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INTRODUCTION
In his book “Cohomologie galoisienne,” Serre formulates the following conjecture:

Conjecture II: ([22, §3.1]) For every simply connected semisimple linear algebraic
group G defined over a perfect field F' of cohomological dimension at most 2, the
Galois cohomology set H'(F,G) is trivial.

Every simply connected semisimple group G over a field F' is isomorphic to a
product of Weil transfers

n
G =[] Rx,/r(Gy)
i=1
where GG; is a simply connected absolutely simple group over a finite separable
extension K; of F', and Shapiro’s lemma yields

Hl(FvG) = HHl(KZaGl)
1=1

(see for instance [15, (26.8), (29.6)]). Since the cohomological dimension does not
change under finite separable extensions, it suffices to consider Conjecture II for
simply connected absolutely simple groups. This conjecture was proved for groups
of type 'A4,, by Merkurjev—Suslin [25, Theorem 24.8] and for groups of type 24,
B, Cy,, D,, (with the exception of trialitarian Dy), Fy and G by Bayer-Fluckiger—
Parimala [4].

In his Bourbaki talk [23], Serre proposed a stronger version of his Conjecture II,
taking into account imperfect fields. To state this stronger version, define for any
prime number p and any field F' the p-separable dimension sd, F' as follows (see
[12, §1.1], where sd,, I is denoted dim ™ F'):

- if char F # p, let sd, F' = cd, F, the p-cohomological dimension of F';

- if char F' = p, consider the p-cohomology groups H, (see [14], [6]) and let
sd, F' be the least integer 7 > 0 such that H,™'(F') = 0 for every finite
separable extension F'/F.
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Conjecture II (Strong version): ([23, §5.5]) Let G be a simply connected abso-
lutely simple group G defined over a field F'. If sd, F' < 2 for every torsion prime
of the root system of G, then H*(F,G) = 1.

For the reader’s convenience, we quote from [23, §2.2] the list of torsion primes:

Type | Torsion primes
A, 2, prime divisors of n + 1
B,, Cn, D, (n#£4), G 2
Dy, Eg, E7, Iy 2,3
Eg 2,3, 5.

Note that the hypothesis on the separable dimension of F' can be translated in more
elementary terms by a theorem of Gille [12, Théoreme 7]: sd, F' < 2 if and only if
for every finite separable extension E/F, the reduced norm map of every p-primary
central simple E-algebra is surjective. It is mostly through this characterization
that the hypothesis on separable dimensions is used in this work.

The strong version of Conjecture II was proved by Serre for groups of type Ga
[23, Théoreme 11], and by Gille for groups of type 'A, and Fy [12, Théoréme 7,
Théoreme 9] and for quasi-split groups of any type except Eg [13, Théoréme 4].
Our main result is the following:

Theorem. The strong version of Conjecture II holds for groups of type 2A,,, By,
Chn, and D,,, except perhaps for trialitarian groups Dy.

The proof is obtained by a case-by-case analysis in Corollaries 2.6, 3.12, 4.5, and
5.5. However, the pattern is the same in all cases: we consider an isogeny 7: G —
G* and derive from classification theorems for quadratic forms, involutions or
quadratic pairs that the image of the induced map 7': H'(F,G) — H'(F,G*) is
trivial. On the other hand, a theorem of Gille [13, Théoréme 6] readily shows that
ker! = 1, hence H!(F,G) = 1.

As this sketch of proof suggests, the essential part of our work in this paper goes
to the proof of classification theorems, which roughly say that hermitian forms of
various types, (generalized) quadratic forms, involutions and quadratic pairs are
classified by their “classical” invariants if the separable dimension of the base field
is at most 2. (The precise statements are given in Theorem 2.1 and Corollaries 2.3,
2.4, 3.9, 3.10, 4.3, 4.4, 5.2, and 5.3.) We thus follow the same approach as Bayer-
Fluckiger and Parimala, whose arguments in [4] also involved classification theorems
for hermitian forms. (The corresponding classification of involutions in character-
istic different from 2 was derived in [16].) Our main contribution is the inclusion of
the characteristic 2 case in these classification theorems. Actually, as compared to
[4], we shift the emphasis from hermitian forms to involutions and quadratic pairs
on central simple algebras, which allows us to give proofs valid in all characteristics.
We thus recover a significant part of the results in [4], by a method which avoids
Morita equivalence, and which therefore seems more transparent® (at least to us).

In a first section, we give the main technical tools used in the classification
theorems. These tools revolve around the notion of Witt equivalence for involutions
and quadratic pairs. In the next sections, we successively tackle groups of type B,
2A,, C,, and D,,. For background information on involutions and quadratic pairs,

IFor instance, we avoid the delicate justification that the form ho can be chosen of the same
rank as h in the proofs of Theorems 4.2.1, 4.3.1, and 4.4.1 of [4].



SERRE’S CONJECTURE II 3

we refer to [15], whose notation is used throughout the paper. In particular, if
K/F is a separable quadratic extension of fields (of arbitrary characteristic), and if
a € F*, we denote by (K, a)r the quaternion algebra K @ K z where conjugation by
2 restricts to the nontrivial automorphism of K/F and 2% = a. If ¢ is an involution
on a central simple algebra A, we let

Sym(o) = {a € 4] o(a) = a},
Symd(c) = {a+o(a) | a € A},
Skew(o) = {a € A|o(a) = —a}.

Appendix A yields detailed proofs of some results on Witt kernels which do not
appear in the literature in the required generality. In Appendix B, we recall the
basic notions of flat cohomology for the reader’s convenience.

1. WITT EQUIVALENCE OF INVOLUTIONS AND QUADRATIC PAIRS

1.1. Orthogonal sums. Let A be a central simple algebra over an arbitrary field
K and let o be an involution (of any type) on A. Suppose A contains nonzero
idempotents e1, ea such that e; + es = 1 and o(e;) = e1, o(e2) = e2. The K-
algebras A; = e;Ae; and Ay = egAes are central simple and Brauer-equivalent
to A, and o restricts to involutions o1, o9 on A; and As. Note that Ay, Ay are
not subalgebras of A since their unity elements e;, ey are not the unity 1 of A.
If A= EndpV for some division K-algebra D and some D-vector space V', the
subspaces V7 = e1(V) and V = eo(V) satisfy V = V; @ Vi, and there are canonical
identifications
Al :Endpvl, AQZEndD‘/Q.

By [15, (4.2)], there is an involution # on D and a hermitian or skew-hermitian
form h on V with respect to 8 such that o is the adjoint involution adj, of h, in the
sense that

h(z,a(y)) = hio(a)(z),y) for x, y € V and a € A.

Since o(e1) = e; and o(e2) = eq, it follows that V; and Vs are orthogonal. Follow-
ing Dejaiffe [7], we call (A, o) an orthogonal sum of (A;,01) and (A3, 02). More
precisely, we set the following definition:

Definition 1.1. A central simple K-algebra with involution (A, o) is an orthogonal
sum of central simple K-algebras with involution (A41,01) and (Asg, 03) if there are
orthogonal idempotents e, e € A such that e;+e3 =1 and o(e1) = ey, o(ez2) = ea,
and K-algebra isomorphisms

@1: Ay = e1dey, p2: Ay = egAey

such that ¢; 0 0; = 0 0 ; for i =1, 2. Using ¢1 and s to identify A; and As to
subsets of A, we denote

(A,O') = (Al,crl) EB (AQ,O’Q).

It is important to observe that an orthogonal sum is not uniquely determined
up to isomorphism by its summands. Indeed, for A1, Aa € K*, the involution ¢’
on A defined by

U/(a) = ()\161 + /\262)0(&)(/\1_161 + /\2_162)

is different from o if A1 # A2, but has the same restriction as o to A; and As.
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Proposition 1.2. If a central simple K-algebra with involution (A, o) is an or-
thogonal sum

(A,0) = (A1,01) B (A2, 02),
then A1, As are Brauer-equivalent to A and o, o1, 02 have the same restriction to
K,

olxk = 01|k = 02|k

If 0|k = Id, then o, 01, o2 have the same type (orthogonal or symplectic). More-
over,

deg A = deg A1 + deg A,.

Proof. As observed before Definition 1.1, we may identify (A,0) = (Endp V, ady)
and (A1,01) = (Endp Vi,adp,), (Az2,02) = (Endp Va,ady,) for some D-vector
space V = Vi ® V5 and some hermitian or skew-hermitian form h = hy; L hy. The
proposition follows. O

Proposition 1.3. Let Ay, As be Brauer-equivalent central simple K -algebras and
let o1, o2 be involutions of the same type on Ay, As respectively. If o1 and oo
are unitary, assume moreover o1|x = oa|k. Then there exists a central simple
K -algebra A with involution o such that

(A,O') = (Al,O'l) EH (AQ,O’Q).

Proof. Let D be a central division K-algebra Brauer-equivalent to A; and As.
There are D-vector spaces Vi, Vo such that A1 = Endp Vi and As = Endp V5. By
[15, (4.2)], there is an involution # on D and hermitian or skew-hermitian forms
hi, ha on Vi, Vs respectively such that o1 = adp, and o2 = adp,. Since o7 and
o2 have the same type, we may assume that hy and he are both hermitian or both
skew-hermitian. Then (Endp (Vi @ Va),adn, 1n,) is an orthogonal sum of (A,01)
and (AQ, 0’2). O

To discuss orthogonal groups in characteristic 2, we need to use also orthogonal
sums of quadratic pairs. Recall from [15, (5.4)] that a quadratic pair on a central
simple K-algebra A of degree n (of arbitrary characteristic) is a pair (o, f) con-
sisting of an involution o of the first kind such that dim Sym(o) = in(n + 1), and
f: Sym(c) — K is a linear map related to the reduced trace Trd 4 by the following
condition:

f(z+o0(x)) = Trda(z) for z € A.

If char K # 2, the conditions imply that ¢ is an orthogonal involution and
f(z) = 5 Trda(z) for z € Sym(o).

The map f is thus determined by o; it does not carry any additional structure in
this case.

If char K = 2, the involution o is symplectic since the conditions imply that the
trace of every symmetric element is zero.

Definition 1.4. A central simple K-algebra with quadratic pair (4,0, f) is an
orthogonal sum of central simple K-algebras with quadratic pair (4,071, f1) and
(AQ, g2, fg) if

(A,0) = (A1,01) B (A2,02)

and, identifying A; and A with their images in A,
f|Sym(<71) = flv f|Sym(<72) = f2'
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We then denote
(A,O', f) = (Alualufl) H (A27027f2)'
(See [11, p. 379] or [10].)

As for involutions, the direct sum is not uniquely determined by its summands.

Proposition 1.5. Let A1, Ay be Brauer-equivalent central simple K -algebras and
let (o1, f1), (02, f2) be quadratic pairs on Ay and As respectively. There is a central
simple K-algebra A with quadratic pair (o, f) such that

(A,O', f) = (Alaalafl) i (A2a0'2af2)-

Proof. We may mimic the arguments in the proof of Proposition 1.3, using gener-
alized quadratic forms as in [11]. Alternatively, form an orthogonal sum

(A,0) = (A1, 01) B (Az,02)
and, identifying A; = e;Aey, As = es Aes for some symmetric orthogonal idempo-
tents e1, ey such that e; + e = 1, define
f(x) = fi(erzer) + fo(eawes) for z € Sym(o).
O

Remark. In the notation of the proof, the map f is uniquely determined by the con-
dition that f|sym(s,) = f1 and flsym(ey) = f2, since every x € Sym(o) decomposes
as

xr = ejxe; + eaxes + e1xes + esxeq,

and f(ejxes + eaxer) = Trda(ejzes) = 0.

1.2. Discriminant of an orthogonal sum. We may compare the invariants of
an orthogonal sum with the invariants of the summands; see [7] and [8] for results
in this direction. For our purposes, we need to consider only the discriminant
algebras of unitary involutions on central simple algebras of even degree. The
following result is due to Tamagawa [26, Theorem 3]. We include a proof (different
from Tamagawa’s) for completeness.

Proposition 1.6. Let o be a unitary involution on a central simple K-algebra
A and let F C K be the subfield of o-invariant elements. Suppose (A,o) is an
orthogonal sum of central simple K -algebras with involution of even degree,

(A,0) = (A1,01) B (43, 09).
Then the Brauer classes of the discriminant algebras are related by
[D(A, 0)] = [D(A1,01)] + [D(Az, 02)]
in the Brauer group Br F'.

