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1 Introduction

This paper is a supplement to the article “Cohomologie d’ immeubles et de groupes S–arith-

méthiques” by A. Borel and J.P. Serre from 1976 (see [BS]). They deal with S–arithmetic

subgroups Γ of reductive algebraic groups G in the case of number fields and discrete cocompact

groups, so the general case for function fields F ([F : Fq(t)] < ∞, q = pr) is missing. For a

torsion–free group Γ they show that Γ is of type FL, which implies, that Γ is also of type

FP∞. For this purpose they compute the cohomology of the spherical Tits–building Yv of the

group G(Fv), where Fv ist the completion of F with respect to v ∈ S, providing Yv with the Fv–

analytic topology. Using Yv as a boundary at infinity of the Bruhat–Tits–building Xv of G(Fv),

thereby compactifying Xv, they can also compute the cohomology with compact supports of

X =
∏

v∈S Xv and prove, that it vanishes in all dimensions, except the top dimension d, which

is the sum
∑

v∈S dim Xv (in the number field case S contains also archimedean places and Xv

is then the corresponding symmetric space with corners); in dimension d the cohomology with

coefficients in Z is free.

On the other hand, U. Stuhler considers in his paper “Homological properties of certain

arithmetic groups in the function field case” (see [St]) the groups Γ = PGL2(OS) for OS ⊂ F

(S finite) and shows in the second part, that the “finiteness length” of Γ is bounded, more

precisely, that Γ is not of type FP|S|. Following a remark of J.P. Serre he uses the spectral

sequence for the cohomology groups of stabilizers Γσ (σ a simplex in X/Γ) with coefficients in

the finite field Fp and deduces that the vector spaces Hr(X/Γ; Hs(Γσ; Fp)) are finite–dimensional

for 0 ≤ r ≤ |S|, 0 ≤ s < |S|, but definitively not for r = 0, s = |S|. As a consequence H |S|(Γ; Fp)

has also infinite dimension, thus Γ cannot be of type FP|S|. For this result Stuhler employs a

filtration of X/Γ and computes step by step.

We shall now combine the methods of these two papers: We observe first, that Borel–Serre’s
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computation also works for certain subcomplexes of Yv and Xv which are finite modulo a

stabilizer–group Γσ (σ ∈ X), if we assume that Γσ has only p–torsion and moreover consists

only of elements contained in the unipotent radical U of a minimal F–parabolic group of G.

This can be established by changing from Γ to a (congruence) subgroup Γ0 of finite index: the

existence of Γ0 follows from reduction theory in the formulation of Harder. In this way we obtain

that the cohomology groups of Γσ vanish with exception of the top dimension, where we have a

description as locally constant functions on Γσ ⊂ U(F ) — a restriction of the results of Borel–

Serre. Consequently Stuhler’s spectral sequence degenerates to the isomorphism Hd(Γ; Fp) ≃

H0(X/Γ; Hd(Γσ; Fp)) and it remains to prove, that this space is infinite–dimensional. This may

again be done by a filtration of X/Γ, but it suffices to find an infinite sequence of vertices

σ, where Γσ becomes bigger and defines new elements of H0(X/Γ, Hd(Γσ; Fp)). Thus we can

at first generalize Borel–Serre’s theorem on the cohomology of S–arithmetic groups Γ with

coefficients in Z[Γ] to the function field case, when Γ has only p–torsion and secondly prove

that all S–arithmetic subgroups Γ of almost simple groups G, defined over F cannot be of type

FPd, where d is the sum of the local ranks of G over the fields Fv for v ∈ S. (The problem for

reductive groups can be reduced to this special case: See [B3], 2.6 c)

Another proof of the last theorem was recently given by K.U. Bux and K. Wortman (see

[BW]).

It is conjectured, that these groups are of type FPd−1, which has been shown in special cases

or with additional assumptions on the growth of F with respect to the rank: see the precise

statements at the end of this paper.

I would like to thank Robert Bieri, Bernd Schulz and Ulrich Stuhler for helpful discussions

and critical remarks.

2 Cohomology of spherical buildings

In order to fix the notations and to make clear that Borel–Serre’s computations also work for

certain subcomplexes of spherical buildings we have to report [BS], §1 and §2.

