(a0)Tr(ρv ◦ s) = TrdA(a0)s(v) = s
(
TrdAE

(a)
)
,

proving the claim.

We may now prove (25). Since both sides are linear in y, it suffices to prove it
when y = ρv ◦ s ◦ ρw for some v, w ∈ E. We may then decompose

x⊗ y = (x⊗ ρv)(1 ⊗ s)(1 ⊗ ρw).

Since e ∈ AE ⊂ A⊗ EndE commutes with 1 ⊗ ρw, we have

Trd(e · x⊗ y) = Trd
(
e · (x⊗ ρw ◦ ρv) · (1 ⊗ s)

)
.

Using the claim proved above and (23), we may simplify the right side to

s
(
TrdAE

(e · x⊗ vw)
)

= s
(
f(x)vw

)
= f(x)s(vw).

Equation (25) follows, since

Tr(y) = Tr(ρv ◦ s ◦ ρw) = Tr(ρw ◦ ρv ◦ s) = s(vw).

�

A.3. The Witt kernel of a separable quadratic extension. We now turn to
the proof of Theorems 1.15 and 1.16. The following lemma already yields the “if”
part of these results:

Lemma A.8. Let A be an F -algebra, and let σ be an F -linear involution on A. Let
also L/F be a separable quadratic field extension with non-trivial automorphism ι.
If there is an embedding ε : (L, ι) →֒ (A, σ), then A⊗F L contains an idempotent e
such that σL(e) = 1 − e. If A is central simple and (σ, f) is a quadratic pair on A,
and if there is an embedding ε : L →֒ A such that (3) holds, then A⊗F L contains
an idempotent e such that fL(x) = TrdAL

(ex) for all x ∈ Sym(σL).

Proof. Let ℓ ∈ L \ F and

s = (1 ⊗ ℓ− ℓ⊗ 1)(1 ⊗ (ℓ− ι(ℓ))−1) ∈ L⊗F L.

The element s is the separability idempotent of L. It satisfies

(ι⊗ IdL)(s) = 1 − s = (IdL ⊗ι)(s),
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and therefore it is mapped under ε⊗ IdL : L ⊗F L →֒ A⊗F L to an idempotent e
such that σL(e) = 1 − e.

Now, assume (σ, f) is a quadratic pair on the central simple F -algebra A and ε
satisfies (3). For x ∈ Sym(σ),

TrdAL
(e(x⊗ 1)) = TrdA(x)

ℓ

ℓ− ι(ℓ)
− TrdA(ε(ℓ)x)

1

ℓ− ι(ℓ)

= TrdA(x)
ℓ

ℓ− ι(ℓ)
− TL/F (ℓ)f(x)

1

ℓ− ι(ℓ)
.

Since TL/F (ℓ) = ℓ+ ι(ℓ) and TrdA(x) = 2f(x), the right side is f(x). By linearity,
it follows that TrdAL

(ex) = fL(x) for all x ∈ Sym(σL). �

We now consider the “only if” part of Theorem 1.15 in the anisotropic case.

Lemma A.9. Using the same notation as in Theorem 1.15, suppose (A, σ) is
anisotropic. If σL is hyperbolic, then there is an embedding ε : (L, ι) →֒ (A, σ).

Proof. Let e ∈ AL be an idempotent such that σL(e) = 1 − e. As observed in the
proof of Proposition A.3, this condition implies

(26) dimL(1 − e)AL =
1

2
dimL AL, hence dimF (1 − e)AL = dimF A.

It also implies σ(x)x = 0 for x ∈ (1 − e)AL, hence

(A⊗ 1) ∩ (1 − e)AL = {0}

since σ on A is anisotropic. Moreover, we have

dimF (A⊗ 1) + dimF (1 − e)AL = 2 dimF A = dimF AL,

hence
AL = (A⊗ 1) ⊕ (1 − e)AL.

Therefore, for x ∈ AL there is a unique a ∈ A such that x − (a ⊗ 1) ∈ (1 − e)AL,
i.e.

e(x− (a⊗ 1)) = 0.

We may then define a map ε : L→ A as follows: for ℓ ∈ L, ε(ℓ) ∈ A is the unique
element such that

e(1 ⊗ ℓ− ε(ℓ) ⊗ 1) = 0.