Proof. Let F(X) be the function field of the Weil transfer of the Severi-Brauer
variety of A. By [19], the scalar extension map BrF — Br F(X) is injective.
Therefore, it suffices to prove the claim after scalar extension to F(X). We may
thus assume that A (hence also A; and As) is split, hence
(A, 0') = (EndK V, adh),
(Al,O'l): (EndK Vl,adhl), (AQ,O’Q): (EndK Vg,adh2)
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for some K-vector space V = V; @& V5 and some hermitian form h = h; L hy on
V. The discriminant algebras of o, 01 and o9 are Brauer-equivalent to quaternion
F-algebras,

[D(A, 0)] = [(K,disch)r],
[D(Ay,01)] = [(K,dischy)F], [D(Az,09)] = [(K,disc he)F].
The lemma follows by the additivity of the quaternion symbol, since
disc(hy L h2) = (disc hy)(disc ha).
O

1.3. Centralizers of quadratic subfields. A major tool in our proof of the clas-
sification theorems is a reduction to centralizers of quadratic subfields. In this
subsection, we consider this reduction from the viewpoint of orthogonal sums.

Let (A, o) be a central simple K-algebra with involution (of any type) and let
L/K be a separable quadratic extension with nontrivial automorphism ¢. Suppose
(A,0) is an orthogonal sum

(A,0) = (A1,01) H (42, 02)
and there are embeddings
1: (L,1) = (Ay,01), e2: (L,t) = (Az,02),
i.e. K-algebra embeddings of L in Ay, As respectively such that
€10L=010¢1, €901 =09 0¢7.

The involutions 01, 02 then restrict to unitary involutions 1, 62 on the centralizers
Al = CentAl L, A2 = CentA2 L of Lin Al and AQ.

Proposition 1.7. The embeddings €1, €2 induce an embedding
e1Beq: (L,) — (A, 0).
Moreover, letting & denote the restriction of o to the centralizer A of L in A,
(A,6) = (A1,61) B (A2,52).

Proof. Let e1, es € A be orthogonal o-symmetric idempotents such that e; +e; = 1
and

p1: A1 5 eqdey, o Ay = exAes

be K-algebra isomorphisms under which o1, o2 correspond to the restriction of o.
For x € L, define

(e1Beg)(x) = p10e1(z) + p2 0e2(x) € A.

This map is an embedding (L,¢) — (A, o). The idempotents e, es centralize the
image of L and 1, @2 restrict to isomorphisms

@1: Al — 61A61, (;721 AQ — 621462,

SO
(fl,&) = (1211,51) H (1‘12,52)-
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1.4. Witt decomposition and cancellation. Let A be a central simple algebra
over an arbitrary field K, and let o be an involution of symplectic or unitary type
on A. Recall from [15, §6] that o is called hyperbolic if A contains an idempotent
e such that o(e) =1 —e; it is called isotropic if A contains a non-zero right ideal T
such that o(I)I = 0. To rephrase these conditions in terms of hermitian or skew-
hermitian forms, choose a representation of A by endomorphisms of a vector space
V over a division algebra D. The involution ¢ is then adjoint to a hermitian or
skew-hermitian form A on V,

(1) (A,0) = (Endp V, adp,).

Then o is hyperbolic (resp. isotropic) if and only if & is hyperbolic (resp. isotropic),
see [15, (6.2), (6.7)]. In particular, dimpV is even in this case, hence ind A
(= deg D) divides %degA (= %dengimD V). Note that if o is symplectic, we
may choose a representation where h is alternating (i.e. even skew-hermitian), see
[15, (4.2)]. If o is unitary, h may be chosen hermitian with respect to a unitary
involution on D. In both cases, a “Witt decomposition theorem” asserts that h
decomposes into an orthogonal sum of an anisotropic and a hyperbolic form, see
[21, Corollary 9.2, p. 268]. This observation yields the first part of the following
proposition:

Proposition 1.8. (1) Every central simple algebra A with symplectic or uni-
tary involution o has an orthogonal sum decomposition

(A,0) = (Ao, 00) B (A1,01)

where g is anisotropic and o1 is hyperbolic.
(2) Suppose a central simple algebra with symplectic or unitary involution o
has an orthogonal sum decomposition

(A,0) = (Ao, 00) B (A1,01)
where o1 is hyperbolic. If o is hyperbolic, then o is hyperbolic.

Proof. As observed above, the first part follows from the Witt decomposition the-
orem for hermitian or skew-hermitian forms. To prove the second part, choose a

representation (1). The decomposition of (A4, o) yields an orthogonal decomposition
of h,

(V,h) = (Vo, ho) & (Vi ha)

where h is hyperbolic. If h is hyperbolic, then hg is hyperbolic by Witt cancellation,
see [21, Corollary 9.2, p. 268]. O

Remark. The second part of the proposition above may be regarded as a “Witt
cancellation theorem” for involutions. Note that only hyperbolic involutions can
be cancelled; Elomary has shown in [10] that general involutions do not admit
cancellation.

Definition 1.9. Two central simple algebras with symplectic or unitary involutions
(A,0), (A',0') are called Witt-equivalent if there are orthogonal sum decomposi-
tions

(Av U) = (AOv UO) B (A17 01)7 (Alv U/) = ( 67 06) B ( /17 Ull)
where o1, o} are hyperbolic, and an isomorphism of algebras with involution

(Ao, 00) =~ (Ag, 0p).
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From Proposition 1.8, it follows that ¢ is hyperbolic if (4, o) is Witt-equivalent to
a central simple algebra with hyperbolic involution.

Similar notions are defined for quadratic pairs. A quadratic pair (o, f) on a
central simple F-algebra A is called hyperbolic if A contains an idempotent e such
that
(2) f(x) = Trda(ex) for z € Sym(o),
see [15, (6.14)]. It is called isotropic if A contains a nonzero right ideal I such that

o()I=0 and f(INSym(o))=0,
see [15, (6.5)].

Remark 1.10. Condition (2) implies o(e) = 1 — e. More precisely, for any £ € A
the following conditions are equivalent:

(a) Trda(4z) = f(x) for all z € Symd(o),
(b) o(0) =1-¢.
Indeed, for y € A we have f(y+ o(y)) = Trda(y), hence (a) is equivalent to
Trda(fy) + Trda(lo(y)) = Trda(y) for all y € A.
Since Trda(¢o(y)) = Trda(o(£)y), the last equation can be rewritten as
Trda ((( 4 o(€))y) = Trda(y) for all y € A.

It is equivalent to (b) because the bilinear form Trd 4 (zy) is regular.

The condition for isotropy or hyperbolicity of a quadratic pair can be translated
in terms of generalized quadratic forms, see [11, Proposition 1.7 and Corollary 1.8].
Since hyperbolic quadratic pairs are adjoint to hyperbolic quadratic forms, it follows
that ind A divides %degA if A carries a hyperbolic quadratic pair. In view of the
Witt decomposition and cancellation theorems for generalized quadratic forms (see
[21, Corollary 9.2, p. 268]), the following result can be proved along the same lines
as Proposition 1.8:

Proposition 1.11. (1) Ewvery central simple algebra A with quadratic pair (o, f)
has an orthogonal sum decomposition

(A, 0, f) = (Ao, 00, fo) B (A1, 01, f1)

where (00, fo) is anisotropic and (o1, f1) is hyperbolic.
(2) Suppose a central simple algebra with quadratic pair (o, f) has an orthogonal
sum decomposition

(A,O',f) = (AOaUOafO) s (Alaalvfl)
where (o1, f1) is hyperbolic. If (o, f) is hyperbolic, then (oo, fo) is hyper-
bolic.

Definition 1.12. Two central simple F-algebras with quadratic pair (4,0, f),
(A, 0, f") are called Witt-equivalent if there are orthogonal sum decompositions

(A,O', f) = (A()vUOafO) & (Alvglafl)v (A/,O'/,f/) = (A67067f6) H (A&,O’i,f{)

where (01, f1), (01, f1) are hyperbolic, and an isomorphism of algebras with qua-
dratic pairs

(A07007 fO) = (A1070-67f6)
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1.5. The Witt kernel of odd-degree and quadratic extensions. A key tool
to prove the classification theorems in Sections 3, 4, and 5 is the description of
involutions and quadratic pairs which become hyperbolic under odd-degree or qua-
dratic extensions. For odd-degree extensions, we have the following analogues of
the weak version of Springer’s theorem:

Theorem 1.13. Let K be an arbitrary field. Let (A,o) be a central simple K -
algebra with involution of symplectic or unitary type, and let F* C K be the subfield
of o-invariant elements (so F = K if o is symplectic). Let E/F be an odd-degree
field extension and Ap = AQp FE, op = 0 ® Idg. If og is hyperbolic, then o is
hyperbolic.

Theorem 1.14. Let (A, 0, f) be a central simple algebra with quadratic pair over an
arbitrary field F', and let E/F be an odd-degree field extension. Let Ap = AQp E,
op = oc®ldg, fg = f®Idg. If the quadratic pair (og, fg) is hyperbolic, then
(o, f) is hyperbolic.

Theorem 1.13 is easily derived from the analogous statement for hermitian forms,
due to Bayer-Fluckiger and Lenstra [3, Proposition 1.2]. The transfer argument
used in [3] can be adapted to generalized quadratic forms to yield Theorem 1.14.
For completeness, we spell out in Appendix A (see Section A.2) detailed proofs
along the lines of [3, Proposition 1.2], focusing on involutions and quadratic pairs
instead of hermitian forms and generalized quadratic forms.

For (separable) quadratic extensions, the key results are the following;:

Theorem 1.15. Let K be an arbitrary field, let (A, o) be a central simple K -algebra
with involution of symplectic or unitary type, and let F' C K be the subfield of o-
invariant elements (so F = K if o is symplectic). Let L/F be a separable quadratic
extension with non-trivial automorphism 1 and let A, = AQp L, o, = o ® Idr.
The involution oy, on Ay, is hyperbolic if and only if there is an embedding (L,1) —

(A,0).

Theorem 1.16. Let (A, 0, f) be a central simple algebra with quadratic pair over an
arbitrary field F', and let L/ F be a separable quadratic extension. Let A, = AQp L,
or =0®Idr and fr = f ®Idr. If there is an embedding e: L — A such that

(3) Trda(e(€)x) = Tr/p(0) f(x) for all x € Sym(o) and £ € L,

then (oL, fr) is hyperbolic. The converse holds except if A is split and (o, f) is
adjoint to a quadratic form of odd Witt index.

Remark. Note that (3) implies € 0t = o o g, since for z = y + o(y) it yields

Trda(e(0)(y + o (y))) = Tr/r(0) Trda(y).
Expanding the left side as
Trda(e(€)y) + Trda(y - oe(€)) = Trda (y(e(¢) + oe())),
we obtain
Trda(yTr r(¢)) = Trda(y(e(£) + o=(£))) forye Aand ¢ € L.
Since the reduced trace bilinear form is nonsingular, it follows that e(¢) 4+ oe(¢) =

Tr/r(€), hence oe({) = eu(€) for £ € L.

If char F' # 2, (3) is in fact equivalent to eot = g oe, as can be seen by reversing

the steps in the above argument with y = %x
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Particular cases of Theorems 1.15 and 1.16 are known: if char F' # 2, Theo-
rem 1.16 and the symplectic case of Theorem 1.15 are proved in [5, Theorem 3.3],
and the unitary case of Theorem 1.15 in [17, Theorem 3.6]. If char F = 2, the
symplectic case of Theorem 1.15 and Theorem 1.16 can be found in [11, Proposi-
tions 4.1 and 4.2], except that the converse implication is proved under the addi-
tional hypothesis that o or (o, f) is anisotropic. Since none of the quoted references
establishes Theorems 1.15 and 1.16 in the generality we require, we give a complete
proof, featuring a characteristic-free approach, in Appendix A (see Section A.3).

2. QUADRATIC FORMS

Let (V,q) be a quadratic space over an arbitrary field F' and let b: V xV — F
be the polar symmetric bilinear form, defined by

b(z,y) =q(z+y) —q(x) —qly) forz,yeV.
The radical of b is
radb={z €V |b(z,y) =0 for all y € V}.

The quadratic form ¢ is called regular if either radb = {0} or char F = 2 and
dimradb = 1. The latter case occurs only if dimV is odd, since b is alternating
when char F' = 2. Henceforth, all the quadratic forms are assumed to be regular.

2.1. Classification. The classical invariants of quadratic forms—the discriminant
and the Clifford invariant—are recalled next.

If char ' # 2, we denote by discq € F'*/F*? the (signed) discriminant of q (see
for instance [21, p. 36]). If char F = 2, the discriminant is defined as follows: if
dim V is odd (hence dimradb = 1), pick a non-zero vector = € radb and let

discq = q(x)F** € F*/F*?
if dim V' is even, disc ¢ is the Arf invariant of ¢ (see [21, p. 340]),
disc g = Arf(q) € F/p(F),

where p(F) = {\> -\ | A€ F}.
The Clifford invariant ¢(g) is defined independently of the characteristic as the
Brauer class of the Clifford algebra or the even Clifford algebra,

(q) = [C(V,q)] € Br(F) if dimV is even,
" 1 [Co(V,q)] € Br(F) if dimV is odd.
We can now state the classification theorem for quadratic forms:

Theorem 2.1. If the reduced norm map of every quaternion F-algebra is surjec-
tive, then quadratic forms over F' are classified up to isometry by their dimension,
discriminant and Clifford invariant.