Let k be a non–archimedean local field, G a connected semi–simple k-group of k–rank l and

Y the Tits–building of G(k). It is well known by the Solomon–Tits–theorem, that Y has the

homotopy–type of a bouquet of (l-1)–spheres — with respect to its simplicial topology. The

first step in [BS] is to provide Y with the analytic topology, induced by the valuation on k and

to prove an analogue, by computing the Alexander–Spanier–cohomology.

2.1 Denote by P a minimal k–parabolic subgroup of G, by T a maximal k–split torus of P ,

by ∆ the basis of simple roots on T , which defines P and by S the associated set of reflections

in the Weyl group W of P , W = N(T )/Z(T ). We may identify both ∆ and S with the index

set Nl = {1, . . . , l}, then PI is the parabolic subgroup generated by P and Z(TI), TI the kernel

of all ai ∈ ∆I for I ⊆ Nl, such that ∆ \∆I is the set of simple roots of the semi–simple factor

of PI ; we have P∅ = P , PNl
= G and J ⊂ I ⇔ PJ ⊂ PI . Now let C be the closed chamber
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of Y , fixed by P (k) and CI its face fixed by PI (for proper subsets I of Nl), then Y can be

described as G(k)/P (k) × C with identifications. Borel–Serre provide G(k)/P (k) = (G/P )(k)

with the k–analytic topology, so it is compact, C with its simplicial topology and Y by the

quotient topology, defined by G(k)× C −→ G(k)/P (k)× C
λ
−→ Y .

2.2 In the next step we use the Bruhat–decomposition G(k) =
∐

w∈W P (k)wP (k), which

can be made unique by the refinement G(k) =
∐

w∈W Uw(k)wP (k), where Uw is a connected

subgroup of the unipotent radical U of P ; for the only element w0 of maximal length in W one

has Uw0
= U . Thus C(w) := P (k)wP (k)/P (k) is a principal homogenous space over Uw(k),

therefore isomorphic to kdw with dw = dimUw, especially C(w0) ≃ kd0 , d0 = dimU . Using this

decomposition and enumeration of the Weyl group W = {wi|1 ≤ i ≤ N}, compatible with the

length function (i.e. l(wi) ≤ l(wj) for i < j) Borel–Serre construct a filtration of the building

as follows: For any wm ∈ W define Im := {i ∈ Nl|l(wmsi) > l(wm)} for si ∈ S, thus I1 = Nl

(for w1 = id), IN = ∅ and Im /∈ {Nl, ∅} for 1 < i < N and setting Lm :=
⋃

I⊂Im
C◦I (open faces,

in particular C◦∅ = C◦), L′
m :=

⋃
I 6⊂Im

CI , we see that wmL′
m is the union of all codimension–

1–faces of wmC, which also belong to a chamber which has smaller distance to C than wmC.

With Em :=
⋃

1≤i≤m C(wi), Ym := λ(Em × C) we obtain a filtration of Y =
⋃

1≤i≤N Yi with

Yi ⊂ Yj for i < j and

Lemma 1: a) Ym\Ym−1 =
∐

I⊂Im

(∏
I C(wm)× C◦I

)
, such that Ym\Ym−1 is homeomorphic

to C(wm)× Lm.

b) H̃i(Y ; M) = Hi
c(Y \ YN−1; M). (M is a Z–module, H̃∗ the reduced cohomology and H∗

c

cohomology with compact supports.)

c) Hi
c(Y \ YN−1; M) = H l−1

c (C◦; M)⊗H
i−(l−1)
c (C(wN ); M) which is 0 for all i 6= l − 1, so

Hi(Y ; M) vanishes for all i 6= l − 1 and H̃ l−1(Y ; M) ≃ Z⊗H0
c (C(wN ); M).

Remark. It is enough to prove this lemma and the following proposition for M = Z: The

results for Z show that the cohomology modules are 0 or free; therefore the universal coefficient

theorem gives the result for a Z-module M by tensoring (cf. [Br1], 0.8). Moreover this is also

true for the set of locally constant functions with compact support over a totally disconnected

space X : C∞
c (X ; M) = C∞

c (X ; Z)⊗Z M (see [BS], lemma 2.2).

