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Abstract. Freyd’s generating hypothesis, interpreted in the stable module cate-

gory of a finite p-group G, is the statement that a map between finite-dimensional

kG-modules factors through a projective if the induced map on Tate cohomology

is trivial. We show that Freyd’s generating hypothesis holds for a non-trivial finite

p-group G if and only if G is either C2 or C3. We also give various conditions which

are equivalent to the generating hypothesis.

1. Introduction

The generating hypothesis (GH) is a famous conjecture in homotopy theory due to

Peter Freyd [6]. It states that a map between finite spectra that induces the zero map

on stable homotopy groups is null-homotopic. If true, the GH would reduce the study of

finite spectra X to the study of their homotopy groups π∗(X) as modules over π∗(S
0).

Therefore it stands as one of the most important conjectures in stable homotopy theory.

This problem is notoriously hard; despite serious efforts of homotopy theorists over the

last 40 years, the conjecture remains open, see [4, 5]. Keir Lockridge [9] showed that

the analogue of the GH holds in the derived category of a commutative ring R if and

only if R is a von Neumann regular ring (a ring over which every R-module is flat).

More recently, Hovey, Lockridge and Puninski have generalised this result to arbitrary

rings [7]. Lockridge’s result [9] applies to any tensor triangulated category where the

graded ring of self maps of the unit object is graded commutative and is concentrated in

even degrees. Note that this condition is not satisfied by the stable homotopy category

of spectra. So in order to better understand the GH for spectra, we formulate and solve

the analogue of Freyd’s GH in the stable module category of a finite p-group. Here the

ring of self maps of the unit object (the trivial representation k) is non-zero in both

even and odd degrees.

To set the stage, let G be a non-trivial finite p-group and let k be a field of characteris-

tic p. Consider the stable module category StMod(kG) of G. It is the category obtained

from the category of kG-modules by killing the projectives. The objects of StMod(kG)

are the left kG-modules, and the space of morphisms between kG-modules M and N ,

denoted HomkG(M, N), is the k-vector space of kG-module homomorphisms modulo

those maps that factor through a projective module. StMod(kG) has the structure of a

tensor triangulated category with the trivial representation k as the unit object and Ω

as the loop (desuspension) functor. The category stmod(kG) is defined similarly using

the finite-dimensional kG-modules. A key fact [1] is that the Tate cohomology groups
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can be described as groups of morphisms in StMod(kG): Ĥi(G, M) ∼= Hom(Ωik, M).

In this framework, the GH for kG is the statement that a map φ : M → N between

finite-dimensional kG-modules is trivial in stmod(kG) if the induced map in Tate coho-

mology Hom(Ωik, M)→ Hom(Ωik, N) is trivial for each i. Maps between kG-modules

that are trivial in Tate cohomology will be called ghosts. It is shown in [2] that there

are no non-trivial ghosts in StMod(kG) if and only if G is cyclic of order 2 or 3. The

methods in [2] do not yield ghosts in stmod(kG). In this paper, we use induction to

build ghosts in stmod(kG). Our main theorem says:

Theorem 1.1. Let G be a non-trivial finite p-group and let k be a field of characteristic

p. There are no non-trivial maps in stmod(kG) that are trivial in Tate cohomology if

and only if G is either C2 or C3. In other words, the generating hypothesis holds for

kG if and only if G is either C2 or C3.

Note that the theorem implies that the GH for p-groups does not depend on the

ground field k, as long as its characteristic divides the order of G.

We now explain the strategy of the proof of our main theorem. We begin by showing

that whenever the GH fails for kH , for H a subgroup of G, then it also fails for kG.

We then construct non-trivial ghosts over cyclic groups of order bigger than 3 and over

Cp ⊕ Cp. It can be shown easily that the only finite p-groups that do not have one of

these groups as a subgroup are the cyclic groups C2 and C3. And for C2 and C3 we

show that the GH holds.

For a general finite group G, the GH is the statement that there are no non-trivial

ghosts in the thick subcategory generated by k. When G is not a finite p-group, our

argument does not necessarily produce ghosts in thick(k) and the GH is an open problem.

In the last section we give conditions on a finite p-group equivalent to the GH. One of

them says that the GH holds for kG if and only if the category stmod(kG) is equivalent

to the full subcategory of finite coproducts of suspensions of k. We also show that if

the GH holds for a finite p-group, then the Tate cohomology functor Ĥ∗(G,−) from

stmod(kG) to the category of graded modules over the ring Ĥ∗(G, k) is full.

