LEVELS OF QUATERNION ALGEBRAS

DETLEV W. HOFFMANN

ABSTRACT. The level of a ring R with 1 # 0 is the smallest positive integer s
such that —1 can be written as a sum of s squares in R, provided —1 is a sum
of squares at all. D.W. Lewis showed that any value of type 2™ or 2™ + 1 can
be realized as level of a quaternion algebra, and he asked whether there exist
quaternion algebras whose levels are not of that form. Using function fields of
quadratic forms, we construct such examples.

1. INTRODUCTION

A famous result by E. Artin and O. Schreier [1] says that if F' is a field (of
characteristic # 2) then F' has at least one ordering if and only if —1 cannot be
written as a sum of squares in F. In this situation, the field F' is said to be formally
real, or real for short. Naturally, one might then ask how many squares are actually
needed to write —1 as a sum of squares in a nonreal field F'. This has lead to the
definition of the level which we formulate for arbitrary (possibly nonassociative)
rings with 1 # 0:

Definition 1.1. Let R be a ring with 1 # 0. Let level s(R) is defined as follows:

(1) If —1 is not a sum of squares in R, then s(R) = occ.
(2) If —1 is a sum of squares in R, then

s(R) =min{n |3z, -- 2, € R: —1 =234 -+ 22}

In the early 1930s, Van der Waerden asked which values can arise as level of a
field. At the time, all fields where the level was known and finite had level 1, 2 or
4. H. Kneser [7] proved in 1934 that the only possible finite values were of the form
1, 2, 4, 8 or certain multiples of 16, though there were still no known fields of finite
level > 4. The complete solution to the level question was finally given by Pfister
[15] who showed that the level of a field, if finite, must always be a 2-power, and
that all these values could in fact be realized.

The level question for integral domains was solved in 1980 by Z.D. Dai, T.Y. Lam
and C.K. Peng [2] who proved that any positive integer can occur as level of an
integral domain, more precisely, they showed that the integral domain

R=R[X1, -, X,]/(A+ X7+ + X})

has level n. The proof is topological in nature and invokes the Borsuk-Ulam the-
orem. Incidentally, the quotient field F' = Quot(R) has level 2¥ where k is such
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that 28 < n < 2%+ yielding Pfister’s original examples of fields whose level is a
prescribed 2-power.

Levels of noncommutative rings have been studied by various authors, see Lewis’s
survey [13] and the list of references there. There are variations of the notion of level
in the noncommutative case such as the product level, where squares are replaced
by products of squares, and for rings R with involution ¢ such as the hermitian
level, where squares are replaced by “hermitian squares” zo(z). But we will only
consider the level as defined above.

Most of the study of levels in the noncommutative case concerns central simple
algebras, and quaternion algebras in particular. Obviously, we may assume that the
centers of these algebras are fields of characteristic different from 2 in order for the
level problem to be of any interest. Lewis [11] constructed examples of quaternion
division algebras whose levels take any given prescribed value of the form 2 or
2% 4+ 1, while indicating that it is not known whether other values can be realized.

This has then been formulated explicitly as a question by Leep [10, Question
(2)], and again by Lewis [13, Open Question 1]:

Question. What integers can occur as s(D) for a quaternion division algebra D ?
In particular, can s(D) take values that are not of the form 2% or 2% +1 ?

In this note, we will give a partial answer to that question by showing that
there are infinitely many values not of the form 2% or 2% 4 1 that occur as level of
quaternion division algebras. More precisely,

Theorem 1.2. Let m be a nonnegative integer. Then there exists a quaternion
division algebra D with m +1 < s(D) < m+ 14 [m/3] (where [z] (x € R) denotes
the largest integer < x).

For example, for m = 5, we deduce the existence of a quaternion division algebra
D with s(D) € {6,7}. For m = 17 and m = 23, we get such algebras D, D' with
18 < s(D) < 23 and 24 < s(D’) < 31. More generally, for any k > 4, we can in a
similar way find disjoint intervals I and I’ inside [2¥ + 2,2F*! — 1] and construct
quaternion division algebras D and D’ with s(D) € I and s(D’) € I’, showing that
in each interval bounded by large enough consecutive 2-powers, there exist at least
two values not of the form 2% or 2¥ 4+ 1 that can be realized as level of quaternion
division algebras.