The map ε clearly is F -linear and injective, and ε(1) = 1. Moreover, for ℓ, ℓ′ ∈ L
we have

1 ⊗ ℓ′ℓ− ε(ℓ)ε(ℓ′) ⊗ 1 = (1 ⊗ ℓ′ − ε(ℓ′) ⊗ 1)(1 ⊗ ℓ) + (1 ⊗ ℓ− ε(ℓ) ⊗ 1)(ε(ℓ′) ⊗ 1),

so
e(1 ⊗ ℓℓ′ − ε(ℓ)ε(ℓ′) ⊗ 1) = 0,

and therefore
ε(ℓℓ′) = ε(ℓ)ε(ℓ′).

This proves that ε is an F -algebra embedding L →֒ A. To show that ε ◦ ι = σ ◦ ε,
consider ℓ ∈ L \ F and

(27) e′ = (1 ⊗ ℓ− ε(ℓ) ⊗ 1)(1 ⊗ (ℓ− ι(ℓ))−1) ∈ AL.

This is an idempotent (it is the image under ε⊗ IdL of the separability idempotent
of L), and it satisfies

(IdA ⊗ι)(e′) = 1 − e′.
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Since dimL(IdA ⊗ι)(e′)AL = dimL e
′AL and AL = e′AL ⊕ (1 − e′)AL,

(28) dimL e
′AL = 1

2 dimL AL, and therefore dimF e
′AL = dimF A.

By definition of ε(ℓ), we have ee′ = 0, hence by (26) and (28) Lemma A.1 yields

(1 − e′)(1 − e) = 0.

Applying σL, we obtain

(29) e(1 − σL(e′)) = 0.

On the other hand,

1 − e′ = (IdA ⊗ι)(e′) = (1 ⊗ ι(ℓ) − ε(ℓ) ⊗ 1)(1 ⊗ (ι(ℓ) − ℓ)−1),

hence (29) yields ε ◦ ι(ℓ) = σ ◦ ε(ℓ). �

The corresponding result for quadratic pairs is the following:

Lemma A.10. Using the same notation as in Theorem 1.16, suppose (σ, f) is
anisotropic. If (σL, fL) is hyperbolic, then there is an embedding ε : L →֒ A satis-
fying (3).

Proof. Let e ∈ AL be an idempotent such that fL(x) = TrdAL
(ex) for x ∈ Sym(σL).

By Remark 1.10,

e+ σL(e) = 1.

The ideal (1 − e)AL is isotropic, hence the same arguments as in the proof of
Lemma A.9 show that

AL = (A⊗ 1) ⊕ (1 − e)AL

and yield an F -algebra embedding ε : L →֒ A defined by

e(1 ⊗ ℓ− ε(ℓ) ⊗ 1) = 0 for ℓ ∈ L.

As in the proof of Lemma A.9, we have

σ ◦ ε = ε ◦ ι.

Condition (3) holds for ℓ ∈ F since then

TL/F (ℓ)f(x) = 2ℓf(x) = ℓTrdA(x) for x ∈ Sym(σ).

Now, let ℓ ∈ L \ F and consider the idempotent e′ defined in (27). To simplify
notation, denote = IdA ⊗ι. Since σ ◦ ε = ε ◦ ι, we have

(30) σL(e′) = 1 − e′ = e′.

For x ∈ Sym(σ),

TrdAL
(e(x ⊗ 1)) = f(x) ∈ F,

hence

TrdAL
(e(x⊗ 1)) = TrdAL

(e(x ⊗ 1)).

By linearity, it follows that

TrdAL
((e− e)x) = 0 for x ∈ Sym(σL).

In particular,

(31) TrdAL
((e− e)σL(e′)xe′) = 0 for x ∈ Sym(σL).

Applying to ee′ = 0, and taking (30) into account, we obtain

eσL(e′) = 0.
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On the other hand, it also follows from ee′ = 0 and (30) that

eσL(e′) = e.

Therefore, (31) yields

TrdAL
(exe′) = 0 for x ∈ Sym(σL).

Substituting for e′ the right side of (27), we obtain

(32) TrdAL
((ε(ℓ) ⊗ 1)ex) = TrdAL

(ex)ℓ = fL(x)ℓ for x ∈ Sym(σL).

Similarly, ee′ = 0 yields TrdAL
(ee′x) = 0, hence

TrdAL
(e(ε(ℓ) ⊗ 1)x) = TrdAL

(ex)ℓ = fL(x)ℓ for x ∈ Sym(σL).