Proof. The result was proved by Elman and Lam [9, Theorem 3.11] for fields of
characteristic different from 2 and by Sah [20, Theorem 3] for quadratic forms of
even dimension over fields of characteristic 2. For the rest of the proof,? we assume
char F' = 2 and consider forms of odd dimension. We use the following notation for
quadratic forms: for a, b € F,

2

[a] = ax and [a,b] = az® + zy + by?.

2We are indebted to Detlev Hoffmann for the following arguments.
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Since
2?+ (Y’ +yz+a’) = (@ +y)° + (Y +a2)z,
the change of variables ' = x 4+ y, ¢y =y + az, 2/ = z yields
(4) [1] L [1,a] ~[1] L [0,0].
Let ¢, ¢’ be odd-dimensional quadratic forms over F with
dim ¢ = dim ¢/, disc ¢ = disc ¢/, c(q) = e(q).

Let a € F* be a representative of discq. The restriction go of ¢ (resp. ¢} of ¢') to
an orthogonal complement of the radical is a regular even-dimensional quadratic
form such that

g=la] Lgo, ¢ =a] Lgp
Let d (resp. d’) be a representative of disc(a - qp) (resp. disc(a - ¢}))). It is easy to
see that

c(q) = cla-q) =c([l,d] La-q),  c(d)=cla-q)=c([1,d] La-q),

see for instance [18, Lemma 2, Proposition 5]. By the classification theorem for
even-dimensional forms it follows that

[1,d] La-qo~[1,d]La-q.
Adding [1] to each side and using (4), we obtain
[1] L [0,0] La-qgo=~[1] L[0,0] La-g.
Since even-dimensional regular forms can be cancelled by [1, Folgerung, p. 160], it
follows that
M La-q~[1]La-q.
Multiplying each side by a, we obtain ¢ ~ ¢'. (]

Remark 2.2. The reduced norm map of every quaternion F-algebra is surjective if
sdo F' < 2: this is a special case of a theorem of Merkurjev—Suslin if char I’ # 2
and of Gille if char F' = 2, see [12, Théoréme 7]. Therefore, Theorem 2.1 applies in
particular when sdy F' < 2.

The classification of hermitian forms over separable quadratic extensions or
quaternion algebras is easily derived from Theorem 2.1 by means of a transfer
argument due to Jacobson (see [21, p. 348]), as we proceed to show.

Suppose first K/F is a separable quadratic extension. Let N(K/F) C F* be
the image of the norm map Nk p: K* — F*. For every hermitian form h on a
K-vector space V of dimension n, the discriminant disch is defined by choosing a
basis (e;)1<i<n of V and letting

disch = (=1)""=D/2 det (h(e;, e;)) -N(K/F) € F*/N(K/F),

1<i,j<n
see [15, p. 114].
Corollary 2.3. If the reduced norm map of every quaternion F-algebra is surjec-

tiwe (for instance if sda F' < 2), then hermitian forms over K are classified up to
isometry by their dimension and discriminant.
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Proof. For every hermitian form h on a K-vector space V, let q,: V — F be the
quadratic form defined by
qn(z) = h(z, x) forx e V.

If h and A/ are hermitian forms such that

dim h = dim &/, disc h = disc b/,
then the formulas® in [21, p. 350] show that

dim ¢, = dim ¢y, disc q, = disc qp/, c(gn) = clgp)-

Therefore, Theorem 2.1 yields gp ~ gp/, and it follows from [21, Theorem 10.1.1]
that h ~ h'. (I

Now, let @ be a quaternion division F-algebra and let V' be a finite-dimensional
right @-vector space. A hermitian form h on V (for the conjugation involution on
Q) is even (or trace-valued) if h(z,z) € F for x € V. If char F' # 2, every hermitian
form is even since only F' is fixed under the conjugation involution. If char F' = 2,
even hermitian forms are called alternating or even skew-hermitian in [15, §4].

Corollary 2.4. If the reduced norm map of every quaternion F-algebra is surjective
(for instance if sdo F' < 2), then even hermitian forms over @ are classified up to
isometry by their dimension.

Proof. For every even hermitian form A on a Q-vector space V, let ¢5,: V — F be
the quadratic form defined by

qn(x) = h(z, ) forz e V.
Using an orthogonal basis of h, it is easily seen that

1 if char F # 2,

dimgp = Adimh,  discgy —
HL = S e dn {o if char F = 2,

0 if dimh = 0 mod 2,
c(qn) = e s _
[Q] if dimh =1 mod 2.
Therefore, if h and A’ are even hermitian forms with dim A = dim &/, then
dim g, = dim g/, disc gn, = disc qn, c(qn) = c(gn).

By Theorem 2.1, it follows that g ~ ;. The same arguments as in [21, Theo-
rem 10.1.1] then show that h ~ h'. O

2.2. Conjecture II for groups of type B,. The simply connected absolutely
simple groups of type B, are isomorphic to spin groups Spin(V,q), where (V,q)
is a quadratic space of dimension 2n + 1. Let OT(V, q) be the special orthogonal
group of (V,q) and let x: Spin(V,q) — O (V, q) be the vector representation. We
have an exact sequence (see for instance [15, §23])

(5) 1 — py — Spin(V,q) 5 OF(V,q) — 1.

3The formula for ¢(gp) in [21, p. 350] should be (6, disc h) instead of (6, det h).
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It yields the following exact sequence in (flat) cohomology (see Appendix B):

0 1
g OTO® %o HY(F, py) — H'(F,Spin(V, q)) *~
1
— H'(F,0%(V,q)) = H*(F, ).

Recall from [15, §29.E] that the elements in H*(F,O%(V,q)) can be identified
with the isometry classes of quadratic forms ¢’ on V such that disc ¢’ = discq. The
following lemma dates back to Springer [24] for the case where char F' # 2. We
include its short proof (in arbitrary characteristic) for the reader’s convenience.

Lemma 2.5. For ¢’ € HY(F,0%(V,q)),
0'(d') = e(q') — c(q) € 2 Br(F) = H*(F, ).

Proof. Consider the even Clifford algebra Cy(V, ¢) and the associated group schemes
GL1(Cy(V,q)) of invertible elements and Autpr(Cy(V,q)) of F-algebra automor-
phisms. By the Skolem-Noether theorem, there is an exact sequence

(7) 1= G — GL1(Co(V.q)) = Autp(Co(V,q)) — 1

where the homomorphism Int maps every invertible element to the corresponding
inner automorphism.

By the functorial property of Clifford algebras, every isometry in O%(V,q) in-
duces an automorphism of the even Clifford algebra Cy(V,q), hence there is a
commutative diagram relating (5) and (7), where the middle vertical map is the
inclusion:

1 —— p, —— Spin(V,q) —— O*(V,q) —— 1

! l g

1 —— Gn —— GLi(Cy(V,q)) =, Aut(Co(V,q)) —— L.

It yields the following commutative diagram, where the vertical map on the right
is the inclusion ¢ Br(F') < Br(F):

HY(F,07(V,q) —2— H2(F,p,)

HY(F, Aut(Co(V, q))) —2— H2(F,Gn).

Elements in H' (F, Aut(Co(V,q))) can be identified with isomorphism classes of
central simple F-algebras of the same degree as Cy(V, q), and for ¢ € H'(F, 0% (V, q))
the image p'(q’) is represented by Co(V, ¢'). Therefore,

§'(¢)=0"p"(¢') = c(d) — c(q).
O

Corollary 2.6. Ifsdy F' < 2, then H'(F,Spin(V,q)) = 1 for every quadratic space
(V,q) of odd dimension.

Proof. Consider the exact sequence (6). If sda F' < 2, a theorem of Gille [13,
Théoréme 6] shows that §° is surjective, hence ker ! = 1. Therefore, it suffices to
show that the image of x! is trivial or, equivalently, that ker ! = 1.
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Lemma 2.5 shows that the elements in ker 6! are the isometry classes of quadratic
forms ¢’ on V such that discq’ = discq and ¢(¢") = ¢(¢). By Theorem 2.1 and
Remark 2.2 these forms are isometric to ¢ if sdy F' < 2, hence ker ' = 1. O

3. UNITARY INVOLUTIONS

In this section, B is a central simple algebra over a field K of arbitrary char-
acteristic, and 7 is a unitary involution on B. We denote by F' the subfield of
T-invariant elements in K. Our main goal is to show how the discriminant algebra
D(B, 1) controls the hyperbolicity of 7 when sdy F' < 2. We shall then proceed to
prove classification results for hermitian forms over division algebras with unitary
involution.

Lemma 3.1. Suppose deg B is even.

(1) If T is hyperbolic, then the discriminant algebra D(B,T) is split.

(2) Let M C B be a subfield of symmetric elements which is a separable ex-
tension of F, let B = Centp M be the centralizer of M and 7 = 7|5 be
the restriction of T to B. The algebra D(B,T) is Brauer-equivalent to the
norm (i.e. corestriction) of D(B,7),

(D(B.7)] = [Nagyr(D(B.A)]  in Br F.

(3) Let C be a central simple K -algebra and let 0 be a unitary involution on C
such that 0| = 7|k . Then

(D(B &K C,r6)] =1 if deg C'is even,
[D(B,7)] if degC is odd.

Proof. The first part is due to Tamagawa [26, Theorem 4]. We include a proof* for
the reader’s convenience.

As in the proof of Proposition 1.6, we may find a field F(X) in which F is
algebraically closed, which splits B and such that the scalar extension map Br F —
Br F(X) is injective. Therefore, it suffices to prove the lemma in the case where B
is split. Choose a representation

(B,7) = (Endg V,adp)
where h is a hermitian form on a K-vector space V. Then

[D(B,7)] = (K,disch)F,
see [15, (10.35)]. If 7 is hyperbolic, then disch = 1 hence D(B,7) is split, and (1)
is proved. If B contains a field M consisting of symmetric elements, then V' carries
a K M-vector space structure. Let s: M — F be a non-zero F-linear map and let
sk: KM — K be its K-linear extension to K M. By [15, (4.10)], we may assume
h is the transfer of a hermitian form h’ on the K M-vector space V with respect to
the non-trivial automorphism of KM /M,

h=sg«(h') and  (B,7)= (Endgas V,adp).

Then [D(B,7)] = (KM,disch’)y. Since disch = Ny/p(disch’) by [21, Theo-
rem 5.12, p. 51], the projection formula

NA[/F(KM, diSC h/)M = (K, NA[/F(diSC h/))F

4Tamagawa’s proof is different.



SERRE’S CONJECTURE II 15

completes the proof of (2).
To prove (3), we may use the same scalar extension argument to reduce to the
case where C' is split as well as B. Choosing a representation

(O, 9) = (EndK W, adk)
for some hermitian form k on a K-vector space W, we have
(B R C,7® 9) e (EndK(V XK W), adh®k).

With respect to K-bases of V and W, the matrix of h ® k is a Kronecker product
of the matrices of h and k. Therefore,

1 if dimg W is even,
disch if dimg W is odd.

Part (3) follows, since [D(B @k C, 7 ® 0)] = (K, disc(h ® k))F. O

disc(h ® k) = {

The main result of this section is the following:

Theorem 3.2. Let B be a central simple K -algebra of even degree with a unitary
involution T, and let F' C K be the subfield fized under . If T is hyperbolic, then
ind B divides § deg B and D(B,7) is split. The converse holds if sdy F < 2.

Proof. If T is hyperbolic, it was already observed in Section 1.4 that ind B divides
%deg B. Moreover, D(B, 1) is split by Lemma 3.1, hence the first part is clear. In
the next two subsections, we prove the second part by induction on ind B.

For the convenience of exposition, we define the following property of a field F":

U(d): A unitary involution 7 on a central simple algebra B of index d and
even degree over a separable quadratic extension of F' is hyperbolic if d
divides § deg B and D(B, 1) is split.

We thus have to show that fields with sdy F' < 2 satisfy U(d) for all d > 1.

3.1. Reduction to 2-power index. To achieve index reduction, we use the fol-
lowing result:

Lemma 3.3. Let (B,7) be as in Theorem 3.2.

(1) If ind B is divisible by an odd prime, then there is an odd-degree separable
field extension E/F such that ind(B @p E) < ind B.

