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Abstract


Let M be a Chow motive over a field F . Let X be a smooth


projective variety over F and N be a direct summand of the motive of


X. Assume the motives M and N split over the generic point of X as


direct sums of shifted copies of a Tate motive. The main result of the


paper says that if a morphism f : M → N splits over the generic point


of X then it splits over F , i.e., N is a direct summand of M . We apply


this result to various examples of motives of projective homogeneous


varieties.


We say a motive M is split if it is isomorphic to a direct sum of shifted
copies of a Tate motive. We say a motive M is generically split if there exists
a smooth projective variety X and an integer l such that M is split over
the generic point of X and M is a direct summand of the shifted motive
M(X)(l)[2l] of X. In particular, a variety X is called generically split if its
Chow motive M(X) is split over the generic point of X.


The classical examples of such varieties are Severi-Brauer varieties, Pfister
quadrics and maximal orthogonal Grassmannians. In the present paper we
provide useful technical tool to study motivic decompositions of generically
split varieties (motives). Namely, we prove the following


Theorem 1. Let M be a Chow motive over a field F . Let X be a smooth
projective variety over F and N be a direct summand of the motive of X.
Assume the motives M and N are split over the field of fractions K of X.
Then a morphism f : M → N splits, i.e., N is a direct summand of M , if it
splits over K.


To prove the theorem we use the following auxiliary facts
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Chow motives over a relative base. For a smooth variety X over F we
introduce the category of Chow motives over X following [5]. First, we define
the category of correspondences C(X) whose objects are smooth projective
morphisms Y → X and (for connected Y )


HomX([Y → X], [Z → X]) = CHdim(Y )(Y ×X Z)


with natural composition law. Now the category of effective Chow motives
Chow eff(X) can be defined as the Karoubian envelope of C(X). One has the
restriction functor


resX/F : Chow eff(F ) → Choweff (X)


sending [Y ] to [Y ×F X → X]. For a motive N we denote NX := resX/F (N).
In particular, the image of the Tate motive Z(1)[2] gives us the Tate mo-
tive ZX(1)[2] in Chow eff(X). The category Chow eff (X) has natural tensor
structure


[Y → X] ⊗ [Z → X] := [Y ×X Z → X].


Finally, Chow(X) is obtained from Chow eff(X) by inverting ZX(1)[2].
We use the following standard notation which agrees with [5]. For a


motive M ∈ Ob(Chow(X)) we denote by M(i)[2i] its shift M ⊗ ZX(1)[2]⊗i.
Hence, for shifts we have


HomX([Y → X](i)[2i], [Z → X](j)[2j]) = CHdim(Y )+i−j(Y ×X Z).


We identify the Chow group with low index CHm(M) of a motive M with
HomX(ZX(m)[2m], M) and the Chow group with upper index CHm(M) with
HomX(M, ZX(m)[2m]). For a smooth projective variety X over a field F we
denote by M(X) the motive [X → Spec F ] of Chow(F ). As usual we denote
by ct ∈ CH(Z ×X Y ) the transposition of a cycle c ∈ CH(Y ×X Z). For a
morphism f : M → N the composition operation induces realization maps
Rm(f) : CHm(N) → CHm(M).


For a given motive N over F and a field extension L/F we say a cycle in
CH(NL) is rational if it is in the image of the restriction map resL/F .


Rost Nilpotence Theorem for generically split motives. Assume a
motive N is generically split, i.e., there is a smooth projective variety X and
l ∈ Z such that N is a direct summand of M(X)(l)[2l], and NK is split,
where K is the field of fractions of X. We will extensively use the following
version of the Rost Nilpotence Theorem (cf. [2])
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Proposition 1. Let N be a generically split motive over F . Then Rost
Nilpotence Theorem holds for N . In other words, for any field extension
E/F , the kernel of the map


resE/F : EndF (N) → EndE(NE)


consists of nilpotents.