Substituting ι(ℓ) for ℓ in the last equation, and using σ ◦ ε = ε ◦ ι, we also have for
x ∈ Sym(σL)

(33) TrdAL
((ε(ℓ) ⊗ 1)σL(e)x) = TrdAL

(xe(ε ◦ ι(ℓ) ⊗ 1)) = fL(x)ι(ℓ).

Adding (32) and (33), and using σL(e) + e = 1, we finally obtain

TrdAL
((ε(ℓ) ⊗ 1)x) = TL/F (ℓ)fL(x) for x ∈ Sym(σL),

proving (3). �

Lemma A.11. Using the same notation as in Theorem 1.15, suppose σ is hyper-
bolic. Then there is an embedding ε : (L, ι) →֒ (A, σ).

Proof. Since σ is hyperbolic, we have A ≃M2(A
′) ≃M2(F )⊗F A

′ for some central
simple K-algebra A′ which has involutions of the same kind as σ. Let σ′ be an
involution on A′, of orthogonal type if σ is symplectic, of unitary type if σ is unitary,
with σ′|K = σ|K , and let J be the (unique) symplectic involution on M2(F ),

J(x) = Tr(x) − x for x ∈M2(F ).

Since J is hyperbolic, the involution J⊗σ′ on M2(F )⊗F A
′ is hyperbolic. As hyper-

bolic involutions of a given type on a central simple algebra are all conjugate (since
hyperbolic hermitian or skew-hermitian forms of a given dimension are isometric),
it follows that

(A, σ) ≃ (M2(F ) ⊗F A′, J ⊗ σ′).

Now, let ℓ ∈ L \ F and define

b(x, y) =
ι(x)y − xι(y)

ℓ− ι(ℓ)
for x, y ∈ L.

The map b : L×L→ F is a nonsingular alternating bilinear form, hence its adjoint
involution adb on EndF L is symplectic, and

(34) (EndF L, adb) ≃ (M2(F ), J).

Moreover, for u, x, y ∈ L,
b(ux, y) = b(x, ι(u)y),

hence the regular representation L→ EndF L is an embedding

(35) (L, ι) →֒ (EndF L, adb).

The lemma follows by composing the maps

(L, ι) →֒ (EndF L, adb) ≃ (M2(F ), J) →֒ (M2(F ) ⊗F A′, J ⊗ σ′) ≃ (A, σ).

�
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Lemma A.12. Using the same notation as in Theorem 1.16, suppose (σ, f) is
hyperbolic and degA ≡ 0 mod 4. Then there is an embedding ε : L →֒ A satisfying
(3).

Proof. Since (σ, f) is hyperbolic, we have A ≃ M2(A
′) ≃ M2(F ) ⊗F A′ for some

central simple F -algebra A′ with involutions of the first kind. The degree of A′ is
even since degA is divisible by 4, hence A′ carries an involution σ′ of symplectic
type. Let J be the (unique) symplectic involution on M2(F ). We may consider the
quadratic pair (J ⊗ σ′, f⊗) determined by the condition

f⊗(x1 ⊗ x2) = 0 for x1 ∈ Skew(J) and x2 ∈ Skew(σ′),

see [15, (5.20)].

Claim: The quadratic pair (J ⊗ σ′, f⊗) is hyperbolic.

Consider e =
(

1 0
0 0

)
⊗ 1 ∈M2(F ) ⊗A′. To prove the claim, we show that

(36) f⊗(x) = Trd(ex) for x ∈ Sym(J ⊗ σ′).

By [15, (5.17)],

(37) Sym(J ⊗ σ′) = Symd(J ⊗ σ′) + Sym(J) ⊗ Sym(σ′),

hence it suffices to prove (36) for x ∈ Symd(J ⊗σ′) and for x ∈ Sym(J)⊗Sym(σ′).
Remark 1.10 shows that (36) holds for x ∈ Symd(J ⊗ σ′).

Suppose next x = x1 ⊗ x2 with x1 ∈ Sym(J) and x2 ∈ Sym(σ′). Then

Trd(ex) = Tr
((

1 0
0 0

)
x1

)
TrdA′(x2).

If charF = 2, then TrdA′(x2) = 0 since σ′ is symplectic. On the other hand,
Sym(J) = Skew(J) and Sym(σ′) = Skew(σ′), so f⊗(x) = 0 by definition.

If charF 6= 2, then Sym(J) = F , hence

Trd(ex) = x1 TrdA′(x2).