(2) Ifind B = 2% with k > 1, then there is an odd-degree separable field exten-
sion E/F and a separable quadratic extension L/E linearly disjoint from

K such that ind(B ®p L) = 2F71.

Proof. Let D be a central division K-algebra Brauer-equivalent to B, and let D1,
Dy C D be central division K-algebras such that D = D Qg Do, with deg D
a power of 2 (possibly deg D; = 1) and deg D2 odd. Since B carries a unitary
involution, a theorem of Albert—Riehm—Scharlau [15, (3.1)] shows that

[Nk/p(D)] =0 in Br(F),
hence Nk, p(D1) ®F Nk p(Ds) is split. Therefore, Ng,p(D1) and Nk p(D2) are
both split, since their degrees are coprime,

deg Ng,p(D1) = (deg D,)? and deg Ng,p(D2) = (deg D)%
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It follows by the Albert—Riehm—Scharlau theorem that D; and Ds carry unitary
involutions 61, 65 such that

F =KnNSym(#;) =K NSym(6).

In case (1), we have Dy # K. The set of elements in D, which are separable
of degree deg D5 over K is a Zariski-open subset Us defined by the condition that
the discriminant of the reduced characteristic polynomial does not vanish. Scalar
extension to an algebraic closure of F' shows that the open subset Us N Sym/(62)
of Sym(#s) is not empty. Since Dy # K, the field F is infinite, hence the rational
points in Sym(62) are dense. We may therefore find an element = € Sym(6;) which
is separable of degree deg Dy over K. Since 03(x) = x, the coefficients of the
reduced characteristic polynomial of z are in F', hence F(z)/F is a separable field
extension of degree deg Dy. Moreover, K (x) is a maximal subfield of D2, hence
scalar extension to F'(x) splits D2 and reduces the index of D. Part (1) of the
lemma is thus proved, with E = F(z).

In case (2), we have Do = K and D = Dy # K. Arguing as above, we may
find € Sym(61) such that F(x)/F is a separable field extension of degree deg D.
Let R be a Galois closure of F(z)/F and let E C R be the subfield fixed under
a 2-Sylow subgroup of Gal(R/F). Then E/F is a separable field extension of odd
degree, and R/F is a Galois extension whose Galois group is a 2-group. It follows
that E(x)/FE is a separable 2-extension, hence we may find a subfield L C E(x)
such that L/FE is a separable quadratic extension. Since the dimension of K(z)/F
is a power of 2, the extensions K (x)/F and E/F are linearly disjoint. Moreover,

K(m)®FE=K®FF(£L')®FE=K®FE($),
so K/F is linearly disjoint from E(z)/F hence also from L/F. As
LCF(z)Qr ECD®pE,

we have ind(D ®r L) = 3 ind(D ®p E). The conditions are thus fulfilled, since
ind(D @p F) = ind D = ind B as the degree of E/F is prime to the degree of
D. ]

Corollary 3.4. Let d > 1 be an integer. Suppose every separable odd-degree ex-
tension of a field F satisfies U(k) for every k < d. If d has an odd prime factor,
then U(d) holds for F'.

Proof. Let 7 be a unitary involution on a central simple K-algebra B of index d
and even degree over a separable quadratic extension K of F', such that 7| = Idp.
Suppose d divides % deg B and D(B, 7) is split. By Lemma 3.3, there is a separable
odd-degree extension E/F such that ind(B ®p E) < d. Since U(ind(B ®r F))
holds for FE, it follows that 7 ® Idg is a hyperbolic involution on B ® p E. By
Theorem 1.13, 7 is hyperbolic. 0

3.2. The 2-power index case. In this subsection, we complete the proof of The-
orem 3.2. The key tool is the following:

Lemma 3.5. Let (B,7) be as in Theorem 3.2. Suppose deg B = 0 mod 4, ind B
divides %deg B, and let deg B = 4n. Assume that for every quaternion F-algebra
Q split by K there exists a central simple K -algebra By of even degree with unitary
involution 1y such that

[Bo] =[B] inBrK and [D(Bo,m0)] =[Q] nBrF.
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Assume moreover that there is a separable quadratic extension L/ F, linearly disjoint
from K, with non-trivial automorphism v, such that

(L;1) = (B,7)

and that the centralizer B = Centp L satisfies n[B] = 0 in Br KL. If D(B,T) is
split, then there exists a central simple K -algebra with unitary involution (B',7’)
Witt-equivalent to (B,T), of degree divisible by 4, endowed with an embedding
(L,t) — (B, 7"), satisfying the following conditions:
(1) for the centralizer B' = Centps L and 7' = 7’|/, the discriminant algebra
D(B',7") is split;
(2) ind B’ divides } deg B'.

Proof. The centralizer B has center KL and degree %degB =2n. Let M C KL
be the subfield fixed under 7. By [15, (10.30)] we have

[D(B,7) ®@ym KL] = n|[B] in BrKL,

hence the hypotheses imply that D(B ,7) is split by K L. Tt is therefore Brauer-
equivalent to a quaternion M-algebra @ containing K. By Lemma 3.1(2), we
have

[Nayr(D(B,7))] = [D(B, 7)) in BrF.
Since we assume that D(B,7) is split, it follows by the Albert—Riehm-Scharlau
theorem [15, (3.1)] that Qo has unitary involutions fixing F'. By [15, (4.14)], we
may find such a unitary involution which restricts to the non-trivial automorphism
of K/F. A theorem of Albert [15, (2.22)] then yields a quaternion F-algebra Q
containing K such that

Qo ~Q ®F M.

By hypothesis, we may find a central simple K-algebra By of even degree with a
unitary involution 7o such that By is Brauer-equivalent to B and D(By, 79) to Q.
Let J be the (unique) symplectic involution on Endg L and set

B1 = By ®p Endp L, T =T X J.

Clearly, B; is Brauer-equivalent to B, and 71 is hyperbolic since J is hyperbolic.
Through the regular representation L — Endp L, we may embed

(L,L) — (Endp L, J) — (Bl,Tl).
Let Bvl = Centp, L and 71 = Tl|§1. We have

E:BQ®FL:BQ®FM and ﬁ:T()@L:TQ@IdM,
hence
(8) [D(B1,71)] = [D(Bo, 7o) @r M] = [Q @r M] = [D(B,7)].

Since B and B; are Brauer-equivalent and 7|x = 71|k, we may consider an orthog-
onal sum (B’,7") of (B, 7) and (By,71), see Proposition 1.3. It is a central simple
K-algebra with involution which is Witt-equivalent to (B, 7), since 7 is hyperbolic.
The sum of the embeddings of (L,¢) in (B,7) and (B, 71) is an embedding

(L,e) = (B, )
such that, using the "notation for the centralizer,

(B',7') = (B,7) 8 (B1,71),
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by Proposition 1.7. It follows from Proposition 1.6 and (8) that
[D(B, 7)) = [D(B,7)] + [D(By, 71)] = 0.
To complete the proof, we compute the degree of B’,
deg B’ = deg B + deg By = 4n + 2 deg By.
Since ind B’ = ind B = ind B, divides deg By and 2n, it also divides £ deg B’. [

To enable us to use Lemma 3.5, we need examples where the hypothesis on the
existence of By holds.

Lemma 3.6. Let (B,7) be as in Theorem 3.2. Suppose ind B is a power of 2. If
sdo F' < 2, then for every quaternion F-algebra Q split by K there exists a central
simple K-algebra By of even degree and a unitary involution 19 on By such that
7'0|F = IdF and

[Bo]=[B] inBrkK, [D(Bg,m)] =[Q] inBrF.

Proof. Let Q = (K, y)p for some y € F*. By a theorem of Gille [12, Théoreme 7],
the condition sdy F' < 2 implies that the reduced norm map Nrdp is surjective.
Let z € B* be such that Nrdg(z) = y. A theorem of Yanchevskil [28, Theorem 1]
then shows that z lies in the subgroup of B* generated by the invertible elements
in Sym(7). Therefore, we may find invertible elements z1, ..., x, € Sym(7) such
that

Nrdp(zy ...x,) = y.

Adjoining some x; = 1 if necessary, we may assume n is even. Let By = M, (B) =
M, (F) ®F B and let § = t ® 7, where ¢ is the transpose involution on M, (F).
Clearly, By is Brauer-equivalent to B. Consider the following diagonal matrices in
B():
Ay = diag(x1, ..., Tn), A; =diag(l,-1,...,1,-1)
and the unitary involutions 71, 79 defined by
mi(x) = Af(z) AT, To(x) = Ao7i () Ap ! for x € By.

The involution 71 is hyperbolic, hence D(By, 1) is split, by Lemma 3.1(1). On the
other hand, [15, (10.36)] yields

[D(Bo, 70)] = [D(Bo, 71)] + (K, Nrdg, (Ao))F,
hence [D(By, 10)] = [Q]- O

Corollary 3.7. Fields F with sdy F' < 2 satisfy U(2F) for all k > 0.

Proof. We argue by induction on k. The case k = 0 follows from Corollary 2.3.
Let B be a central simple algebra with ind B = 2¥ > 2 over a separable quadratic
extension K of a field F with sdy F' < 2, and let 7 be a unitary involution on B
such that 7|p = Idp. Assume moreover deg B = 0 mod 2¥*! and D(B,7) is split.
We have to show 7 is hyperbolic.

By Lemma 3.3(2), we may find a separable odd-degree extension E of F' and a
separable quadratic extension L of E such that

ind(B®p L) =21,
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By the induction hypothesis, 7 ® Idy is hyperbolic. Let ¢ denote the non-trivial
automorphism of L/E and let B = B®p F, 75 = 7 ® Idg. By Theorem 1.15,
there is an embedding of E-algebras with involution

(L,t) — (Bg,TE).
The centralizer B; = Centp, L is Brauer-equivalent to
Br®pL=BQ®plL.
Therefore, indEE = 2k=1 and
(1degB)[Bg]=0  in BrKE.

Since D(Bg,7g) = D(B,7)®Fr E is split and sde F < 2, we may apply Lemmas 3.5
and 3.6 to find a central simple K E-algebra with unitary involution (B’,7") Witt-
equivalent to (Bg, 7g) and an embedding (L, ¢) < (B’,7') such that ind B’ divides
% deg B" and D(E/’, 77’) is split. The algebra B'is Brauer-equivalent to B’®g L hence
also to B ®p L since B’ is Brauer-equivalent to Bg. Therefore, ind B’ = 2k—1,
Since sdo L < 2, the induction hypothesis shows that 7 is hyperbolic. We may
therefore find an idempotent ¢ € B’ such that 7/(e) = 1 —e. Since B’ C B’
and 7/ = 7’| 57, this idempotent lies in B’ and satisfies 7/(e) = 1 — e, hence 7’ is
hyperbolic. By Witt cancellation (Proposition 1.8), it follows that 75 is hyperbolic,
since (B, 7') is Witt-equivalent to (Bg, 7g). Now, E/F is an odd-degree extension,
so Theorem 1.13 shows that 7 is hyperbolic. (|

Conclusion of the proof of Theorem 3.2. To establish that fields with sda F' < 2
satisfy U(d) for all d > 1, it now suffices to use induction and Corollaries 3.4 and
3.7: if d is a power of 2 the result follows from Corollary 3.7; if d is not a power

of 2 then it has an odd prime factor, hence induction and Corollary 3.4 prove that
U(d) holds for F. O

3.3. Classification of hermitian forms. In this subsection, we use Theorem 3.2
to obtain a classification result for hermitian forms over a division algebra with
unitary involution.

Let D be a central division algebra over an arbitrary field K. Suppose D carries
a unitary involution 6, and let F' C K be the subfield of #-invariant elements in
K. Let also ¢« = |k be the non-trivial automorphism of K/F. The discriminant
disc h of a hermitian form h on a D-vector space V with respect to 6 is defined as
in the case where D = K (see Section 2): considering a D-basis (e;)1<i<n of V, set
m =ndegD = degEndp V and

disch = (=1)™™=D/2Nrdyy, (py (h(es, ;) -N(K/F) € F*/N(K/F).

1<i,j<n

Even though this element lies in the factor group F*/N(K/F), the quaternion
F-algebra (K, disc h)p is well-defined.

Lemma 3.8. If m is even,

[(K,disch)F] if dimp V is even,

[D(Endp V,ady)] = {[(K, (=1)™/2disch)p] + [D(D,0)] if dimp V is odd.
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Proof. Using the basis (e;)1<i<n of V, we may identify
EndpV = M, (D) = M,(F) ®F D.
Under this identification, the involution adj is given by
adp(z) = A - (t®0)(z)- A  for z € M,(D),
where ¢ is the transpose involution on M, (F) and
A = (h(ei, ej))lgi,jgn € M, (D).
By [15, (10.36)], it follows that
[D(Endp V,adp)] = [(K,Nrd A)p] + [D(Mn (D), t ® 0)].