Proof. We may assume that N is a direct summand of M(X) (that is, l = 0).
Since for a split motive M and for arbitrary field extension E/L, the map
EndL(ML) → EndE(ME) is an isomorphism, we may assume that E = K is
the field of fractions of X. We have ring homomorphisms


EndF (N)
resX/F
−−−−→ EndX(NX)


resK−−→ EndK(NK),


where the last one is induced by the generic point Spec K → X.
By Lemma 1 the kernel of resK consists of nilpotents. On the other hand,


the map resX/F is split injective with the section induced by the composite


N⊗N
id⊗φN−−−−→ N⊗M(X)


id⊗∆X−−−−→ N⊗M(X)⊗M(X)
id⊗pN⊗id
−−−−−−→ N⊗N⊗M(X),


where N
φN−→ M(X)


pN−→ N are the morphisms defining N as a direct sum-
mand of M(X). Proposition is proven.


Lemma 1. For any M ∈ Ob(Chow(X)), the kernel of the map induced by
an open embedding U → X


resU : EndX(M) → EndU(MU)


consists of nilpotents.


Proof. If M is a direct summand of [Y → X](i)[2i], then EndX(M) is a
direct summand of EndX([Y → X]), and it is sufficient to study the case
M = [Y → X].


Let f be an element from the kernel. Let j : Z → X be the reduced
closed complement to U in X. Under the identification EndX([Y → X]) =
CHdim(Y )(Y ×X Y ), f belongs to the image of the induced push-forward
j∗ : CHdim(Y )((Y ×X Y )×X Z) → CHdim(Y )(Y ×X Y ). Then f ◦(dim(X)+1) must
be zero, since [Z]dim(X)+1 is zero in CH(X). Lemma is proven.


Now we are ready to prove the main result of the paper
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Proof of Theorem. To construct a section of f we apply recursively the fol-
lowing procedure starting from g = 0 and m = 0.


For a morphism g : N → M such that the realization morphism
Ri(fK ◦ gK) is the identity on CHi(NK) for i < m, we construct a
new morphism g′ : N → M such that Ri(fK ◦ g′


K) is the identity
on CHi(NK) for i ≤ m.


Since the motive NK splits, for the corresponding projector ρN over K we
may write (ρN )K =


∑
l ωl×ω∨


l for certain ωl ∈ CH∗(XK) and ω∨


l ∈ CH∗(XK)
such that deg(ωl · ω∨


m) = δl,m. Elements ωl form a basis of CH∗(NK) =
(ρN)K ◦ CH∗(XK) ⊂ CH∗(XK).


Consider the surjection CHm(X × X) ։ CHm(K ×F X) = CHm(XK).
Let Ωl be a preimage of an element ωl of CHm(XK).


Consider the difference id − f ◦ g and denote it by h. Assume that over
K it sends a basis element ωj to a cycle αj. Since Ri(hK) is trivial for all
i < m, the cycle hK can be written as


hK = hK◦(ρN )K =
∑


codim αl=m


αl×ω∨


l +
∑


codim αj>m


αj×ω∨


j ∈ CHdimX(XK×XK).


(1)
From (1) we immediately see that


αl = pr1∗(Ωl,K · hK) ∈ CHm(XK) is rational. (2)


Also, (ρN)K ◦ αl = αl.
The realization Rm(fK) is a Z-linear map CHm(NK) → CHm(MK). Let


C = (cij) be the respective matrix of coefficients, i.e.,


Rm(fK) : ωi 7→
∑


j


cjiθj ,


where {θi} is a Z-basis of CHm(MK). Let s : NK → MK be a section of
fK . The realization map Rm(s) is a left inverse to Rm(fK). Hence, for the
respective matrix of coefficients D = (dij) we have


Rm(s) : θi 7→
∑


j


djiωj


and D · C = id, i.e.,
∑


j dijcjk = δik. For each αl define the morphism
ul : N → M as


ul = (pr∗1(αl) ·
∑


i


dliΘ
∨


i,K) ◦ (pN)K ,
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where Θ∨


i is a preimage of an element θ∨i of CHm(MK) by means of the canon-
ical surjection HomF (M(X)(m), M) → CHm(MK) and pN : N → M(X) be
the morphism presenting N as a direct summand of M(X). By definition ul


is a rational morphism and the realization Rm(ul) is given by


θi 7→ dliαl


Hence, the composite Rm(fK ◦ ul) = Rm(ul) ◦ Rm(fK) maps ωi to δilαl.
Set v = gK +