Proof. b) For 1 < m < N we have Im /∈ {∅, Nl}, which implies that L′
m is contractible, as is

C = Lm

.
∪ L′

m and the exact cohomology sequence for C mod L′
m gives H∗

c (Lm; Z) = 0 and

with a) and Künneth’s formula H∗
c (Ym \ Ym−1; Z) = 0. Now Y1 = C is contractible and by

induction on m we get b).
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c) We already know that Y \ YN−1 = YN \ YN−1 = C(wN ) × C◦, and C◦ is isomorphic to

Rl−1, oriented by the enumeration of its codimension–1–faces, thus H i
c(C
◦; Z) = 0 for i 6= l− 1

and H l−1
c (C◦; Z) = Z. The Künneth–formula implies H i

c(Y \ YN−1; Z) = H l−1
c (C◦; Z) ⊗

H
i−(l−1)
c (C(wN ); Z), but C(wN ) = P (k)wNP (k)/P (k) ≃ kd0 is a totally disconnected space,

therefore 0–dimensional and has zero cohomology in all dimensions but 0.

2.3 It remains to describe the cohomology for the top dimension. The building Y is the union

of all apartments containing C; call this set A and A0 the standard apartment, fixed by Z(T ) ⊂

P , so A0 ∈ A. The correspondence g 7→ gA0 defines a bijection between P (k)/Z(T )(k) ≃

U(k) and A, and also C(wN ) = U(k)wNP (k)/P (k) ≈ U(k) is in 1–1–correspondence with A:

consider C(wN ) as the set of chambers in Y , which are opposite to C: A ←→ U(k)←→ C(wN ).

Part c) of the lemma also shows that H̃ l−1(Y ; M) = H0
c (A; M) is isomorphic to C∞

c (A; M).

This isomorphism has an explicit description: The Coxeter–complex ΣA of each A ∈ A is

homeomorphic to the sphere Sl−1 with orientation, given by the enumeration (ΣA is a la-

belled complex). The cycle
∑

w∈W (−1)l(w)wC defines for l ≥ 2 a class [A] in the homol-

ogy group Hl−1(Y ; M) — the “fundamental class of the oriented sphere”. A given element

h ∈ H l−1
c (Y ; M) has by restriction to H l−1

c (A; M) a value h([A]) and by definition of cohomol-

ogy h([A]) is uniquely determined by its value on the opposite chamber uwNC for u ∈ U(k), if

A = uA0. So we can summarize as

Proposition 1:
H̃i(Y ; M) =

{
0 for i 6= l − 1

H0
c (A; M) ≃ C∞

c (U(k); M) for i = l − 1

Analyzing the proof above, it is obvious, that it also works for subcomplexes Y ′ of Y , which

are unions of apartments containing a fixed chamber C; especially if Y ′ =
⋃

u∈U ′ uA0, where

U ′ is a subgroup of U(k).

Corollary: If U ′ is a subgroup of U(k), U the unipotent radical of the minimal k–parabolic

group P of a semi–simple algebraic k–group G, k a local nonarchimedean field, C the chamber

of the Tits–building fixed by P , A0 an apartment containing C and Y ′ =
⋃

u∈U ′ uA0, then

H̃i
c(Y

′; M) ≃

{
0 for i 6= l − 1

C∞
c (U ′(k); M) for i = l − 1

3 Cohomology of affine buildings

3.1 Let X be the affine Bruhat–Tits–building, defined by the group G and the valuation on

k. We may suppose that G is semi–simple and simply connected (cf. [BS], 4.1), so G is a direct

product of almost simple groups Gj (1 ≤ j ≤ m) of k–rank > 0 and a simply connected group

G0 of k–rank 0, such that G0(k) is compact. Then the double Tits–system has also a product

structure, the Tits–building Y is the join of the buildings Yj of Gj and X is a polysimplicial

complex.
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The apartments of X are in 1–1–correspondence with those of Y ; denote by A0 the standard

apartment in X , stabilized by N(T ) (T ⊂ P as in section 2) and choose an origin O in A0 as a

special point and a sector (simplicial cone) D with vertex O and direction C, C the standard

chamber in Y , fixed by P (for buildings cf. [BT], [Br2] and [R]).

A main part of [BS] contains the construction of a compactification of X by adding Y as

a boundary at infinity, such that the induced compactification of any apartment of X is the

classical one for an affine space by the sphere of half–lines. Z := X ∐ Y is shown to have a

topology, which makes Z compact and contractible and the action of G(k) on Z continuous.

The contraction of X to O is geodesic, which means along half–lines in an apartment.