The last term on the right side is computed via Lemma 3.1(3):

[D(M,(D),t®6)] =140
[D(

if deg D and n are even,

[D(M,(K),t®¢)] if degD is odd and n is even,
D, 0)] if deg D is even and n is odd.

To complete the proof, observe that
(Mp(K),t®1) ~ (Endg K", ad, .. 1)),
hence if n is even
[D(My(K),t ® )] = [(K, (~1)"*)F].
O
Corollary 3.9. Suppose sdo F' < 2. Let h, h' be hermitian forms on a D-vector

space V with respect to 0. The forms h, h' are isometric if and only if disch =
disch’.

Proof. Since Witt cancellation holds for hermitian forms with respect to unitary
involutions by [21, Corollary 7.9.2], it suffices to prove that h L —h’ is hyperbolic
if and only if disch = disch'.

A computation yields

disc(h L —h') = dischdisc b/,
hence Lemma 3.8 shows that disc h = disc A’ if and only if
[D(Endp(V & V),adpi—n)] =0.
By Theorem 3.2, this equation holds if and only if ady; —p/ is hyperbolic, i.e. h L
—h' is hyperbolic. O

3.4. Classification of unitary involutions.

Corollary 3.10. Let B be a central simple algebra over an arbitrary field K, and
let T, 7' be unitary involutions on B such that T|g = 7'|kg. Let F C K be the
fized subfield of 7|k and T'|k. Suppose sdo F' < 2. If deg B is odd, then T and
7' are conjugate. If deg B is even, then T and T’ are conjugate if and only if
D(B,7)~ D(B,T").
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Proof. Choose a representation B = Endp V for some vector space V over a central
division K-algebra D, and a unitary involution § on D fixing F'. By [15, (4.2)],
there are hermitian forms h, A’ on V with respect to 6 such that

Tzadh, T’:adh/.

If deg B is even, Lemma 3.8 shows that D(B,7) ~ D(B,7’) if and only if disch =
disc h’. This condition is equivalent to i ~ h’ by Corollary 3.9. Therefore, it implies
that 7 and 7/ are conjugate.

If deg B is odd, let d, 6’ € F* be such that

disch = dN(K/F), disch’ = ' N(K/F).

Then disc(dh) = disc(d’h’) = 1, hence dh ~ §'h’ by Corollary 3.9. On the other
hand, adsp, = ad, = 7 and ads/py = adps = 7/, so 7 and 7' are conjugate. O

3.5. Conjecture II for groups of outer type A,. Every simply connected ab-
solutely simple group of type 2A,, over a field F is isomorphic to SU(B, 7) for some
central simple algebra B of degree n 4+ 1 over a quadratic extension K of F' and
some unitary involution 7 on B fixing F. Denote by p the center of SU(B, 7).
There is an exact sequence

1— pu— SU(B,7) & PGU(B,T) — 1

inducing the following exact sequence in (flat) cohomology:

(9) PGU(B,7)(F) & H'(F.p) — H'(F,SU(B,7)) “ H'(F,PGU(B,7)).
Recall from [15, §29.D] that H*(F,PGU(B, 7)) can be identified with the set of
isomorphism classes of triples (B’, 7/, ) consisting of a central simple algebra B’

of degree n + 1 over a quadratic extension K’ of F', a unitary involution 7’ on B’
fixing F' and an F-algebra isomorphism ¢: K’ — K.

Lemma 3.11. If n is even, the image of w' is the set of isomorphism classes of
triples (B, 7',1dk) where ' is a unitary involution on B fizing F. If n is odd, the
image of w is the set of isomorphism classes of triples (B,7',1dk) where 7' is a
unitary involution such that D(B,1") ~ D(B, T).

Proof. By [15, §29.D], the set H!(F,SU(B, 7)) is in one-to-one correspondence with
the set of equivalence classes

{(s,2) € Sym(7) x K* | Nrdp(s) = Ngp(2)}/~
where (s,2) & (¢/,2') if and only if there exists b € B* such that

s' = bst(b) and 2" = Nrdp(b)z.

The image under 7! of the class of (s, z) is represented by the triple (B, 7', Idk)
where 7/ = Int(s) o 7. If n is odd, [15, (10.36)] yields
(10) [D(B,7')] = [D(B,7)] + [(K,Nrdp(s))r]  in Br(F).

Since Nrdg(s) = Nk, r(2), the last term vanishes and therefore D(B,7') ~ D(B, 7).
The image of 7! is therefore contained in the set described in the statement of the
lemma.

To prove the reverse inclusion, let 7/ be an arbitrary unitary involution on B
fixing F. By [15, (2.18)], there exists a unit s € Sym(r) such that 7/ = Int(s) o
7. If n is odd and D(B,7") ~ D(B,7), (10) shows that the quaternion algebra
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(K,Nrdp(s))r splits, hence there exists z € K* such that Nrdg(s) = Ng,r(2).
The isomorphism class of (B, 7’,Idx) is the image under 7! of the class of (s, z).
If n is even, we have
Nrdp(Nrdp(s)s) = Nrdg(s)"*? = Nie/p (Nrdp(s) /2.

The isomorphism class of (B, 7/,Idk) is the image under 7’ of the class of the pair
(Nrdp(s)s, Nrdg(s)/2+1), O

Corollary 3.12. Ifsd, F' <2 for p =2 and for every prime factor of n+ 1, then
HY(F,SU(B,7)) = 1.
Proof. A theorem of Gille [13, Théoréme 6] shows that the map §° in (9) is surjec-

tive, hence ker 7! = 1. On the other hand, Corollary 3.10 and Lemma 3.11 show
that im 7! = 1. (]

4. SYMPLECTIC INVOLUTIONS
4.1. Classification. The main result of this section is the following:

Theorem 4.1. Let A be a central simple algebra of even degree over an arbitrary
field F, and let o be a symplectic involution on A. If o is hyperbolic, then ind A
divides %deg A. The converse holds if sdo F' < 2.

The fact that ind A divides %degA if o is hyperbolic was already observed in
Section 1.4. The proof of the converse follows the same general pattern as Theo-
rem 3.2, which is the corresponding result for unitary involutions: we use induction
on ind A to restrict to the centralizer of a quadratic extension, and thus reduce to
the unitary case. The main technical tool is the following lemma:

Lemma 4.2. Let (A,0) be a central simple F-algebra with symplectic involution.
Assume deg A = 0 mod 8 and A contains a separable quadratic extension L of F
such that o|r is the non-trivial automorphism ¢ of L/F, i.e.
(L, 1) = (A, 0).

If the reduced norm map Nrds: A* — F* is surjective, there exists a central simple
F-algebra with symplectic involution (A’,0’) and an embedding (L,1) — (A’,0")
with the following properties:

(1) deg A’ = 0 mod 4;

(2) (A, o) is Witt-equivalent to (A,0);

(3) for A’ = Centas L and o' = o'|3;, the discriminant algebra D(A’,0’) is

split.
Moreover, if ind A divides % deg A, then ind A" divides % deg A’.
Proof. Let A= Centy L and & = ol ;. We have deg A = %deg A, so deg A is even.
We may thus consider the discriminant algebra D(A, ). By [15, (10.30)],
[D(A,5) @F L] = (5 deg A)[A],

hence the hypothesis that deg A = 0 mod 8 implies that D(A,&) is split by L.
Therefore, we may find y € F'* such that
(11) [D(4,6)] = (L y)r-

Let D be a central division F-algebra which is Brauer-equivalent to A and let p
be an orthogonal involution on D. Since Nrd(A*) = Nrd(D*) = F'*, there exists
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x € D* such that Nrdp(z) = y. The following dimension count argument due
to Dieudonné [15, p. 266] shows that z is the product of two symmetric elements:
since dim Sym(p) > 1 dim D,

Sym(p) N (z Sym(p)) # {0},

hence we may find non-zero elements s1, s2 € Sym(p) such that s; = xzss, i.e.
T = 5152_1.

Let A = diag(s1, —s, ) € My(D) = My(F) ®@p D. Define an orthogonal involu-
tion oy on Ms(D) by

o(x)=A-(t®p)(z) - A™! for x € My(D),
where t is the transpose involution on M»(F). By [15, (7.3)],
(12) disc oy = Nrdaz,(p)(A)F*? = Nrdp(sys; ) F*? = yF*2.

Let J be the (unique) symplectic involution on Endp L ~ Ms(F'). Let also
Ay = M3(D) ®p Endp L and 0p = 01 ® J, a symplectic involution on Ag which
is hyperbolic since J is hyperbolic. The regular representation L — Endg L is an
embedding

(L,¢) = (Endp L, J) = (Ao, 00).
Using the "notation for the centralizer, we have
;lvO:Mg(D) ®p L and 00 =01 ® L.
Therefore, [15, (10.33)] yields
[D(Ag,50)] = (L, discor)r + (4 deg Ag)[D).

Since deg Ag = 4 deg D, the last term on the right side vanishes. By (11) and (12),
it follows that

(13) [D(Ao,50)] = [D(4,5)].

Since Ay and A are Brauer-equivalent and o, ¢ have the same type, we may
consider an orthogonal sum

(A" 0") = (A, o) B (Ag,00),

see Proposition 1.3. This sum is Witt-equivalent to (A, o) since ¢ is hyperbolic,
and

(14) deg A’ = deg A + deg Ag = 0 mod 4.
The direct sum of the embeddings of L in A and A is an embedding
(L,1) — (A',0")
such that, by Proposition 1.7,
(4,0") = (4,5) 8 (Ao, 70).
By Proposition 1.6 and (13),
[D(A',0")] = [D(4,5)] + [D(Ay, 50)] =0.

Since ind A = ind A’ and deg Ay = 4deg D = 4ind A, it follows from (14) that
ind A’ divides § deg A’ if ind A divides % deg A. O
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Proof of Theorem 4.1. We argue by induction on ind A, considering separately the
cases where ind A = 1 or 2. If ind A = 1 the result is clear (without any hypothesis
on sdg F') since symplectic involutions on split algebras are hyperbolic. If ind A = 2,
then A is Brauer-equivalent to a quaternion division F-algebra D, and we may
choose a representation
(A,0) = (Endp V,adp)

where h is an even hermitian form on the even-dimensional D-vector space V with
respect to the conjugation involution on D. By Corollary 2.4, h (hence also o) is
hyperbolic.

Now, suppose ind A = 2* with k > 2. Since ind A divides % deg A, it follows that
deg A = 0 mod 8. We show that ¢ is hyperbolic by induction on k.

The same arguments as in Lemma 3.3(2) (or [4, Lemma 3.3.3]) yield a separable
odd-degree extension E/F and a separable quadratic extension L/FE such that
ind(A ®p L) = 2¥=1. By the induction hypothesis, the involution o7 = ¢ ® Idp,
on A;, = A®p L is hyperbolic. Therefore, Theorem 1.15 yields an embedding of
E-algebras with involution

(L, L) — (AE, O'E).
Since sdg F' < 2, a theorem of Gille [12, Théoreme 7] shows that the reduced norm
map on Ap is surjective. We may therefore apply Lemma 4.2 to find a central
simple E-algebra with symplectic involution (A’,o¢’) which is Witt-equivalent to
(Ag, o) and such that D(A’, ¢") is split. Moreover, ind A’ = ind Ap = 2 divides
%degA’, so deg A’ = 0 mod 2*+! and deg;f’ = Omod 2*. On the other hand,
since A’ is Brauer-equivalent to A’ @ L, we have ind A’ = 2F=1 hence ind A’
divides %deg A By Theorem 3.2, it follows that ol is hyperbolic, hence there is

an idempotent e € A’ such that o'(e) = 1 — e. This idempotent also lies in A’ and
satisfies o’(e) = 1 — e, hence ¢’ is hyperbolic. As (Ag,og) is Witt-equivalent to
(A’,0"), the involution o also is hyperbolic. Theorem 1.13 then shows that o is
hyperbolic, since the degree of E/F is odd. (I

We next apply Theorem 4.1 to obtain a classification of skew-hermitian forms
and symplectic involutions.

Let D be a central division algebra over an arbitrary field F, and let § be an
orthogonal involution on D. Recall from [15, (4.2)] that the adjoint involutions of
alternating skew-hermitian forms with respect to 6 are symplectic.

Corollary 4.3. Suppose sda F' < 2 and let V' be a D-vector space. Any two alter-
nating skew-hermitian forms h, ' on V' with respect to 6 are isometric.

Proof. Since Witt cancellation holds for alternating skew-hermitian forms by [21,
Corollary 7.9.2], it suffices to prove that h L —h' is hyperbolic or, equivalently, that
adp, —p is hyperbolic. This follows from Theorem 4.1 since ind Endp(V @ V) =
deg D divides £ deg Endp(V & V) = dimp V deg D. O

Corollary 4.4. Suppose sds F' < 2. Any two symplectic involutions o, o' on a
central simple F-algebra A are conjugate.