∑
l ul. By construction, the realization R(fK ◦ v) is the


identity on CHi(NK) for i ≤ m and v is rational. Let g̃ be a morphism
defined over the base field such that g̃K = v. Consider the endomorphism
id−f ◦ g̃ of N . Over K its realization Ri(id−fK ◦v) is trivial for each i ≤ m.


Recursion step is proven and we obtain map g̃ : N → M such that
(f ◦ g̃)K = idNK


. Let q = id − f ◦ g̃. By the Proposition 1, qr = 0, for some
r. Set g = g̃ ◦ (id + q + q◦2 + . . . + q◦(r−1)). Then f ◦ g = idN and N is a
direct summand of M .


Geometric construction of a generalized Rost motive.


Let p be a prime and n be a positive integer. To each nonzero cyclic subgroup
〈α〉 in KM


n (F )/p consisting of pure symbols one can assign some motive Mα in
the category Chow(F ) with Z/pZ-coefficients, which has the property that
for arbitrary field extension E/F , (Mα)E is either indecomposable, which
happens if and only if α|E 6= 0, or (Mα)E is split, which happens if and only
if α|E = 0. It follows from the results of V. Voevodsky and M. Rost that for a
given subgroup such motive always exists and is unique (see [10]). Moreover,
when split it is isomorphic to


p−1⊕


i=0


Z/pZ(i · pn−1−1
p−1


)[2i · pn−1−1
p−1


]


Such a motive is called a generalized Rost motive (with Z/pZ-coefficients). A
motive with integral coefficients which specializes modulo p into a generalized
Rost motive and splits modulo q for every prime q different from p will be
called an integral generalized Rost motive and denoted by Rn,p.


The integral generalized Rost motives, hypothetically, should be parame-
terized not by the pure cyclic subgroups of KM


n (F )/p, but by the pure symbols
of KM


n (F )/p up to a sign. The existence of integral generalized Rost motives
is known for n = 2 and arbitrary p, for p = 2 and arbitrary n, and for the
pair n = 3, p = 3. All these examples are essentially due to M. Rost.
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Corollary 1. Let X be a hyperplane section of a n-fold Pfister quadric Y .
Then M(Y ) ≃ M(X)(1)[2]⊕Rn,2, where Rn,2 is an integral Rost motive (cf.
[8]).


Proof. It is known that the variety X (a maximal Pfister neighbor of Y )
and Y become cellular over the generic point of X, i.e., the motives M(X)
and M(Y ) are split over K. Let Γi be the graph of the closed embedding
i : X →֒ Y . Its realization R(Γi) over K coincides with the induced pull-back
i∗K which maps an additive generator of CH(YK) to an additive generator of
CH(XK) and, hence, splits. The latter means that correspondences Γi and
the transposed Γt


i split over K. Take f : M(Y ) → M(X)(1)[2] to be the
morphism induced by Γt


i and apply the theorem.


Corollary 2. Let X be a hyperplane section of a twisted form Y of a Cayley
plane which splits by a cubic field extension. Then M(Y ) ≃ M(X)(1)[2] ⊕
R3,3, where R3,3 is an integral generalized Rost motive.


Proof. Consider the closed embedding X →֒ Y , where X = F4(J)/P4 and
Y = OP


2(J) are the twisted forms of F4/P4 and the Cayley plane OP
2 =


E6/P6 corresponding to a Jordan algebra J defined by means of the first
Tits construction (i.e., which splits by a cubic field extension) and proceed
as in the previous proof. Finally, observe that the specialization of R3,3 with
Z/3Z-coefficients is a generalized Rost motive corresponding to a symbol
given by the Rost-Serre invariant g3.


Remark 1. Observe that in view of the main result of [7] we obtain


M(OP
2(J)) ≃


8⊕


i=0


R3,3(i)[2i].