3.2 In this section we are interested in finite groups Γx, stabilizing a vertex x ∈ D ⊆ A0 and

contained in U(k), U = radP ; as we already know (see 2.3), these elements define bijectively

apartments A of X , such that A contains C in Y and moreover fix pointwise the sector Dx

with direction C and vertex x (if we assume that x is special — which can be done by changing

from x to a neighbour x′ with Γx ⊂ Γx′ — Dx is given by {x′ ∈ A0|α(x′) ≥ α(x)∀α ∈ ∆}).

We consider the subcomplex X ′ of X , defined by X ′ =
⋃

γ∈Γx
γA0 and denote by Z ′ :=

X ′ ∪ ∂X ′, where Y ′ := ∂X ′ ist the boundary of X ′ in Z, so Z ′ is compact. We now remove

a collar from Z ′, in order to get a complex, which is finite modulo Γx: This can be done by

retraction along half–lines with vertex x and — since Γx is finite — in such a way that different

apartments γA0 remain different. We obtain a complex X ′
c, contained in X , homoemorphic to

Z ′, whose boundary Y ′
c is homeomorphic to ∂X ′ and X ′

c∩Dx is still contained in all apartements

γA0 for γ ∈ Γx. Observe that the sectors γD (D with vertex O and ∂D = C) do not coincide,

but all have the sector Dx in common, which has the same dimension and so Dx has the same

set of directions as all γD, which implies that ∂γD = ∂Dx = C for all γ. For any apartment γA0

the intersection γA0 ∩ Y ′
c is homoemorphic to γA0 ∩ Y , which is a spherical Coxeter–complex

and all these complexes contain the chamber C.

Therefore we can apply the Borel–Serre–method for computing the cohomology of Y ′
c in the

same way as for Y and use the corollary of proposition 1 (notice that Y is the join Y1 ∗ · · · ∗Ym

and one has the formula dimY =
∑m

j=1(dim Yj +1)−1 =
∑m

j=1 dim Xj −1 =
∑m

j=1 rkk Gj −1,

and l =
∑m

j=1 rkk Gj = rkG), so we get

Lemma 2: H̃i
c(Y

′
c ; M) = 0 for i 6= l − 1,

H̃ l−1
c (Y ′

c ; M) ≃ C∞
c (Γx; M).

3.3 The exact sequence of cohomology for X ′
c modulo Y ′

c implies (cf. [BS] thm. 5.6)

Proposition 2: Hi
c(X

′
c; M) = 0 for i 6= l and

H l
c(X

′
c; M) ≃ C∞

c (Γx; M)

for a Z-module M ; if M is free, then also H l
c(X

′
c; M) is a free Z–module.
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4 S-arithmetic groups

4.1 Let F be a function field, i.e. [F : Fq(t)] <∞, q = pm, p = charF , S a finite non–empty

set of places of F , Fv the completion of F with respect to v ∈ S, G a connected semi–simple

algebraic F–group of rank r > 0, rv the Fv–rank of G, L =
∏

v∈S G(Fv), Xv the Bruhat–Tits–

building of G(Fv) with dimension dv = rv, X =
∏

v∈S Xv with dimX =
∑

v∈S dv =: d.

We consider S–arithmetic subgroups Γ, which are discrete in L. It is well known, that Γ

contains a congruence subgroup Γ0 of finite index, which has only p–torsion, but we need a

little bit more and have to use for this purpose

4.2 (Reduction theory) We use the same notations as in section 2, but with respect to

F instead of k: P is a minimal F–parabolic subgroup of G, P = Z(T ) ⊲⊳ U , ∆ = {α1, . . . , αr}

the set of simple roots of T , that defines P . We give a list of properties in the version of Harder

(see [H1], cf. also [H2], [B2] and for the 1–dimensional case [S2], II.2).

(i) There is a constant c1, such that for any x ∈ X , there exists a minimal P with numerical

invariants νi(P, x) ≥ c1 for 1 ≤ i ≤ r ([H1], Satz 2.3.2): “x is reduced with respect to P”.

(ii) There is a constant c2 ≥ c1, such that for x reduced with respect to P and P ′ and

νi(P, x) ≥ c2 ∀i ∈ I ′ ⊆ ∆, P ′ is also contained in PI for I = ∆ \ I ′ and PI is uniquely

determined ([H1], Satz 2.3.3): “x is close to PI”.