Proof. Choose a representation A = Endp V for some vector space V over a central
division F-algebra D. Let also # be an orthogonal involution on D. Then o = ad,
and ¢’ = ady for some alternating skew-hermitian forms h, b’ on V' by [15, (4.2)].
Corollary 4.3 shows that h ~ h’, hence o and ¢’ are conjugate. (]
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4.2. Conjecture II for groups of type C,,. Every simply connected absolutely
simple group of type C, over a field F' is isomorphic to the symplectic group
Sp(A, o) for some central simple F-algebra A of degree 2n and some symplectic
involution o on A. There is an exact sequence

1 — pu, — Sp(4,0) = PGSp(4,0) — 1

and an induced exact sequence in (flat) cohomology:

PGSp(4,0)(F) L H'(F, 1) — H'(F.Sp(A, 0)) * H'(F,PGSp(4,0)).
Corollary 4.5. Ifsdy F <2, then H'(F,Sp(A,0)) = 1.

Proof. By a theorem of Gille [13, Théoréme 6], the map ¢ is surjective, hence
ker 7! = 1. To complete the proof, we show im 7! = 1.
Note that 7 factors through the inclusion

Sp(4,0) — GSp(4,0).

By [15, (29.23)], the set H'(F, GSp(A4,c)) can be identified with the set of conju-
gacy classes of symplectic involutions on A. Corollary 4.4 then yields

H'(F,GSp(4,0)) =1,

hence im 7! = 1. O

5. QUADRATIC PAIRS

5.1. Classification. For the next theorem, recall from [15, (8.10)] that the dis-
criminant of a quadratic pair (o, f) on a central simple F-algebra A determines the
center of the Clifford algebra C'(A4, o, f). In particular, if the discriminant is trivial,
then C(A, o, f) decomposes as a direct product of two central simple F-algebras,

C(A,o,f)~Ct xC.

Theorem 5.1. Let F' be an arbitrary field and let (o, f) be a quadratic pair on a
central simple F-algebra of even degree. If (o, f) is hyperbolic, then ind A divides
2 deg A, disc(a, f) is trivial and one (at least) of the components C* of C(A, o, f)
is split. The converse holds if sds F' < 2.

Proof. If (o, f) is hyperbolic, then ind A divides %degA as was observed in Sec-
tion 1.4. Moreover, disc(o, f) is trivial and one of the components of C(A, o, f) is
split by [15, (8.31)].

To prove the converse, we argue by induction on ind A. If ind A = 1, then
A is split and the theorem follows from Theorem 2.1. For the rest of the proof,
assume ind A = 2% with & > 1, hence deg A is divisible by 25*1. Arguing as
in Lemma 3.3(2) (or by [4, Lemma 3.3.3]), we may find a separable odd-degree
extension E/F and a separable quadratic extension L/E such that ind Ay, = 2*~1.
Note that ind Ap = 2F since the degree of E/F is odd, hence Ag is not split.
By the induction hypothesis, the quadratic pair (o, f1) is hyperbolic. Therefore,
Theorem 1.16 yields an embedding €: L — Apg such that

Trda, (e(f)z) = T p(l) fe(x) for all z € Sym(og) and £ € L.

Let A = Centa, L be the centralizer of (L) and let & = o] 5, a unitary involution
on A. Since k > 1 and 2F*! divides deg A, we have deg A = 0 mod 4. It follows
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from [11, Lemma 4.5)° that, substituting for (4, o, f) a Witt-equivalent algebra with
quadratic pair if necessary, we may assume that D(A, &) is split. Since ind A =
ind A;, = 2+~ divides %deg[l = %degA and sdy E < 2, Theorem 3.2 shows that
& is hyperbolic. Therefore (o, fg) is hyperbolic by [11, Lemma 4.3], hence (o, f)
is hyperbolic by Theorem 1.14. ([

Following the pattern of Sections 3 and 4, we now derive from Theorem 5.1 the
classification of generalized quadratic forms.

Let D be a central division algebra over an arbitrary field F', and let V be a
D-vector space. Assume deg D dimp V' is even, and consider the factor group

Bp = Br(F)/{0, [D]}.
For generalized quadratic forms ¢, ¢’ on V' with disc ¢ = disc¢’, the quadratic pair
(o, f) adjoint to ¢ L —¢’ has trivial discriminant, hence
CEndp(VeV),o f)=C"xC~

for some central simple F-algebras CT, C~. Since deg D dimp V is even, it follows
that deg Endp(V @ V) = 0 mod 4, hence by [15, (9.12)]

2[C]=2[C"]=0 and [CT]+[C7]=[D] in Br(F).
Therefore, [CT] and [C~] have the same image in Bp, and we may set

c(q,q') = image of [C*] or [C] in Bp.

This relative invariant of ¢ and ¢’ was first defined by Bartels through Galois co-
homology under the assumption that char F' # 2, see [2, Section 7]. The definition
above comes from [11, Section 2].

Corollary 5.2. Suppose sdo F < 2. The forms q, ¢ are isometric if and only if
discq = disc¢’ and c(¢,¢’) = 0.

Proof. The forms q, ¢’ are isometric if and only if the quadratic pair (o, f) adjoint
to ¢ L —¢' is hyperbolic. By Theorem 5.1, this condition holds if and only if one
(at least) of the components C* is split, i.e. ¢(q,¢’) = 0. O

Corollary 5.3. Suppose sda F' < 2. Quadratic pairs (o, f), (o', f') on a cen-
tral simple F-algebra A of even degree are conjugate if and only if C(A, o, f) ~
C(A,d', ") as F-algebras.

Proof. The “only if” part is clear. We only sketch the arguments for the “if”

part and refer to [16, Proposition 6] and [11, Theorem 5.3] for details. Choose a

representation A = Endp V and quadratic forms ¢, ¢’ on V whose adjoint quadratic

pairs are (o, f) and (o, f'). For any A € F*, let (o, fo) be the quadratic pair on

M5(A) = Endp(V @ V) adjoint to ¢ L (—\)¢'. Since C(A, o, f) ~ C(A,d', f), we

have disc ¢ = disc ¢, hence there are central simple F-algebras C;r, C} such that
C(M3(A),0n, fr) = C;_ x Cy .

The hypothesis C(A, o, f) ~ C(A,0’,f") further implies that the center Z of
C(A, o, f) splits one of C’;r, Cy . If it splits C’;r, then there exists u € F'* such that

[CT=1(2, w)F].

5The arguments in §4 of [11] hold without change in characteristic different from 2.



SERRE’S CONJECTURE II 27

Then C’;\"H splits, hence c¢(g, (Au)g’) = 0 and it follows from Corollary 5.2 that
g ~ (Au)q’. Since (o/, f') is also adjoint to (Au)q’, we conclude that (o, f) and
(o', ') are conjugate. O
5.2. Conjecture II for groups of type D,. The simply connected absolutely
simple groups of type D,, (trialitarian D4 excluded) over a field F' are isomorphic
to spin groups Spin(A, o, f) where A is a central simple F-algebra of degree 2n
and (o, f) is a quadratic pair on A. Let p be the center of Spin(A, o, f). There is
an exact sequence (see [15, §31.A])

(15) 1 — p — Spin(4,0, f) 5 PGOT (4,0, f) — 1

and an induced exact sequence in (flat) cohomology

0
16 PGO™ (4,0, f)(F) > H'(F, 1) —
1

— H'(F,Spin(4,0, f)) *= H'(F,PGO" (4,0, f)).

Let Z be the center of the Clifford algebra C(A4, o, f). Recall from [15, §29.F] that
the elements in H'(F,PGO™ (A, 0, f)) can be identified with the F-isomorphism
classes of 4-tuples (A’,d’, f', ) consisting of a central simple F-algebra A’ of de-
gree 2n, a quadratic pair (¢’, f’) on A’ and an isomorphism ¢: Z’ — Z from the
center Z' of C(A',d’, f') to Z.
Lemma 5.4. If (A, 0, ', p) represents an element in the image of x*, then A’ ~ A
and ¢ extends to an F-algebra isomorphism C(A', o', ') =~ C(4, 0, f).
Proof. As in the proof of Lemma 2.5, we relate the exact sequence (15) to the exact
sequence derived from the Skolem-Noether theorem, using the homomorphism p
arising from the functorial property of Clifford algebras:

1 —— n —— Spin(4,0,f) —— PGO"(4,0,f) —— 1

l l g

1 —— GLy(2) —— GL,(C(4,0,)) —%— Autz(C(A,0,f)) — 1.
There is an induced commutative diagram

H\(F,PGO*(4,0,f)) —>—  H2(F,p)

7| |
HY(F, Autz(C(A, 0, f))) —2— H2(F,GLy(Z)).
If (A',0’, f', ) represents an element in im y! = ker §!, then
(17) N opl(A o flp)=1.

To compute the left side, recall from [15, (29.13)] that H*(F, Autz(C(4, 0, f)))
can be identified with the set of F-isomorphism classes of pairs (C, ) consisting of
an F-algebra C and an F-algebra embedding ¢: Z — C which become isomorphic
over the separable closure of F' to the pair (C(A4, 0, f),i) where i: Z — C(A4, o0, f)
is the inclusion. Under this identification, p*(A’,o”, f/, ¢) is represented by the pair

(C(A" o', 1), 7). On the other hand, GL1(Z) can be viewed as the Weil transfer
of the multiplicative group over Z, and we have by Shapiro’s lemma

H?*(F,GL1(2)) = H*(F,Rz/r(Gm,z)) = H*(Z,Gm,z) = Br(2).
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Under these identifications,
dopl (A0 [ p) = [C(A 0" ) @z Z] - [C(A,0,f)]  inBr(2),
where the tensor product is taken with respect to . Therefore, (17) yields
CA o', Yoz Z ~C(A,o,f) as Z-algebras,

hence ¢ extends to an F-algebra isomorphism C(A’, o', f') ~ C(A, o, f).
To prove A’ ~ A, observe that the map ' factors through the canonical map

HY(F,GO™(4,0,f)) = H'(F,PGO" (4,0, f)).
From the description of the set on the left in [15, §29.F], it follows that the image
consists of F-isomorphism classes of 4-tuples (A’,o’, f', ) where A’ = A. O

Corollary 5.5. Ifsdy F < 2, then H'(F,Spin(A, o, f)) = 1.

Proof. Consider the exact sequence (16). By a theorem of Gille [13, Théoréme 6]
the map d° is surjective, hence ker y! = 1. On the other hand, if (4’,0’, f',¢)
represents an element in im x!, then by Lemma 5.4 and Corollary 5.3

(A/7 Oju flu 50) = (Au g, fu IdZ)

Therefore im ' = 1 and the proof is complete. (|

APPENDIX A. THE WITT KERNEL OF ODD-DEGREE AND SEPARABLE
QUADRATIC EXTENSIONS

In this appendix, we give the proofs of the results stated in Section 1.5.

A.1. Metabolic involutions. Besides hyperbolic involutions, we need in Sec-
tion A.2 the weaker notion of metabolic involution, which we define below after
the following easy observation on idempotents in central simple algebras:

Lemma A.1. Let A be a central simple algebra of even degree over a field F' and
let e, ¢/ € A be two idempotents. Any two of the following conditions imply the
third one:

(a) ee’ =0,
(b) 1—-¢€)(1—-e)=0,
(c¢) dimpeA + dimp e’ A = dimp A.

In particular, if dimpeA = dimpe’A = Sdimp A, then ee’ = 0 if and only if
(I-¢)(1—-e)=0.

Proof. Condition (a) is equivalent to €/ = (1 — e)e’, hence also to e’A C (1 — ¢)A.
Likewise, condition (b) is equivalent to the reverse inclusion (1 —e)A C €’ A. Since

A=eAD(1-e)A,
we have dimp(1 — e)A = dimp A — dimp eA, hence condition (c) is equivalent to
dimp e’ A = dimp(1 —e)A.

The lemma is now clear. O
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Definition A.2. Let A be a central simple algebra of even degree over an arbitrary
field F. An involution p (of any type) on A is called metabolic if A contains an
idempotent e such that p(e)e = 0 and

(18) dimped = 1 dimp A.

Since

(19) dim p(e)A = dim p(Ae) = dim Ae = dimeA,
it follows by Lemma A.1 that

(20) (1—e)(1 = ple)) =0.

Note that if the idempotent e satisfies u(e)e = 0 and (20), then Lemma A.1 and
(19) show that it also satisfies (18). Therefore, we may substitute (20) for (18) in
the requirements for e.