So from the motivic point of view the variety OP
2(J) is a 3-analog of a Pfister


quadric and F4(J)/P4 is a 3-analog of a maximal Pfister neighbor.


Twisted forms of Grassmannians.


PGLn: Consider a Grassmannian G(d, n) of d-dimensional planes in a n-
dimensional affine space. Its twisted form is called a generalized Severi-
Brauer variety and denoted by SBd(A), where A is the respective c.s.a. of
degree n. The next corollary relates the motive of a generalized Severi-Brauer
variety with the motive of usual Severi-Brauer variety (cf. [11]).
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Corollary 3. Let A and B be two central division algebras of degree n with
[A] = ±d[B] in the Brauer group Br(F ), where d and n are coprime. Then
the motive of the Severi-Brauer variety SB(A) is a direct summand in the
motive of the generalized Severi-Brauer variety SBd(B).


Proof. We construct the morphism f : M(SBd(B)) → M(SB(A)) as fol-
lows. Consider the Plücker embedding pl : SBd(B) → SB(ΛdB). It induces
the morphism M(SBd(B)) → M(SB(ΛdB)), where ΛdB is the d-th lambda
power of B [6, II.10.A]. By the result of Karpenko [4, Cor. 1.3.2] the motive
M(SB(ΛdB)) splits as a direct sum of shifted copies of M(SB(A)), where
[A] = d[B] in Br(F ). Take f to be the composite of the Plücker embedding
and the projection M(SB(ΛdB)) → M(SB(A)). Then the condition that f
splits over the generic point of SB(A) is equivalent to the fact that for each
m = 0, . . . , n − 1


g.c.d.
i


(c
(m)
i ) = 1


where c
(m)
i are degrees of Schubert varieties generating CHm(G(d, n)). The


latter can be easily computed using explicit formulas for degrees of Schubert
varieties provided for instance in [3, Ch. 14, Ex. 14.7.11.(ii)]. Finally, observe
that the motives M(SB(A)) and M(SB(Aop)) are isomorphic. So replacing
A by Aop doesn’t change anything.


G2: Let G2/P1 and G2/P2 denote projective homogeneous varieties of a split
group of type G2 and maximal parabolic subgroups Pi corresponding to the
respective vertices i = 1, 2 of the Dynkin diagram. These are non-isomorphic
varieties of dimension 5. The following corollary provides a shortened proof
of Bonnet result [1].


Corollary 4. Let X and Y be twisted forms (by means of the same cocycle)
of projective homogeneous varieties G2/P1 and G2/P2 respectively. Then
M(X) ≃ M(Y ).


Proof. It is known that X is a maximal Pfister neighbor of a 3-fold Pfister
quadric, both X and Y are cellular over the generic points of each other
and split by a quadratic field extension L/F . Since X is a maximal Pfister
neighbor, it splits as a direct sum of shifted copies of a Rost motive R3,2. To


construct a motivic isomorphism f : M(X)
≃
−→ M(Y ) we construct certain


morphisms fi : R3,2(i)[2i] → M(Y ) on each component R3,2(i)[2i] of the
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motivic decomposition of X. Then we prove that all these fi satisfy the
conditions of the theorem and, hence, split. Finally, we define f to be the
direct sum f = ⊕ifi.


To construct such fi we proceed as follows. Consider the twisted form
Z of the variety of complete flags G2/B. Observe that the variety Z has
dimension 6. Let α ∈ Pic(ZL) be an element of the Picard group of Z. Since
Tits algebras for G2 are trivial, Pic(Z) ≃ Pic(ZL), i.e., the cycle α is defined
over the base field. Set α′ ∈ CH5(X × Y ) to be the image of α by means
of the push-forward (prX∗


, prY ∗
) : Z → X × Y induced by the canonical


quotient maps Z → X and Z → Y . Define fi to be the composite


fi : R3,2(i)[2i] → M(X)
α′


−→ M(Y ).