(iii) For each constant c′ ≥ c1 the set

X0 := {x ∈ X | c1 ≤ νi(P, x) ≤ c′ for all i ∈ ∆ and all P s.t. x is P -reduced}

is compact modulo Γ (cf. [H1], Satz 2.2.2): “compactness criterion”.

(iv) The number of Γ–conjugation classes of parabolic groups is finite ([B2], Satz 8): “finiteness

of class number”.

(v) There exists a constant c3 ≥ c2 (depending on Γ), such that for a P–reduced x ∈ X one

has UI(Fv) = (UI(Fv) ∩ stabG x) · (UI(Fv) ∩ Γ) for all v ∈ S (cf. [H2], 1.4.5): “x is very

close to PI , UI = radPI”.

4.3 ¿From these properties above we deduce the following proposition; for subgroups H ⊆ G

we shorten the notation: FS :=
∏

v∈S Fv and H(FS) :=
∏

v∈S H(Fv).

Proposition 3: For each S–arithmetic group Γ ⊂ G(FS), there exists a congruence subgroup

Γ0, finitely many F–parabolic subgroups P1, . . . , Ph0
of G and a set V of representatives for

vertices of X/Γ0, such that for all x ∈ V the stabilizers (Γ0)x are contained in one of the groups

[Ru(Pj)](FS), Ru(Pj) the unipotent radical of Pj. Moreover, those x ∈ V which are close to Pj

are contained in an apartment, having Pj and a fixed opposite P op
j in its boundary at infinity.

Proof. a) X0 := {x ∈ X | c1 ≤ νi(P, x) ≤ c2 for all i ∈ ∆ and all P s.t. x is P -reduced} is

compact modulo Γ by (iii), thus there exist finitely many vertices in X , which represent the
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vertices of X0 and have finite stabilizers in Γ. Therefore we can find a congruence subgroup Γ1

of Γ, which has trivial stabilizers for all x ∈ X0.

b) Now we consider those x ∈ X , which are close to at least one parabolic group Q (but not

to Q′ ⊂ Q), which means that some νi(P, x) ≥ c2 for P ⊆ Q. Up to conjugation with Γ1 we

may assume that P belongs to a finite set {P1, . . . , Ph} by (iv) and Q = (Pj)I for some j and

I ⊆ ∆j , so there are only finitely many such groups Q. We write Q = H⋉UQ with H = Z(T ′),

T ′ ⊆ Tj , the maximal split torus of Pj and UQ = Ru(Q) ⊆ Ru(Pj). We want to “split up” Γ1:

There is a subgroup Γ2 of finite index in Γ1, such that Γ2 = (Γ1 ∩H(FS))⋉(Γ1 ∩ UQ(FS)) has

finite index in Γ (cf. [Bo], 1.7 and 8.12, which is also valid for function fields, see [B1]). Now

H is either of F–rank 0, if I = ∅ or the numerical invariants νi(H ∩P, x) are bounded by c2 for

all i ∈ ∆ \ I = I ′ (the set of simple roots of H !), so either H(FS)/Γ1 ∩H(FS) is compact or by

the same idea as in a) we find a congruence subgroup Γ3 of Γ2, whose stabilizer of x ∈ X has

a trivial semi–simple component in [Γ3 ∩H(FS)], so (Γ3)x ⊆ UQ(FS) ⊆ [Ru(Pj)](FS). We can

repeat this process for the finite set of groups Q and finally obtain a congruence subgroup Γ0 of

Γ, whose stabilizers have only unipotent elements; a set of representatives can be found in the

unipotent radicals [Ru(Pj)](FS), but now for a bigger set j = 1, . . . , h0 for the Γ0–conjugates of

minimal parabolic groups.

At last poperty (v) of 4.2 shows, that we can choose modulo Γ0 a fixed opposite group P op
j

of Pj for all j and this implies the second assertion of proposition 3 – by making Γ0 smaller and

h0 bigger if necessary.

5 Cohomology of S-arithmetic groups

5.1 Stuhler uses in [St] the following spectral sequence

(∗) Hr(X/Γ, Hs(Γσ; M)) =⇒ Hr+s(Γ; M)

which was introduced by Serre (for a foundation cf. [Br1], VII.5 and VII.7). Stuhler dealt

with Γ = SL2(OS), X a product of |S| trees, the Bruhat–Tits–buildings of SL2(Fv), v ∈ S and

M = Fp. In our context Γ will be a S–arithmetic subgroup of G(F ) and X the polysimplicial

product of the Bruhat–Tits–buildings Xv for G(Fv), v ∈ S.

