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On the essential dimension of cyclic p-groups
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Abstract. Let p be a prime number and r ≥ 1 an integer. We compute the
essential dimension of Z/prZ over fields of characteristic not p, containing the p-th
roots of unity (theorem 3.1). In particular, we have edQ(Z/8Z) = 4, a result which
was conjectured by Buhler and Reichstein in 1995 (unpublished).
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1. Introduction

The notion of essential dimension was introduced by Buhler and Reichstein for
finite groups in [BR]. It was later generalized by Reichstein to arbitrary linear
algebraic groups ([Re]). Throughout this paper, we shall assume that the reader is
somewhat familiar with this concept. A convenient and comprehensive reference
on this subject is [BF].

Definition 1.1. Let k be a field, and G a (smooth) linear algebraic k-group. The
essential dimension of G over k, denoted by edk(G), is the smallest nonnegative
integer n with the following property.
For each field extension K/k, and each GK -torsor T −→ Spec(K), there exists a
subfield K ′ of K, containing k, and a GK′-torsor T ′ −→ Spec(K ′), such that

i) The GK-torsors T and T ′

K are isomorphic,
ii) The transcendence degree of K ′/k is equal to n.
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Thus, edk(G) is the smallest number of algebraically independent parameters
required to define G-torsors. It turned out that this number, even in apparently
simple cases, is extremely difficult to compute. Focusing of finite abelian groups,
let us mention some known results. Over fields containing all roots of unity,
the essential dimension of a finite abelian group equals its rank, at least if the
characteristic does not divide the order of the group under consideration ([BR],
theorem 6.1). Over general fields, the answer was known only for cyclic groups
of small order. To the author’s knowledge, the results obtained so far over the
field of rational numbers may be summarized as follows. The number edQ(Z/nZ)
equals 1 for n = 2, 3 (easy exercise); it is 2 for n = 4 (Lenstra, Serre, see also
[BF], theorem 7.6 for an alternate proof); it is 2 for n = 5 ([JLY] , see also [BF],
corollary 7.9); it is 2 for n = 7 ([Le]). For n odd, Jensen, Ledet and Yui proved
that edQ(Z/2nZ) = 1 + edQ(Z/nZ) ([JLY]). This settles the cases n = 6, 10 and
14. Let us also mention the following result of Rost ([Ros]): let k be a field of
characteristic not 2, and G/k a linear algebraic group, geometrically isomorphic
to µ4. Then edk(G) = 1 if G is isomorphic to µ4, and edk(G) = 2 otherwise.
For arbitrary n ≥ 4, it seems that the best known lower bound for edQ(Z/nZ)
is 2, and that the best upper bound is given by a result of Ledet ([Le], see also
[FF], theorem 4.1): for a prime number p and a positive integer r, we have
edQ(Z/prZ) ≤ φ(p− 1)pr−1, where φ denotes Euler’s function.

2. Some auxiliary results

In this section, we introduce the material required to prove the main theorem.
Before going any further, we briefly recall the notion of friendly open subset.
Let G/k be an algebraic group, where k is any field, and X/k an irreducible G-
variety, on which G acts generically freely, in the sense that there is a G-invariant
dense open subvariety V ⊂ X such that the scheme-theoretic stabilizer of any
point of V is trivial. By a theorem of Gabriel, there exists a G-invariant dense
open subset U ⊂ X such that the categorical quotient U −→ U/G exists, and is a
G-torsor for the fppf topology (see [BF], theorem 4.7).

Definition 2.1. Such an open subset U ⊂ X is called a friendly open subset (for
the action of G on X).

If V is a finite dimensional vector space over some field k, we denote by A(V )
the k-variety representing the functor A 7→ V ⊗k A, where A runs through all k-
algebras. The following proposition seems to be well-known; as we lack a suitable
reference, we include a proof.

Proposition 2.2. Let k be a field, G/k a linear algebraic group, and V a finite-
dimensional representation of G over k, which is generically free. Let U ⊂ A(V )
be a friendly open subset. Then edk(G)+dim(G) = min(dim(φ(U))), where φ runs
through all G-equivariant rational maps U //___ U . In particular, if every such
φ is dominant, we have edk(G) = dim(V ) − dim(G).