So the problem reduces to finding a cycle α ∈ Pic(ZL) such that the map


R(f)L = ⊕iR(fi)L : CH(YL) →
⊕


i


CH(R3,2(i)[2i]L)


is surjective. Since the Chow groups of XL and YL have only one additive
generator in each codimension, it is enough to show that for each i the map
R(fi)L : CH(YL) → CH(R3,2(i)[2i]L) is surjective.


The latter can be done easily by writing down the surjectivity conditions
in terms of Z-bases of the respective Chow groups and, then, solving arising
system of Z-linear equations.


Observe that the map induced by α′ never splits. So it is not possible
to construct a map from M(X) → M(Y ) in this way without decomposing
M(X).


F4: Let F4/P4 and F4/P3 denote projective homogeneous varieties of a split
group of type F4 and maximal parabolic subgroups corresponding to the 4-th
and the 3-rd vertices of the Dynkin diagram. The first variety has dimension
15 and the second - 21.


Corollary 5. Let X and Y be twisted forms of varieties F4/P4 and F4/P3


by means of the (same) cocycle which splits by a cubic field extension. Then
the motive M(X) is a direct summand of the motive M(Y ).


Proof. The proof is the same as in the case of G2 and uses the motivic
decomposition of the variety X provided in [7].
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Compactifications of a Merkurjev-Suslin variety


Here we follow definitions and notation of [9]. Let A be a cubic division alge-
bra over F . Recall that a smooth compactification D of a Merkurjev-Suslin
variety MS(A, c) can be identified with the twisted form X = SB3(M2(A))
of a smooth hyperplane section of Grassmannian G(3, 6). Using Thm. 1 we
can simplify the proof of the following result proven by N. Semenov in [9]


Corollary 6. Let D be a twisted form (corresponding to a cubic division
algebra) of a smooth hyperplane section of G(2, 6). Then


M(D) ≃
5⊕


i=1


M(SB(A))(i) ⊕ N,


where N is ismorphic to R3,3 up to a ‘phantom’ motive in the category
Chow(F ). In other words from the motivic point of view the variety D can
be viewed as a 3-analog of a Norm quadric (cf. [9]).


Proof. Let i : D →֒ X denote the closed embedding. It induces the map Γi :
M(D) → M(X). The variety X is a projective homogeneous PGL6-variety
corresponding to a maximal parabolic subgroup of type P3 corresponding to
the third vertex of the respective Dynkin diagram. According to the Tits
diagrams for the group PGLM2(A) the parabolic subgroup P3 is defined over
F and X is isotropic. By [2, Thm. 7.5] the motive of X splits as


M(X) = Z ⊕ Q(1)[2] ⊕ Q(4)[8] ⊕ Z(9)[18],


where Q = M(SB(A) × SB(Aop)) and Q =
⊕2


i=0 M(SB(A))(i)[2i] by the
projective bundle theorem. Hence, we obtain


M(X) = Z ⊕


6⊕


i=1


M(SB(A))(i)[2i] ⊕ Z(9)[18]. (3)


Now define f to be the composite of Γi and the canonical projection from
M(X) to the direct summand


⊕5
i=1 M(SB(A))(i)[2i] of (3). Observe that the


motive M(D) splits over the generic point of SB(A). The direct computations
(using multiplication tables provided in [9]) show that f splits over F (SB(A)).
By Thm. 1 we conclude that M(D) ≃


⊕5
i=1 M(SB(A))(i)[2i] ⊕ N for some


motive N which splits over F (SB(A)) as a direct sum Z⊕Z(4)[8]⊕Z(8)[16].
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Hence, it remains to identify N with the motive R3,3. To do this recall
that both D and the twisted form of F4/P4 (given by the first Tits construc-
tion) split the same symbol g3 in KM


3 (F )/3. This implies that there is a
morphism f : N → R3,3 which becomes an isomorphism over the separable
closure of F . Since N is split over the generic point of the twisted form of
F4/P4, by Thm. 1 we conclude that R3,3 is a direct summand of N . Hence,
N ≃ R3,3 ⊕ S, where S is a phantom motive, i.e., the one which becomes
trivial over the separable closure of F .
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