If A is represented as in (1) as the algebra of endomorphisms of some hermitian
or skew-hermitian space (V, h), the involution u = ady, is metabolic if and only if V'
contains a totally isotropic subspace U with dimp U = % dimp V (or, equivalently,
Ut ="0).

Proposition A.3. A symplectic or unitary involution is metabolic if and only if it
is hyperbolic.

Proof. If 1 is symplectic or unitary, we may find z € A such that u(z) = 1 — =z,
see [15, (2.6), (2.17)]. If e € A is an idempotent such that u(e)e = 0 and dimeA =
% dim A, let

e =e—ecxu(e).

Computation shows that €’ is an idempotent. Moreover,

u(e') = pu(e) — ep(@)(e) = ple) — eple) + exp(e).
In view of (20), the right side is 1 — €', hence pu is hyperbolic.

Conversely, any idempotent e € A such that u(e) = 1—e clearly satisfies u(e)e =
0 and (1 —e)(1— u(e)) =0. O

Corollary A.4. Let K be an arbitrary field. Let (A,o) be a central simple K-
algebra with involution of symplectic or unitary type, and let F* C K be the subfield
of o-invariant elements (so F' = K if o is symplectic). If B is a central simple
F-algebra with a metabolic orthogonal involution u, then the involution o @ u on
A ®p B is hyperbolic.

Proof. To simplify notation, let 7 = 0 ® . Let e € B be an idempotent such that
u(e)e = 0 and (1 —e)(1 — u(e)) =0, and let ¢ = 1® e € A® B. This is an
idempotent such that 7(e’)e’ =0 and (1 —¢')(1 — 7(¢’)) = 0, hence T is metabolic.
Moreover, since p is orthogonal, 7 has the same type as o, hence the corollary
follows from Proposition A.3. O

The next proposition gives a corresponding result for quadratic pairs. Recall
from [15, (5.18)] that if (o, f) is a quadratic pair on a central simple F-algebra A
and p is an orthogonal involution on a central simple F-algebra B, a quadratic pair
(0 ® u, f«) is defined on A ® p B by the condition

i ®y) = f(@) Trdp(y)  for x € Sym(o) and y € Sym(p).
Proposition A.5. The quadratic pair (o ® p, f+) is hyperbolic if p is metabolic.
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Proof. Let e € B be an idempotent such that p(e)e =0 and (1 —e)(1 — u(e)) =0,
and let £ € A be such that

Trda(lz) = f(x) for z € Sym(o).
Let ¢ =1® e — £ ® ep(e). To prove the proposition, we show that
(21) f«(2) = Trdagp(e'z)  for z € Sym(c @ p).
By Remark 1.10, we have o(¢) = 1 — ¢, hence the same computation as in the proof
of Proposition A.3 yields
(o) =1-¢.

By Remark 1.10, it follows that (21) holds for z € Symd(o ® p). Since

Sym(o ® p) = Symd(o ® p) + Sym(co) ® Sym(p)
by [15, (5.17)], it suffices to prove (21) for z € Sym(o) ® Sym(pu).

For z € Sym(o) and y € Sym(u), we have
Trdagp(e' - v ®y) = Trda(z) Trdp(ey) — Trda(fz) Trdp(ep(e)y).

Since Trda(x) = 2f(z) = 2 Trda(¢z), the right side is

(22) 1) (2 Trdp (ey) — Trdp(en(e)y))-
Now, use Trdp(ey) = Trdp(u(ey)) = Trdp(u(e)y) to rewrite (22) in the form

f(@) Trdp((e + p(e) — ep(e))y).

Since (1 —e)(1 — p(e)) = 0 we have e + p(e) — eu(e) = 1, hence finally
Trdagp(e -z ®y) = f(z) Trdp(y),
proving (21) for z =z ® y. O
A.2. The Witt kernel of an odd-degree extension. We now turn to the proof
of Theorems 1.13 and 1.14, and use the notation of these theorems. Arguing by
induction on the number of generators, we may restrict to the case where E/F is a
simple extension. Let F = F(u), dimp E = n, and define a linear map s: £ — F
by
sl +aru+ -+ ap_u" ) =g for ag, ..., ap_1 € F.

Consider the symmetric bilinear form b: E x E — F defined by

b(x,y) = s(xy) for z, y € E.
This form is regular, so we may consider the adjoint orthogonal involution ad, on
Endp E. The regular representation ¥ — Endp E is an embedding

(E, IdE) — (Endp E, adb).

Composing s with the embedding F — F, we may view s as an idempotent in
Endp E. For z, y € E,

bz, s(y)) = s(z)s(y) = b(s(z),y),
hence ady(s) = s. Let Eg = kers and so = 1 — s. Let also by be the restriction of b
to Eo.

Lemma A.6. The involution ady, is metabolic.

Proof. The span of u, ..., u("~1/2 is a totally isotropic subspace of Ey of dimension
1 dim Ey. Any projection on this subspace is an idempotent e such that ady, (e)e = 0
and dimp(e Endp Ey) = %dimp Endr E. O
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Proposition A.7. Let (A, o) be a central simple algebra with involution as in The-
orem 1.13. The algebra with involution (A @ Endp E, o ® ady) is Witt-equivalent
to (A, o). Similarly, every central simple algebra with quadratic pair (A, o, f) as in
Theorem 1.14 is Witt-equivalent to (A ®@p Endp E, 0 ® ady, fi), where f, is defined
as in Proposition A.5.

Proof. For every symmetric idempotent e € Endp E, we may identify
e(Endr E)e = Endpime,

and the restriction of ad to this algebra is the adjoint involution with respect to
the restriction of b to ime. In particular, for e = s and e = sy,

s(Endp E)s =Endp F = F and so(Endp E)so = Endr Ey,

and the restriction of ad, to these algebras is Idg, resp. ady,. Tensoring with A,
we obtain
1®s)(ArEndr E)(1®s)=A
and
(1®50)(A®pEndr F)(1® s0) = A®p Endp Ey,
hence an orthogonal sum decomposition
(A KF EHdF E, o adb) = (A, O') H (A ®F EndF Eo, o adbo).

The first part follows, since the last summand is hyperbolic by Lemma A.6 and
Corollary A.4.

If (o, f) is a quadratic pair on a central simple F-algebra A, we obtain likewise
an orthogonal sum decomposition

(A Rr Endr E, 0 ® ady, f*) = (A, o, f) 28] (A Qpr Endp Ey,0 ® adbo, f*),
and the second part follows by Lemma A.6 and Proposition A.5. O
Proof of Theorem 1.13. The regular representation £ — Endp E yields an embed-
ding
(E, IdE) — (EndF E, adb).
Tensoring with (A, o), we obtain
(AE, O'E) — (A Rp Endp F,0 ® adb).

If o is hyperbolic, we may find an idempotent e € Ag such that op(e) =1 —e.
Viewing this idempotent in A ® Endg E, we also have

(c®adp)(e) =1—ce,
hence o ® ad, is hyperbolic. It follows that o is hyperbolic since (4,0) and (A ®@p
Endp E, 0 ® adp) are Witt-equivalent by Proposition A.7. O
Proof of Theorem 1.14. The proof follows the same pattern as the proof of Theo-
rem 1.13. The regular representation of E yields an embedding
(AE, UE) — (A Rrp Endp E,0 ® adb).

The main point is to show that (o ® ady, f«) is hyperbolic if (o, fg) is hyperbolic.
The conclusion then follows from Proposition A.7.
Let e € Ag be an idempotent such that

(23) fe(x) = Trda,(ex) for all z € Sym(og).
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To complete the proof, we show that
(24) f(2) = TrdagEnd £(e2) for all z € Sym(o ® ady).

Since og(e) = 1 — e by Remark 1.10, we have (o ® ady)(e) = 1 — e. Therefore, as in
the proof of Proposition A.5, it suffices to prove (24) for z € Sym(c) ® Sym(ad).
Thus, we aim to prove

(25)  f(z)Tr(y) = Trdagena (e 2 ®@Yy) for x € Sym(o) and y € Endr E.

Let p, € End E denote the image of v € E under the regular representation, i.e.
pu(w) = vw for v, w € E. Using the basis 1, u, ..., u" ! of E, it is easily seen that
(Pui © 80 pui)o<i,j<n—1 is a basis of End F, hence End E is spanned by elements of
the form p, o s o p,, with v, w € E. Moreover, computation shows

Tr(py 0 ) = s(v) for v e E.
Claim. Fora € Ag, Trdagrnare(a-1® s) = s(TrdAE (a)).

Since both sides are linear in a, it suffices to prove the claim for a = ag ® v with
ag € Aand v € E. Then

Trd(a-1® s) = Trda(ag) Tr(py 0 s) = Trda(ag)s(v) = s(Trda,(a)),
proving the claim.

We may now prove (25). Since both sides are linear in y, it suffices to prove it
when y = p, o s o p,, for some v, w € E. We may then decompose

TRy =(r®p,)(1R®5)(1® py).
Since e € Ap C A® End E commutes with 1 ® p,,, we have
Trd(e-z2®y) =Trd(e- (2 ® pw o py) - (1®5)).

Using the claim proved above and (23), we may simplify the right side to

s(Trda, (e z @ vw)) = s(f(z)ow) = f(z)s(vw).
Equation (25) follows, since

Tr(y) = Tr(py © $ 0 pw) = Tr(pw © py 0 5) = s(vw).

O

A.3. The Witt kernel of a separable quadratic extension. We now turn to
the proof of Theorems 1.15 and 1.16. The following lemma already yields the “if”
part of these results:

Lemma A.8. Let A be an F-algebra, and let o be an F-linear involution on A. Let
also L/ F be a separable quadratic field extension with non-trivial automorphism .
If there is an embedding e: (L,t) — (4, 0), then A®p L contains an idempotent e
such that or,(e) = 1 —e. If A is central simple and (o, ) is a quadratic pair on A,
and if there is an embedding €: L — A such that (3) holds, then A ®p L contains
an idempotent e such that fr(z) = Trda, (ex) for all x € Sym(oy,).

Proof. Let £ € L\ F and
s=(1el—ta)(1e({—1uf) ) e LerL.
The element s is the separability idempotent of L. It satisfies
t@Idp)(s) =1—s=(IdL ®:)(s),
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and therefore it is mapped under e ® Id,: L ®p L — A ®p L to an idempotent e
such that o (e) =1 —e.

Now, assume (o, f) is a quadratic pair on the central simple F-algebra A and e
satisfies (3). For z € Sym(o),

14 1
1 1
= TrdA(iv)m - TL/F(f)f(w)m'
Since T7,/p(¢) = £+ 1(£) and Trda(x) = 2f(x), the right side is f(z). By linearity,
it follows that Trda, (ex) = fr(z) for all z € Sym(oyr). O

We now consider the “only if” part of Theorem 1.15 in the anisotropic case.

Lemma A.9. Using the same notation as in Theorem 1.15, suppose (A, o) is
anisotropic. If oy, is hyperbolic, then there is an embedding €: (L,1) — (A, o).

Proof. Let e € Ay, be an idempotent such that or(e) =1 —e. As observed in the
proof of Proposition A.3, this condition implies

1
(26) dimz (1 —e)Ar = 3 dimyp Ay, hence dimp(l —e)A; = dimp A.

It also implies o(x)x =0 for x € (1 — e) Ay, hence
(A1)Nn(1—-e)AL ={0}
since ¢ on A is anisotropic. Moreover, we have
dlmF(A ® 1) + dlmF(l - e)AL = 2dimF A= dlmF AL,
hence
Ap=(Al)®(1—e)ApL.

Therefore, for x € Ay, there is a unique a € A such that x — (a® 1) € (1 —e)AyL,
ie.

e(r—(a®1))=0.
We may then define a map ¢: L — A as follows: for £ € L, €(¢) € A is the unique
element such that

e(lel—cl)®1)=0.
The map ¢ clearly is F-linear and injective, and €(1) = 1. Moreover, for ¢, ¢’ € L
we have
1@ —c()e(l)@1=(1c0-e(l)21) 100+ (1el—c(l)®1)(e(l)®1),
SO
e(l@ ' —e()e(l)®1) =0,

and therefore

el =e(l)e(l).
This proves that ¢ is an F-algebra embedding L — A. To show that eot =0 o¢,
consider £ € L\ F' and
(27) d=1al—cW)a)1e(—1) ) e AL
This is an idempotent (it is the image under € ® Idy, of the separability idempotent
of L), and it satisfies

(Ida®@u)(e)=1—¢.
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Since dimy,(Id4 ®¢)(e')Ar = dimp e’ Af, and A, = e’Ap @ (1 —€')Ay,

(28) dimy, e'Ap = $dimy Ay, and therefore dimpe' A; = dimp A.