5.2 For the application of the results in section 2 and 3 we have to observe that a minimal

parabolic F–subgroup P is in general not minimal over Fv: Denote by Q a minimal Fv–parabolic

group, contained in P for some v ∈ S. We have P = HT⋉Ru(P ) with a maximal split F–torus

T and a semi–simple group H of F–rank 0; therefore H(FS)/H(FS)∩Γ is compact. There may

be infinitely many Q ⊂ P , but since we are interested in vertices x of a set V of representatives

for X/Γ with Γx ⊂ [Ru(P )](F ), where P is one of the minimal parabolic F–subgroups of

proposition 3, the compactness above tells us, that we have to consider only finitely many Q’s.

Moreover Ru(P ) ⊆ Ru(Q) (as groups over Fv), but for Ru(Q) = Ru(P ) · U ′, the subgroup U ′

of H cannot contain unipotent elements of Γ, so [Ru(P )](Fv) ∩ Γ = [Ru(Q)](Fv) ∩ Γ.
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5.3 The building Yv at infinity of Xv has a chamber CQ, fixed by Q(Fv) and CQ has a side–

simplex CP , fixed by P (Fv) (CP = (CQ)I for P = QI in section 2). Consider now a finite

stabilizer group Γx ⊂ [Ru(P )](F ) for x = (xv) ∈
∏

v∈S Xv = X . In any apartment A of Xv,

containing xv, the group Γx fixes a cone in Xv, which is the union of sectors, which all have the

“side–direction” Q in common. The construction of the subcomplexes X ′ and X ′
c in section 3

can now be realized simultaneously in all buildings Xv with the same group Γx, the stabilizer

of a vertex x = (xv) ∈ X =
∏

v∈S Xv in Γ, which is diagonally imbedded in
∏

v∈S G(Fv). We

start with a fixed apartment A0 in Xv and define X ′
v =

⋃
γ∈Γx

γA0; A0∩Yv may contain several

chambers CQ for Q ⊂ P , but the equation [Ru(Q)](Fv) ∩ Γ = [Ru(P )](Fv) ∩ Γ shows that X ′
v

depends only on P . On the other hand we can use any such chamber CQ for the computation

of the cohomology as in section 2.

5.4 We fix now a vertex x = (xv) in the polysimplicial complex X and denote by Γx its

stabilizer in Γ, assuming that Γ is the congruence subgroup of an S–arithmetic group, which

has the properties of proposition 3. With this group Γx construct the subcomplexes (X ′
v)c as

in section 3 for all v ∈ S and define X ′
c =

∏
v∈S(X ′

v)c.

Proposition 2 gives us the cohomology of (X ′
v)c and the Künneth–formula implies

Proposition 4: Hi
c(X

′
c; M) = 0 for i 6= d,

Hd
c (X ′

c; M) ≃
⊗

v∈S

Hdv

c ((X ′
v)c; M)

for d =
∑

v∈S dv, dv = dimXv = rkFv
G and a Z-module M .

This proposition allows to deduce the cohomology of the stabilizer groups.

Lemma 3: Hi(Γx; Z[Γx]) = 0 for i 6= d,
Hd(Γx; Z[Γx]) ≃ C∞

c (Γx; Z).

Proof. We use the isomorphism H∗(Γx; Z[Γx]) ≃ H∗(X ′
c, Z) (see [Br1], VIII.7, ex. 4), which

is valid, since X ′
c is contractible and has only finitely many cells mod Γx (and of course fi-

nite isotropy groups). For the precise description of Hd(Γx; Z[Γx]), we have to remember

Lemma 1, which says together with the corollary to proposition 1, that Hdv
c ((X ′

v)c; M) ≃

H̃dv−1
c ((Y ′

v )c; M) = Hdv−1
c (C◦v ; M) ⊗H0(Γx; M), where C◦v denotes the interior of a chamber

Cv in Yv. For X ′
c we must consider the chamber C = ∗v∈SCv (join) in Y = ∗v∈SYv and so

we obtain Hd(X ′
c; M) ≃ Hd−1

c (C◦; M)⊗H0(Γx; M), where the first factor is isomorphic to Z

(since C◦ ≃ Rd−1) and the second one to C∞
c (Γx; M): Set M = Z.