On the other hand,
f⊗(x) = 1

2 Trd(x) = x1 TrdA′(x2),

so the claim is proved.
Since all the hyperbolic quadratic pairs on a given central simple algebra are

conjugate (because hyperbolic quadratic forms of a given dimension are isometric),
we may assume henceforth (A, σ, f) = (M2(F ) ⊗F A′, J ⊗ σ′, f⊗).

To complete the proof, we show that the embedding ε : L →֒ A which factors
through the regular representation ρ : L→ EndF L satisfies (3). Again, by (37), it
suffices to prove (3) for x ∈ Symd(J ⊗ σ′) and for x ∈ Sym(J) ⊗ Sym(σ′).

If x ∈ Symd(J ⊗ σ′), let x = y + (J ⊗ σ′)(y). For ℓ ∈ L,

TrdA(ε(ℓ)x) = TrdA(ε(ℓ)y) + TrdA(σ ◦ ε(ℓ)y).

Since ε(ℓ) + σ ◦ ε(ℓ) = ρ(ℓ) + J ◦ ρ(ℓ) = TL/F (ℓ), the right side is

TL/F (ℓ)TrdA(y) = TL/Ff⊗(x),

and it follows that (3) holds for x ∈ Symd(J ⊗ σ′).
If x = x1 ⊗ x2 with x1 ∈ Sym(J) and x2 ∈ Sym(σ′), then

TrdA(ε(ℓ)x) = Tr(ρ(ℓ)x1)TrdA′(x2).

If charF 6= 2, then Sym(J) = F , hence the right side is x1TL/F (ℓ)TrdA′(x2). On
the other hand,

f⊗(x) = 1
2 TrdA(x) = x1 TrdA′(x2),
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so (3) holds for x ∈ Sym(J) ⊗ Sym(σ′) if charF 6= 2.
If charF = 2, then TrdA′(x2) = 0 since σ′ is symplectic. On the other hand,

Sym(J) = Skew(J) and Sym(σ′) = Skew(σ′) so f⊗(x) = 0 by definition. Therefore,
(3) holds for x ∈ Sym(J) ⊗ Sym(σ′) if charF = 2. �

Proof of Theorem 1.15. If there is an embedding (L, ι) →֒ (A, σ), then Lemma A.8
shows that σL is hyperbolic. For the converse, use a Witt decomposition

(A, σ) = (A0, σ0) ⊞ (A1, σ1)

where σ0 is anisotropic and σ1 is hyperbolic, see Proposition 1.8. If σL is hyperbolic,
Witt cancellation implies that σ0L is hyperbolic. By Lemma A.9, it follows that
there is an embedding ε0 : (L, ι) →֒ (A0, σ0). On the other hand, Lemma A.11
yields an embedding ε1 : (L, ι) →֒ (A1, σ1). The direct sum of these embeddings is
an embedding

ε0 ⊞ ε1 : (L, ι) →֒ (A0, σ0) ⊞ (A1, σ1) = (A, σ).

�

The proof of Theorem 1.16 follows the same lines:

Proof of Theorem 1.16. The “if” part readily follows from Lemma A.8. For the
converse, use a Witt decomposition as in Proposition 1.11,

(A, σ, f) = (A0, σ0, f0) ⊞ (A1, σ1, f1)

where (σ0, f0) is anisotropic and (σ1, f1) is hyperbolic. Then indA = indA1 divides
1
2 degA1. If degA1 ≡ 2 mod 4, then indA is odd, hence the algebra is split and
(σ, f) is adjoint to a quadratic form with odd Witt index. This special case is
excluded for the converse, so we assume degA1 is divisible by 4. Lemma A.12 then
yields an embedding ε1 : L →֒ A1 for which (3) holds. If (σL, fL) is hyperbolic,
then Witt cancellation implies (σ0L, f0L) is hyperbolic, hence Lemma A.10 yields
an embedding ε0 : L →֒ A0 for which (3) holds. To complete the proof, we show
that the direct sum ε = ε0 ⊞ ε1 : L →֒ A also satisfies (3).

Let e0, e1 ∈ A be the symmetric idempotents such that Ai = eiAei for i = 0, 1.
Since e0 + e1 = 1, we have

x = e0xe0 + e0xe1 + e1xe0 + e1xe1 for x ∈ A.

The reduced trace of the two middle terms vanishes since e0e1 = e1e0 = 0 implies

TrdA(e0xe1) = TrdA(e1e0x) = 0 and TrdA(e1xe0) = TrdA(e0e1x) = 0.

Therefore,

TrdA(x) = TrdA0
(e0xe0) + TrdA1

(e1xe1).