Proof. We first prove that edk(G) + dim(G) ≥ min(dim(φ(U))). By [BF], propo-
sition 4.11, we know that the G-torsor U −→ U/G is versal. Let X −→ Y be a
versal G-torsor, with dim(Y ) = edk(G). By the very definition of a versal torsor,
there exists two commutative squares
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U

��

f
//____ X

��

U/G
g

//___ Y

and

X

��

f ′

//____ U

��

Y
g′

//___ U/G,

where the horizontal arrows are rational maps, and where f and f ′ are G-
equivariant. Note that g (and hence f) is necessarily dominant. Indeed, let Y ′ be
the closure of the image of g, and X ′ := X ×Y Y

′. Then the G-torsor X ′ −→ Y ′

is versal (as a compression of the versal torsor U −→ U/G), which implies that
dim(Y ′) ≥ edk(G) = dim(Y ). In other words, Y = Y ′. Thus, the composite
φ := f ′ ◦ f is well-defined, and dim(φ(U)) ≤ dim(X) = edk(G) + dim(G). The
desired inequality follows. For the other inequality, let φ : U //___ U be a G-
equivariant rational map. We have a commutative square

U

��

φ
//____ U

��

U/G
φ̄

//___ U/G.

Let S be the closure of the image of φ̄, and T = U×U/GS. Then T −→ S is a versal
G-torsor. Therefore, dim(φ(U)) = dim(T ) = dim(S)+dim(G) ≥ edk(G)+dim(G).
�

The next lemma will be applied in order to prove the main theorem. It allows
us to restrict our attention to a particular type of G-equivariant rational maps;
namely, homogeneous ones.

Definition 2.3. Let V be a finite dimensional vector space over some field k,
and d an integer. A non-zero rational map φ : A(V ) −→ A(V ) is said to be
d-homogeneous if the following diagram commutes:

Gm × A(V )

Id×φ

��
�

�

�

(λ,v) 7→λv
// A(V )

φ

��
�

�

�

Gm × A(V )
(λ,v) 7→λdv

// A(V ).

We shall also say that φ is homogeneous if it is d-homogeneous for some (unique)
d ∈ Z.

Lemma 2.4. Let k be a field, G/k a linear algebraic group, and V a finite-
dimensional irreducible representation of G over k. Assume there exists a G-

equivariant rational map A(V )
φ

//___ A(V ) which is not dominant and non-zero.

Then there exists A(V )
ψ

//___ A(V ) with the same properties, and which is more-

over homogeneous.
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Proof. Identify A(V ) with AN using a basis of V/k. The map φ is now given by

(x1, ..., xN ) ∈ A
N 7→ (

P1

Q
, ...,

PN
Q

),

where Q and the Pi’s are non-zero polynomials in the xj ’s. From the G-
equivariance of φ and the irreducibility of V , it follows that the Pi’s have the
same degree d. Let d′ be the degree of Q. Let Hi be the homogeneous com-
ponent of degree d of Pi and S the homogeneous component of degree d′ of Q.
The hypothesis made on φ implies that there exists a non zero polynomial R
in N variables such that R(P1

Q , ...,
PN

Q )=0. Write R = Rn + Rn−1 + ... + Rm,

where Ri is homogeneous of degree i and Rn,Rm are both non-zero. We have∑n
i=mRi(P1, ..., PN )Qn−i = 0. If d′ > d, an easy degree consideration yields that

Rm(H1, ..., HN ) = 0. Similarly, if d′ < d, we have Rn(H1, ..., HN ) = 0. Finally, if
d = d′, one gets

∑n
i=m Ri(H1, ..., HN )Sn−i = 0. In all cases, we see that the map

ψ : (x1, ..., xN ) ∈ A
N 7→ (

H1

S
, ...,

HN

S
)

is not dominant. As it is obviously G-equivariant and homogeneous, we are done.
�

The following theorem, due to Karpenko, is a key argument in the proof of our
main theorem. It can be viewed as a consequence of Rost’s degree formula. For
the convenience of the reader, we outline a proof.