Corollary: a) Hi(Γx; Z[Γ]) = 0 for i 6= d,
Hd(Γx; Z) ≃ C∞

c (Γx; Z)⊗Z[Γx] Z[Γ] ≃ C∞
c (Γx; Z[Γ]).

b) Hi(Γx; Fp) = 0 for i 6= d,
Hd(Γx; Fp) ≃ C∞

c (Γx; Z)⊗Z[Γx] Fp ≃ C∞
c (Γx; Fp).

Proof. For the second parts see [Br1], VIII.6.8, since Γx is of type FP and cd Γx = d.
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5.5 For the application of the spectral sequence we have to consider the stabilizers of polysim-

plices σ, but Γσ is always the intersection of some Γx and we notice that the results above

remain valid for Γσ. On the other side we have to replace the trivial Γσ–module Z by the

“oriented module” Zσ, on which Γσ acts with a sign. Then it is true, that the spectral sequence

Hr(X/Γ; Hs(Γσ; Zσ ⊗M)) converges to Hr+s(Γ; M) (see [S1] 1.6, especially remark 1). The

corollary implies, that the spectral sequences degenerate to isomorphisms, so we obtain

Theorem 1: For a S–arithmetic subgroup Γ of G(F ), G a semi–simple algebraic F–group with

rkF G > 0, there exists a subgroup Γ0 of finite index, which has only p–torsion, such that for

the Γ0–modules M = Z[Γ0] or M = Fp (with trivial Γ0-action) and the Bruhat–Tits–building

X =
∏

v∈S Xv we have

(i) Hi(Γ0; M) = 0 for i 6= d =
∑

v∈S rkFv
G,

(ii) Hd(Γ0; M) ≃ H0(X/Γ0; H
d(Γ0)σ; M),

in particular Hd(Γ0; Z[Γ0]) is free.

Remark. For rkF G = 0, the “cocompact case”, see [BS], thm. 6.2.

6 Finiteness properties of S-arithmetic groups

6.1 In this section we are interested in the finiteness properties FPn or Fn (see [Br1], VIII.5

and [Br2], VII.2). In contrast to the number field case, where all S–arithmetic subgroups of

reductive groups are of type F∞ (in the general case it is only true for S = S∞), there exist many

counter–examples over function fields and a conjecture says, that for almost simple groups G

with rkF G > 0 Γ is of type Fd−1, but not Fd, where again d =
∑

v∈S rkFv
G. This was proved

for Γ = SL2(OS) by Stuhler (see [St]), for the classical cases d = 1 (finite generation) and

d = 2 (finite presentation)) (see [B3]), for Γ = SLn(Fq[t]) by Abels and Abramenko under the

additional assumption, that q is big enough with respect to n and by the second author also for

classical almost simple groups over the polynomial ring and with analogous growth conditions

(see [A] and [Ab]) and finally the positive result for Chevalley–groups and arithmetic rings with

|S| = 1 without such a condition in [B4].

6.2 There is a necessary cohomological condition for a group Γ to be of type FPn: For a ring

R, which is a Z–module of finite type, the homology and cohomology groups Hk(Γ; R) and

Hk(Γ; R) have to be finitely generated for 0 ≤ k ≤ n (see [Bi], prop. 2.15). Stuhler used this

criterion for R = Fp for the group SL2(OS), to show that it is not of type FP|S| (see [St], section

4). We shall generalize his idea for the congruence subgroup Γ0 of Γ (from proposition 3) in

almost simple groups G, using

Hd(Γ0; Fp) ≃ H0(X/Γ0; H
d((Γ0)σ; Fp)) ≃ H0(X/Γ0; C

∞
c ((Γ0)σ; Fp))

(see theorem 1 and the corollary to lemma 3). We prove that the Fp–dimension of this vector–

space goes to infinity for an infinite sequence of vertices σ = x in a set VP of representatives
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for X/Γ0 being very close to a fixed parabolic F–subgroup P = Pj for some j ∈ {1, . . . , h0}

(see 4.2 (v) and proposition 3). We may also assume that these vertices are contained in poly–

apartements on which a fixed maximal F–split torus T0 of P acts. Denote by a0 the highest

F–root on T0, that defines a subgroup U0 of the unipotent radical U of P . Consider a0 as a

linear form with integral values on all these apartements.