For ℓ ∈ L, we have ε(ℓ) = ε0(ℓ)e0 + ε1(ℓ)e1, hence

TrdA(ε(ℓ)x) = TrdA0
(ε0(ℓ)e0xe0) + TrdA1

(ε1(ℓ)e1xe1) for x ∈ Sym(σ).

Since ε0 and ε1 satisfy (3), it follows that

TrdA(ε(ℓ)x) = TL/F (ℓ)
(
f0(e0xe0) + f1(e1xe1)

)
.

Since, by definition of the orthogonal sum,

f(x) = f0(e0xe0) + f1(e1xe1),

the proof is complete. �
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Appendix B. Flat cohomology

Let G be an affine algebraic group scheme (not necessarily smooth) defined over
a field F and let F be a fixed algebraic closure of F . For any integers n ≥ 1 and i
with n ≥ i ≥ 0, define

εi : ⊗n
F F → ⊗n+1

F F , x1 ⊗ · · · ⊗ xn 7→ x1 ⊗ · · · ⊗ xi−1 ⊗ 1 ⊗ xi ⊗ · · · ⊗ xn,

and let
di : G(⊗n

FF ) → G(⊗n+1
F F )

be the induced map.
An element g ∈ G(F ⊗ F ) is a 1-cocycle if

d1g = (d0g)(d2g) in G(F ⊗ F ⊗ F ).

Two cocycles g, g′ ∈ G(F ⊗F ) are cohomologous if there exists h ∈ G(F ⊗F ) such
that

g′ = (d0h)g(d1h)−1.

We thus obtain an equivalence relation, and we denote by H1(F,G) the quotient
set. This a pointed set, the distinguished element being the class of the neutral
element. If G is abelian, this set has a natural group structure, and one can define
higher cohomology groups. We recall only the definition of H2(F,G). A 2-cocycle
is an element g ∈ G(F ⊗ F ⊗ F ) satisfying

(d0g)(d1g)−1(d2g)(d3g)−1 = 1.

A 2-coboundary is a 2-cocycle g ∈ G(F ⊗F ⊗F ) of the form (d0h)(d1h)−1(d2h) for
some h ∈ G(F ⊗ F ). We define H2(F,G) to be the quotient group of the group of
2-cocycles by the group of 2-coboundaries.

If 1 → N → G → H → 1 is an exact sequence of algebraic groups, we have an
exact sequence in flat cohomology

1 → N(F ) → G(F ) → H(F ) → H1(F,N) → H1(F,G) → H1(F,H),

see [27, §18.1]. If N , G, H are abelian, all the morphisms are group morphisms. If
N is a central subgroup of G, the exact sequence extends to

1 → N(F ) → G(F ) → H(F ) → H1(F,N) → H1(F,G) → H1(F,H) → H2(F,N).

If G is smooth, the flat cohomology sets can be identified with the Galois coho-
mology sets

H1(F,G) = H1
(
Gal(Fs/F ), G(Fs)

)

where Fs is a separable closure of F , see [27, §18.5]. Moreover, connecting maps
induced by exact sequences agree under this isomorphism. In view of these proper-
ties, the standard identifications valid in Galois cohomology under assumptions on
the characteristic of F extend to arbitrary fields; for example H1(F, µn) ≃ F×/F×n

and H2(F, µn) ≃ n Br(F ).
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No. 783, 4, 229–257. MR1321649 (97d:11063), Zbl 0837.12003

[24] T. A. Springer, On the equivalence of quadratic forms, Nederl. Akad. Wetensch. Proc. Ser.
A 62 = Indag. Math. 21 (1959), 241–253. MR0108468 (21:7184), Zbl 0087.03501

[25] A. A. Suslin, Algebraic K-theory and the norm residue homomorphism, in Current problems
in mathematics, Vol. 25, 115–207, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn.
Inform., Moscow. MR0770942 (86j:11121), Zbl 0558.12013 (English translation: J. Soviet
Math. 30 (1985), 2556–2611. Zbl 0566.12016)

[26] T. Tamagawa, Representation theory and the notion of the discriminant, in Algebraic number
theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), 219–227,
Japan Soc. Promotion Sci., Tokyo. MR0485817 (58:5620), Zbl 0386.13003



40 G. BERHUY, C. FRINGS, J.-P. TIGNOL

[27] W. C. Waterhouse, Introduction to affine group schemes, Springer, New York, 1979.
MR0547117 (82e:14003), Zbl 0442.14017
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