Theorem 2.5 (see [Ka], theorem 2.1). Let k be a field, p a prime number, and
A/k a central division algebra of index pn for some n ≥ 1. Then any rational map

SB(A)
f

//___ SB(A) is dominant.

Proof. Let SB(A)
f

//___ SB(A) be a rational map. We want to apply Rost’s

rational degree formula ([Me], theorem 3.3). To this end, we have to compute
the numbers I(SB(A)) and ηp(SB(A)) (cf. loc. cit. for the definition of these
numbers). The first one is easily seen to be pn, as A is a division algebra. By
loc. cit., Remark 6.5, the number ηp(SB(A)) ∈ Z/pnZ equals pn−1. Hence,
Rost’s degree formula yields pn−1 = deg(f)pn−1 mod pn. In particular, deg(f) is
non-zero; that is to say, f is dominant. �

From now on, p will be a fixed prime number, K will be a field of characteristic
not p, and K̄ a separable closure of K. For any n ≥ 1, let Gn = µpn(K̄) (viewed
as a finite abstract group) and Kn = K(µpn(K̄)). Choose primitive pn-th roots of
unity ζn ∈ Kn such that ζpn+1 = ζn. We will sometimes identify Gn with Z/pnZ

by sending ζn to 1. Let

s = max{n ∈ N, such that K = Kn}

(we assume that s is finite; if not, the question we are dealing with has a trivial
answer). We make the following assumptions on s:

i) We have s ≥ 1,
ii) If p = 2 and s = 1, then K2 6= K3.

It is easy to check that i) and ii) imply that the polynomial Xpn

− ζs is irreducible
over K for any n ≥ 0 (in other words, Ks+n/K is a Galois field extension, of
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degree pn). Let r ≥ 1 be any integer. Our goal is to compute the number
edK(Z/prZ). It is 1 if r ≤ s, so we assume r ≥ s.

Consider P(Kr), the projective space of Kr viewed as a K-vector space. It is
naturally endowed with an action of Gr. For this action, Gs ⊂ Gr acts trivially.
Thus, we have an induced action of Gr−s = Gr/Gs, which is easily seen to be
faithful. The following easy lemma will be useful in the sequel.

Lemma 2.6. Let L/K be any field extension, and M/L a cyclic field extension, of
group Gr−s. Then the twist of P(Kr)L by the Gr−s-torsor associated to M/L is the
Severi-Brauer variety corresponding to the cyclic algebra (M/L, σ, ζs), where σ =
ζr−s ∈ Gr−s. In other words, this algebra is generated by M and an indeterminate

X, with relations Xpr−s

= ζs and XmX−1 = σ(m), for m ∈M .

Proof. Let Lr = L ⊗K Kr. We have to describe the algebra A obtained by
twisting EndL(Lr) by the Gr−s-torsor T associated to M/L. First of all, this
algebra clearly contains Lr as a maximal étale subalgebra (indeed, Gr−s acts
trivially on Lr ⊂ EndL(Lr)). Now consider the maximal (split) étale subalgebra

E = Lp
r−s

of EndL(Lr) consisting of linear maps admitting 1, ζr, ..., ζ
pr−s

−1
r as

eigenvectors. One easily sees that ζr−s ∈ Gr−s = Gr/Gs acts on E by cyclic
permutation of the coordinates. Hence, the twist of E by T is a maximal subfield
of A isomorphic to M . It follows that A is presented as stated in the lemma, with
X = ζr ∈ Lr. �

In the proof of theorem 3.1, we shall apply theorem 2.5 to some particular division
algebra, arising as a generalized version of the ’generic’ division algebra of Brauer-
Rowen ([Row]). Mutatis mutandis, the proof of the next theorem is the same as
that of loc. cit., theorem 7.3.8. We tried to harmonize our notations with those
of Rowen, with one minor change: the letters q, n, t, k used in loc. cit. correspond
here to pq, pn, pt and pk, respectively.