Throughout we assume that the characteristic of k divides the order of the finite group

G. For example, when we write kC3, it is implicitly assumed that the characteristic of

k is 3. We denote the desuspension of M in StMod(kG) by Ω(M), or by ΩG(M) when

we need to specify the group in question. All modules are assumed to be left modules.

2. Proof of the main theorem

Suppose H is a subgroup of G. A natural question is to ask how the truth or falsity

of the GH for H is related to that for G. We begin by addressing this question.

Proposition 2.1. Let H be a subgroup of a finite group G. If φ is a ghost in stmod(kH),

then φ↑G is ghost in stmod(kG). Moreover, if φ is non-trivial in stmod(kH), then so

is φ↑G in stmod(kG).

Proof. It is well known that the restriction ResG
H and induction IndG

H functors form

an adjoint pair of exact functors; see [8, Cor. 5.4] for instance. Therefore, for any

kH-module L, we have a natural isomorphism

HomkH((Ωi
Gk)↓H , L) ∼= HomkG(Ωi

Gk, L↑G).
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But since (Ωi
Gk)↓H

∼= Ωi
Hk in stmod(kH), the above isomorphism can be written as

HomkH(Ωi
Hk, L) ∼= HomkG(Ωi

Gk, L↑G).

The proposition now follows from the naturality of this isomorphism. The second state-

ment follows from the observation that φ is a retract of φ↑G↓H . �

Proposition 2.1 implies that if G is a finite p-group, then the GH fails for kG whenever

it fails for a subgroup of G.

We now state two lemmas which will be needed in proving our main theorem.

Lemma 2.2. Let G be a finite p-group and let x be a central element in G. Then for

any kG-module M , the map x− 1: M →M is a ghost.

Proof. Since x is a central element, multiplication by x − 1 defines a kG-linear map.

We have to show that for all n and all maps f : Ωnk → M , the composition Ωnk
f
−→

M
x−1
−→M factors through a projective. To this end, consider the commutative diagram

Ωnk
f

//

x−1

��

M

x−1

��

Ωnk
f

// M.

Note that x − 1 acts trivially on k, so functoriality of Ω shows that the left vertical

map is stably trivial. By commutativity of the square, the desired composition factors

through a projective. �

Lemma 2.3. Let G be a finite p-group and let H be a non-trivial proper normal subgroup

of G. If x is a central element in G − H, then multiplication by x − 1 on kH↑
G is a

non-trivial ghost, where kH is the trivial kH-module. In particular, the GH fails for

k(Cp ⊕ Cp).

Proof. Since kH↑
G↓H is a trivial kH-module, non-triviality of x − 1 is easily seen by

restricting to H . The fact that x − 1 is a ghost follows from Lemma 2.2. The last

statement follows because kH↑
G is finite-dimensional. �

Proof of Theorem 1.1. If G ∼= C2 and char k = 2, then kC2
∼= k[x]/(x2), so by the

structure theorem for modules over a PID it is clear that every kG-module is stably

isomorphic to a sum of copies of k. Similarly, if G ∼= C3 and chark = 3, then one sees

that every kG-module is stably isomorphic to a sum of copies of k and Ω(k). It follows

that there are no non-trivial ghosts between finite-dimensional kG-modules if G is either

C2 or C3.

Now suppose that G is not isomorphic to C2 or C3. It suffices to show that in these

cases the GH fails for some subgroup of G. It is an easy exercise to show that if G is

not isomorphic to C2 or C3, then G either has a cyclic subgroup of order at least four,

or a subgroup isomorphic to Cp ⊕ Cp for some prime p. In Lemma 2.3 we have seen

that the GH fails for k(Cp ⊕ Cp). We will be done if we can show that the GH fails for

cyclic groups of order at least 4.

So let G be a cyclic group of order at least 4. Let σ be a generator for G and let M

be a cyclic module of length two generated by U , so we have (σ − 1)2U = 0. Consider
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the map h : M →M which multiplies by σ − 1:

U •�

σ−1

�

h

''O

O

O

O

O

O

O

O

O

O

O

O U •�

σ−1

�

• • .

It is not hard to see that h is non-trivial, i.e., that it does not factor through the

projective cover of M ; this is where we use the hypothesis |G| ≥ 4. The fact that h is a

ghost follows from Lemma 2.2. �

3. Conditions equivalent to the generating hypothesis

Theorem 3.1. The following are equivalent statements for a non-trivial finite p-group

G.

(1) G is isomorphic to C2 or C3.

(2) There are no non-trivial ghosts in stmod(kG). That is, the GH holds for kG.

(3) There are no non-trivial ghosts in StMod(kG).

(4) stmod(kG) is equivalent to the full subcategory of the collection of finite coprod-

ucts of suspensions of k.