By Riemann–Roch U0(x) := U0(FS)∩ (Γ0)x is for x = (xv) ∈ X a Fq–vector–space. If a0(xv)

increases by 1 for some v, all others remaining constant, dimFq
U0,x increases by dv = dimFq

F v

(F v the residue field of Fv), if U0 is a 1–dimensional root group and otherwise has moreover

to be multiplicated by dimF U0(F ). Thus it seems reasonable to define the filtration of VP by

A0(x) =
∑

v∈S dv · a0(xv), A0 is Γ–invariant by the product–formula for valuations. The whole

set of representatives for X/Γ0 consists of a finite complex and finitely many sets, containing

the VPj
.

6.3 For the computation of H0(X/Γ0; C
∞
c ((Γ0)x; Fp)) we must satisfy the condition for 0–

cocycles, which means concretely that the values of a function on the vertices x and x′ of an

edge have to coincide on (Γ0)x ∩ (Γ0)x′ . We have to consider several cases:

a) If rkF G = rkFv
G = 1 for all v ∈ S we have a cubic complex X (the prototype is

Stuhler’s SL2–example) and U0 = Ua or U0 = U2a. We consider a cube C, whose ver-

tices x and y have maximal resp. minimal A0–value; the neighbours of x′ being xi with

a0[(xi)vi
] = a0[(x)vi

]− 1 and a0[(xi)vk
] = a0[(x)vk

] for all k 6= i, setting S = {v1, . . . , vs},

i, k ∈ {1, . . . , s}.

Unfortunately U0(x) =
⋃s

i=1 U0(xi), thus all functions on U0(x) are uniquely determined

by their values on the subgroups U0(xi). But functions on the vertices xij , whose a0-

values differ from those on x for two indices by 1 have different extensions to functions

on xi and xj . This can be done for all pairs (i, j), which implies that the Fq–dimension

of U0(y) is smaller than that of U0(x) and so we obtain more functions on (Γ0)x than on

(Γ0)y and H0 becomes larger (cf. [St], prop. 2 and lemma 2). One should observe, that

many vertices close to P are Γ–equivalent, since the torus T0(Fs)∩Γ0 acts on these points

as a free abelian group of rank |S| − 1. But the function A0 is Γ–invariant and obviously

A0(y) < A0(x), so x and y are different vertices of VP .

b) If G is a Chevalley–group of rkF G = rkFv
G ≥ 2 for all v ∈ S than in a fixed building Xv

the group U0(x) = U0(Fv) ∩ (Γ0)x is larger than U0(x
′) for all neighbours x′ of x, so also

(Γ0)x is larger than the union
⋃

x′(Γ0)x′ and we obtain more cochains. For |S| > 1 we use

the same technique as in a).

c) If rkF G < rkFv
G both situations may occur in Xv: U0(x) ⊂

⋃
x′ U0(x

′) and U0(x) =
⋃

x′ U0(x
′) (where x′ runs over all neighbours of x). Simple examples are groups G of

type B2,1 (G = SO5 with Witt–index 1) or type A3,1 (G = SL2(D), D central division
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algebra of degree 2 over F ). For the second case the same trick as in a) works: We have

to go one A0–level deeper to a common neighbour y of x′
1 and x′

2. For |S| > 1 use again

the procedure of case a).

If the values of A0 go to infinity we find in any case a sequence of vertices x with increasing

Fp–dimension of C∞
c ((Γ0)x; Fp), for which also the Fp–dimension of H0 goes to infinity.

6.4 With the criterion of 6.2 we proved, that Γ cannot be of type Fd — for a convenient

subgroup of finite index, but this does not change the Fd–property (see [Br1], VIII.5.1) – thus

we have

Theorem 2: A S–arithmetic subgroup of an almost simple algebraic group G with rkF G > 0

over a function field F with d =
∑

v∈S rkFv
G cannot be of type FPd or Fd.

Remarks. 1. The direct application of the finiteness criterion to semi–simple groups could

provide too large upper bounds, because cohomology groups may vanish if other tensor–

factors in Künneth’s formula are zero. Thus for semi–simple groups the bound in theo-

rem 2 is given by the minimal d of its simple factors (assuming G simply connected we

have a direct product: see [B3] 2.6 c).

2. There exists another proof of theorem 2 by K.U. Bux and K. Wortman (see [BW]), which

does not compute cohomology but constructs a sequence of cycles in homology.
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