By definition of €(¢), we have ee’ = 0, hence by (26) and (28) Lemma A.1 yields
(1—€)(1—e)=0.

Applying o, we obtain

(29) e(l—op(e') =0.

On the other hand,

1—¢ =Ida@)(e)=0xl) =) @)1 ® (t(£) — )71,
hence (29) yields € o «(£) = o o g(¥). O
The corresponding result for quadratic pairs is the following:

Lemma A.10. Using the same notation as in Theorem 1.16, suppose (o, f) is
anisotropic. If (o, fr) is hyperbolic, then there is an embedding : L — A satis-

fying (3).
Proof. Let e € Ay, be an idempotent such that fr(z) = Trda, (ex) for x € Sym(oyr).
By Remark 1.10,
e+or(e)=1.
The ideal (1 — e)Ap is isotropic, hence the same arguments as in the proof of
Lemma A.9 show that
Ar=(A®1)® (1 -e)AL
and yield an F-algebra embedding ¢: L — A defined by
e(l®l—c(l)®1)=0 for £ € L.
As in the proof of Lemma A.9, we have
cog=c¢colL.
Condition (3) holds for £ € F since then
Trr(€)f(x) = 20f(x) = £ Trda(x) for z € Sym(o).

Now, let £ € L\ F and consider the idempotent ¢’ defined in (27). To simplify
notation, denote = = Id4 ®¢. Since o0 o e = ¢ o, we have

(30) or(e)=1-¢ =¢.
For z € Sym(o),
Trdy, (e(z ® 1)) = f(z) € F,
hence
Trdy, (e(x ® 1)) = Trda, (e(z ® 1)).
By linearity, it follows that
Trda, ((e—€)x) =0 for x € Sym(oy,).
In particular,
(31) Trda, ((e —€)or(e')xe’) =0  for z € Sym(oyr).
Applying ~ to ee’ = 0, and taking (30) into account, we obtain

eor(e') =0.
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On the other hand, it also follows from ee’ = 0 and (30) that
eor(e) = e.
Therefore, (31) yields
Trda, (exe’) =0  for x € Sym(oy).

Substituting for e’ the right side of (27), we obtain
(32)  Trda, ((e(¥) ® 1)ex) = Trda, (ex)l = fr(z)¢ for x € Sym(op).
Similarly, ee’ = 0 yields Trd4, (ee’xz) = 0, hence

Trda, (e(e(f) @ 1)z) = Trda, (ex)l = fr(z)¢ for z € Sym(oy).
Substituting ¢(¢) for £ in the last equation, and using o oe = £ o+, we also have for
x € Sym(oyr,)
(33) Trda, ((e(0) @ 1)or(e)x) = Trda, (ze(e o t(f) ® 1)) = fr(z)e(£).
Adding (32) and (33), and using o, (e) + e = 1, we finally obtain

Trda, ((e(6) ® V)x) =T p(€) fr(x)  for x € Sym(oy),

proving (3). O

Lemma A.11. Using the same notation as in Theorem 1.15, suppose o is hyper-
bolic. Then there is an embedding €: (L,t) — (A, o).

Proof. Since o is hyperbolic, we have A ~ My(A") ~ My (F)®p A’ for some central
simple K-algebra A’ which has involutions of the same kind as 0. Let ¢’ be an
involution on A’, of orthogonal type if ¢ is symplectic, of unitary type if o is unitary,
with 0’|k = 0|k, and let J be the (unique) symplectic involution on Ms(F'),

J(z) =Tr(z) —x for x € My(F).
Since J is hyperbolic, the involution J®oc’ on Ma(F)&pr A’ is hyperbolic. As hyper-
bolic involutions of a given type on a central simple algebra are all conjugate (since
hyperbolic hermitian or skew-hermitian forms of a given dimension are isometric),
it follows that
(A, U) o~ (MQ(F) Rp A/, J® U/).
Now, let £ € L\ F and define
vz)y — zu(y)
b =
(z,y) =0
The map b: L x L — F'is a nonsingular alternating bilinear form, hence its adjoint
involution ad, on Endp L is symplectic, and

(34) (EndF L,adb) >~ (MQ(F),J)

Moreover, for u, x, y € L,

for z, y € L.

b(uz,y) = b(z, t(u)y),
hence the regular representation L — Endp L is an embedding

(35) (L,t) — (Endp L,ady).
The lemma follows by composing the maps
(L,.) — (Endp L,ady) ~ (M3(F),J) — (Ma(F)®rp A, J® ') ~ (A, 0).
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Lemma A.12. Using the same notation as in Theorem 1.16, suppose (o, f) is
hyperbolic and deg A = 0 mod 4. Then there is an embedding : L — A satisfying
(3)-

Proof. Since (o, f) is hyperbolic, we have A ~ My(A") ~ My (F) ®p A’ for some
central simple F-algebra A’ with involutions of the first kind. The degree of A’ is
even since deg A is divisible by 4, hence A’ carries an involution ¢’ of symplectic
type. Let J be the (unique) symplectic involution on M3 (F). We may consider the
quadratic pair (J ® o, fg) determined by the condition

fo(r1®@22) =0  for x1 € Skew(J) and x5 € Skew(o'),
see [15, (5.20)].

Claim: The quadratic pair (J ® ¢/, fg) is hyperbolic.
Consider e = () ® 1 € My(F) ® A’. To prove the claim, we show that

(36) fo(z) = Trd(ex) for x € Sym(J ® o’).
By [15, (5.17)],
(37) Sym(J ® ¢’) = Symd(J ® ¢’) + Sym(J) ® Sym(o’),

hence it suffices to prove (36) for z € Symd(J ® ¢’) and for x € Sym(J) ® Sym(c’).
Remark 1.10 shows that (36) holds for z € Symd(J ® o').
Suppose next = x1 ® x2 with z; € Sym(J) and z2 € Sym(c’). Then

Trd(ex) = Tr(( 3 §)z1) Trdar (z2).

If char F' = 2, then Trda/(x2) = 0 since o’ is symplectic. On the other hand,
Sym(J) = Skew(J) and Sym(c’) = Skew(c”), so fg(x) = 0 by definition.
If char F' # 2, then Sym(J) = F, hence

Trd(ex) = x1 Trdas (x2).

On the other hand,
folz) = %Trd(x) = 1 Trdas (x2),
so the claim is proved.

Since all the hyperbolic quadratic pairs on a given central simple algebra are
conjugate (because hyperbolic quadratic forms of a given dimension are isometric),
we may assume henceforth (4,0, f) = (M2(F)@r A, JQ0', fg).

To complete the proof, we show that the embedding ¢: L — A which factors
through the regular representation p: L — Endp L satisfies (3). Again, by (37), it
suffices to prove (3) for x € Symd(J ® o’) and for z € Sym(J) ® Sym(c’).

If £ € Symd(J®0'),let x =y + (J ®0’)(y). For £ € L,

Trda(e(f)x) = Trda(e(£)y) + Trda(o o e(£)y).
Since e(¢) + o o e(f) = p(€) + J o p(€) = Tr,/p(£), the right side is
Tp/p(0) Trda(y) = To/r fo (@),

and it follows that (3) holds for x € Symd(J ® o’).
If £ = 21 ® xo with 27 € Sym(J) and 22 € Sym(o”’), then

Trda(e(O)z) = Tr(p(€)x1) Trdas (z2).

If char ' # 2, then Sym(J) = F, hence the right side is 2177, ,¢(¢) Trdas(z2). On
the other hand,

feolz) = %TrdA(:zr) = x1 Trd g (22),
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o0 (3) holds for z € Sym(J) ® Sym(c¢’) if char F' # 2.

If char F = 2, then Trda/(z2) = 0 since o’ is symplectic. On the other hand,
Sym(J) = Skew(J) and Sym(o’) = Skew(c”) so fg(x) = 0 by definition. Therefore,
(3) holds for € Sym(J) ® Sym(c’) if char F' = 2. O
Proof of Theorem 1.15. If there is an embedding (L, ) — (A4, ), then Lemma A.8
shows that o, is hyperbolic. For the converse, use a Witt decomposition

(A7 U) = (AOa UO) & (A17 Ul)

where oy is anisotropic and o is hyperbolic, see Proposition 1.8. If o, is hyperbolic,
Witt cancellation implies that ogy, is hyperbolic. By Lemma A.9, it follows that
there is an embedding eo: (L,t) — (Ag,00). On the other hand, Lemma A.11
yields an embedding €1: (L,t) < (Aj,01). The direct sum of these embeddings is
an embedding

€0 EE|€1: (L,L) — (Ao,O'()) H (Al,O'l) = (A,O').

The proof of Theorem 1.16 follows the same lines:

Proof of Theorem 1.16. The “if” part readily follows from Lemma A.8. For the
converse, use a Witt decomposition as in Proposition 1.11,

(A,O', f) = (AOaUOafO) H (Alaalvfl)

where (09, fo) is anisotropic and (o1, f1) is hyperbolic. Then ind A = ind A; divides
%deg A;. If deg A1 = 2mod 4, then ind A is odd, hence the algebra is split and
(o, f) is adjoint to a quadratic form with odd Witt index. This special case is
excluded for the converse, so we assume deg A; is divisible by 4. Lemma A.12 then
yields an embedding e1: L — A; for which (3) holds. If (o, f1) is hyperbolic,
then Witt cancellation implies (oo, for) is hyperbolic, hence Lemma A.10 yields
an embedding ep: L — A for which (3) holds. To complete the proof, we show
that the direct sum ¢ = ¢gHer: L — A also satisfies (3).

Let eg, €1 € A be the symmetric idempotents such that A; = e; Ae; for i =0, 1.
Since eg + e; = 1, we have

xr = egxeg + egxre; + ejxeg + ejxey for x € A.

The reduced trace of the two middle terms vanishes since ege; = ejeg = 0 implies

Trda(egzer) = Trda(eregz) =0 and Trda(ejzeg) = Trda(egerz) = 0.
Therefore,

Trda(z) = Trda, (eoxzeo) + Trda, (e1zeq).
For ¢ € L, we have £(£) = eo({)eg + £1(£)eq, hence
Trda(e(€)z) = Trda, (e0(£)eozen) + Trda, (e1(£)er1zer) for x € Sym(o).

Since g¢ and e satisfy (3), it follows that

Trda(e(€)x) = Ty p(f) (fo(eoxeo) + fl(elxel)).

Since, by definition of the orthogonal sum,

f(x) = fo(eoxeg) + fi(erxer),
the proof is complete. 0
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APPENDIX B. FLAT COHOMOLOGY

Let G be an affine algebraic group scheme (not necessarily smooth) defined over
a field F and let F be a fixed algebraic closure of F. For any integers n > 1 and i
with n > ¢ > 0, define

e @R F - @i'F, 5310 @1, —5® Q1101018 - ®x,

and let ‘ . .
d': G(@LEF) — G&EHF)

be the induced map.

An element g € G(F ® F) is a 1-cocycle if

d'g = (d°9)(d*g) in G(F® F @ F).
Two cocycles g, ¢ € G(F ® F) are cohomologous if there exists h € G(F ® F) such
that
g' = (d’h)g(d"h)~".
We thus obtain an equivalence relation, and we denote by H'(F,G) the quotient
set. This a pointed set, the distinguished element being the class of the neutral
element. If G is abelian, this set has a natural group structure, and one can define
higher cohomology groups. We recall only the definition of H 2(F,G). A 2-cocycle
is an element g € G(F ® F' ® F) satisfying
(d°g)(d'g) " (d*g)(d°g) ™" = 1.

A 2-coboundary is a 2-cocycle g € G(F ® F ® F) of the form (d°h)(d*h)~(d?h) for
some h € G(F ® F). We define H?(F,G) to be the quotient group of the group of
2-cocycles by the group of 2-coboundaries.

If1 - N — G — H — 1 is an exact sequence of algebraic groups, we have an
exact sequence in flat cohomology

1 — N(F)— G(F) - H(F) — H'(F,N) - H'(F,G) — H'(F, H),

see [27, §18.1]. If N, G, H are abelian, all the morphisms are group morphisms. If
N is a central subgroup of G, the exact sequence extends to

1 — N(F)— G(F) - H(F) — H'(F,N) - H'(F,G) — H'(F,H) — H*(F,N).

If G is smooth, the flat cohomology sets can be identified with the Galois coho-

mology sets
H'(F,G) = H'(Gal(F,/F),G(F}))

where Fy is a separable closure of F, see [27, §18.5]. Moreover, connecting maps
induced by exact sequences agree under this isomorphism. In view of these proper-
ties, the standard identifications valid in Galois cohomology under assumptions on
the characteristic of F' extend to arbitrary fields; for example H!(F, p,,) ~ F* /F*"
and H?(F, pu,) ~ » Br(F).
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