Theorem 2.7. Let n, t and q ≥ s be three integers, with n ≤ t ≤ q+n. Let Eq,t =
Kq(x1, ..., xpt) be purely transcendental over Kq. Let σ be the Kq-automorphism
of order pt of Eq,t, permuting the xi’s cyclically. Let Kq,n,t be the subfield of Eq,t
fixed by σp

n

. Then the cyclic algebra Rq,n,t := (Kq,n,t, σ, ζq) is a division algebra.

Proof. We adopt the notations of loc. cit., page 246. More precisely, let

F0 = Kq, H = F0[x1, ..., xpt ], H1 =
∑pt

i=1 F0xi. Write Rq,n,t =
∑pn

−1
i=0 Kq,n,tz

i

where zaz−1 = σ(a) for each a ∈ Kq,n,t and zp
n

= ζq. Choose a decomposition

F0[X ]/ < Xpt

− 1 >= L1 × ... × Lu (direct product of fields). Let Vi = LiH1;

these are simple σ-modules. Given j = (j1, ..., ju) ∈ Nu, put Hj = V j11 ...V juu .
First of all, note that lemma 7.3.4 of loc. cit. remains valid in our setting (for

7.3.4 ii), note that, in fact, all pt−k-th roots of unity occur as eigenvalues of σp
k

acting on H). It is also clear that lemma 7.3.6 i) still holds, since the polynomial
Xpm

− ζq is irreducible in kq[X ], for any m ≥ 0. With these lemmas at our dis-
posal, the rest of the proof is exactly the same as that of loc. cit., theorem 7.3.8. �

3. The main theorem

We are now ready to prove the theorem announced in the abstract. We keep the
notations of the previous section.

Theorem 3.1. We have edK(Z/prZ) = pr−s.
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Proof. By proposition 2.2, it is enough to show that every Gr-equivariant non-

zero rational map A(Kr)
φ

//___ A(Kr) is dominant. Assume the contrary: let

A(Kr)
φ

//___ A(Kr) be a non-zero, non-dominant Gr-equivariant rational map.

Then by lemma 2.4, we can assume that φ is homogeneous: there exists an integer
d such that φ(λv) = λdφ(v) for all v ∈ A(Kr) and all λ ∈ K. Thus, we have an

induced Gr−s-equivariant rational map P(Kr)
φ̄

//___ P(Kr) (remember that here

Gr−s is viewed as the quotient Gr/Gs). From the relation φ(ζsv) = ζsφ(v), it fol-
lows that d is non-zero. Hence, φ̄ cannot be dominant. Let M = K(xg, g ∈ Gr−s)
be purely transcendental over K. The group Gr−s acts on M the obvious way; let
L = MGr−s . Now extend scalars to L. We get a non-dominant Gr−s-equivariant

rational map φ̄L : P(Lr) //___ P(Lr) , where Lr = Kr ⊗K L. We can twist both

sides by the Gr−s-torsor corresponding to the cyclic extension M/L. Thanks to
lemma 2.6, we obtain a non-dominant rational selfmap of SB(A), where A/L is
the cyclic algebra (M/L, σ, ζs), with σ = ζr−s ∈ Gr−s. By theorem 2.7, A is a
division algebra. This contradicts theorem 2.5. �

Corollary 3.2. For any n ≥ 1, we have edQ(Z/2nZ) = 2n−1 and edQ(Z/3nZ) =
3n−1.

Proof. The first equality directly follows from the theorem. For the second one,
note that, by a result of Ledet ([Le]), we have edQ(Z/pnZ) ≤ φ(p−1)pn−1. Hence,
edQ(Z/3nZ) ≤ 3n−1. But, as essential dimension decreases after a field extension,
we also have edQ(Z/3nZ) ≥ edQ(µ3)(Z/3

n
Z) = 3n−1.

�

Remark 3.3. At first sight, it seems that our strategy cannot be applied to compute
the value of edQ(Z/11Z).
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