(5) StMod(kG) is equivalent to the full subcategory of arbitrary coproducts of sus-

pensions of k.

Proof. We have already seen that the statements (2) and (4) are equivalent to (1).

The implications (5) ⇒ (3) ⇒ (2) are obvious. So we will be done if we can show

that (1) ⇒ (5). This follows immediately from the following more general fact, due

to Crawley and Jónsson [3], which was also proved independently by Warfield [10]. It

states that if G has finite representation type (i.e., the Sylow p-subgroups are cyclic),

then every kG-module is a direct sum of finite-dimensional kG-modules. �

We now state a dual version of the previous theorem. A map d : M → N between

kG-modules is called a dual ghost if the induced map

HomkG(M, Ωik)←− HomkG(N, Ωik)

is zero for all i.

Theorem 3.2. The following are equivalent statements for a non-trivial finite p-group

G.

(1) G is isomorphic to C2 or C3.

(2′) There are no non-trivial dual ghosts in stmod(kG).

(3′) There are no non-trivial dual ghosts in StMod(kG).

(4′) stmod(kG) is equivalent to the full subcategory of the collection of finite products

of suspensions of k.

(5′) StMod(kG) is equivalent to the full subcategory of retracts of arbitrary products

of suspensions of k.

Proof. Every finite-dimensional kG-module M is naturally isomorphic to its double dual

M∗∗. Therefore, the exact functor M 7→ M∗ gives a tensor triangulated equivalence

between stmod(kG) and its opposite category. This shows that (2′) ⇔ (2). In any

additive category finite coproducts and finite products are the same, therefore (4′) ⇔
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(4). Thus, statements (1), (2′), and (4′) are equivalent. We will be done if we can show

that (5′)⇒ (3′)⇒ (1)⇒ (5′).

(5′) ⇒ (3′): Fix an arbitrary kG-module M . We have to show that there are no

non-trivial dual ghosts out of M . Consider the full subcategory of all modules X such

that there is no non-trivial dual ghost from M to X . This subcategory clearly contains

arbitrary products of suspensions of k and is closed under taking retractions. So by

assumption the subcategory has to be StMod(kG).

(3′)⇒ (1): (3′) clearly implies (2′). But we have already observed that (2′)⇒ (2)⇒

(1).

(1)⇒ (5′): We know that (1)⇒ (5). It remains to show that (5)⇒ (5′). Let M be

any kG-module. By (5), M is a coproduct ⊕Ωsk of suspensions of k. We will complete

the proof by showing that the canonical map
⊕

Ωsk −→
∏

Ωsk

is a split monomorphism in StMod(kG). By (5), the fibre F of this map is a coproduct

⊕Ωtk of suspensions of k. Since the objects Ωtk are compact, one can show that the

map F → ⊕Ωsk is zero and therefore the desired splitting exists. �

We end with a final observation. In the stable homotopy category of spectra, the

GH says that the stable homotopy functor π∗(−) from the category of finite spectra to

the category of graded modules over the homotopy ring π∗(S
0) of the sphere spectrum

is faithful. Freyd showed [6] that if the GH is true, then π∗(−) is also full. So it is

natural to ask if the same is true in other algebraic settings in which the GH is being

studied. Very recently, Hovey, Lockridge and Puninski [7] have given an example of

ring R for which the homology functor H∗(−) from the category of perfect complexes

of R-modules to the category of graded R-modules is faithful, but not full. It turns

out that from this point of view, the stable module category of a group behaves more

like the stable homotopy category of spectra than the derived category of a ring. More

precisely, we have the following result.

Theorem 3.3. Let G be a finite p-group and let k be a field of characteristic p. If the

GH holds for G, then the functor Ĥ∗(G,−) from stmod(kG) to the category of graded

modules over the graded ring Ĥ∗(G, k) is full.

Proof. We know by Theorem 1.1 that G has to be either C2 or C3. Therefore every

finite-dimensional kG-module M is stably isomorphic to a finite sum of suspensions of

k. In particular, Ĥ∗(G, M) is a free Ĥ∗(G, k)-module of finite rank. It follows that the

induced map

HomkG(M, X) −→ Hom bH∗(G,k)(Ĥ
∗(G, M), Ĥ∗(G, X))

is an isomorphism for all kG-modules X . Since M was an arbitrary finite-dimensional

kG-module, we have shown that the functor Ĥ∗(G,−) is full, as desired. �
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References

[1] D. J. Benson and Jon F. Carlson. Products in negative cohomology. J. Pure Appl. Algebra,

82(2):107–129, 1992.

[2] Sunil K. Chebolu, J. Daniel Christensen, and Ján Mináč. Groups which do not admit ghosts. Proc.
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