Our method of proof uses function fields of quadrics and facts about isotropy
of quadratic forms over such function fields. The arguments as such in our proofs
are rather elementary. However, at one point we do have to invoke a very deep
result by Karpenko and Merkurjev, Theorem 2.2. The drawback of our elementary
approach is that we can only give bounds for the level of the constructed quaternion
algebra and not its exact value. It should also be noted that our methods are
in spirit similar to those employed by Laghribi and Mammone [8] who gave a
construction of quaternion algebras of level 2% resp. 2% 4 1 different from Lewis’s
original construction of such algebras.

We should note that James O’Shea [14] has used similar methods to study the
level of octonion algebras and to construct octonion algebras of prescribed level.

The paper is structured as follows. In the next section, we collect results from
quadratic form theory that will be needed in our construction. In section 3, we
motivate and sketch the idea underpinning our construction and explain its limita-
tions. The construction itself will be given in section 4, where we also derive explicit
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bounds on the level of the produced quaternion algebras. In section 5, we sketch a
result by O’Shea [14] concerning quaternion algebra whose so-called sublevels are
bounded in a similar way.

2. SOME FACTS ABOUT QUADRATIC FORMS

Throughout this article, fields are assumed to be of characteristic # 2. All
what we need from the algebraic theory of quadratic forms over fields can be found
in Lam’s book [9]. By ‘quadratic form’ over a field F' (or ‘form’ for short), we
will always mean a finite-dimensional nonsingular quadratic form defined over F.
Recall that a form over F' is called anisotropic if it does not represent 0 nontrivially
over F', and hyperbolic if it is isometric to an orthogonal sum of hyperbolic planes
H=(1,-1).

An orthogonal sum ¢ L --- L ¢ of n copies of a form ¢ over F' will be denoted
by n X ¢, whereas ap with a € F* denotes the form ¢ scaled by the factor a.

By Witt decomposition, any form ¢ decomposes up to isometry in a unique way
as an orthogonal sum ¢ = ., L ¢ with ¢g, anisotropic and ¢, hyperbolic. The
Witt index of ¢ is defined to be iy (¢) = %dim ©n, and it is in fact nothing else
but the dimension of a maximal totally isotropic subspace of .

A form 7 is called an n-fold Pfister form if 7 is isometric to a tensor product of
n binary forms: 7 = (1, —a1) ® - - - ® (1, —ayn), a; € F*. We write (a1, ,a,)) for
short.

If K/F is a field extension and ¢ is a form over F, we denote by ¢k the form
obtained from ¢ by scalar extension to K.

The function field F(¢) of a quadratic form ¢ over F is defined as follows. If
dime > 3, then F(p) is the function field of the projective quadric ¢ = 0. If
© = {a,b) is anisotropic (i.e. ¢ % H), we put F(p) = F(v/—ab). If o = H or if
dimy =1, we put F(p) = F.

It is well known that for dimy > 2, F(p) can be realized as a purely tran-
scendental extension of transcendence degree dim ¢ — 2, followed by a quadratic
extension, and that F(p)/F is purely transcendental if and only if ¢ is isotropic.

If ¢ is an anisotropic form over F' of dimension > 2, then ¢ is isotropic over F(¢y),
and the first Witt index 41(¢) of ¢ is defined to be iw (¢p(y)). It is a well known
fact due to the generic nature of the function field that for any field extension K/F
with ¢ isotropic, one has iy (pr) > i1(p).

Our construction uses in a crucial way the isotropy behaviour of a quadratic
form when passing to the function field of another form.

The next lemma is folklore.

Lemma 2.1. Let ¢ and 1 be forms over F, and let F(x) be the rational function
field in the variable x over F. Then iyw (¢ L zv) = iw (@) + iw (¥). In particular,
© L a1 is anisotropic over F(x) if and only if ¢ and v are anisotropic over F.

Proof. Using a standard degree argument, one readily checks that ¢ 1 xv is
anisotropic over F(z) if and only if ¢ and 1 are anisotropic over F (this is in
fact [9, Exercise 3, p. 313]). The statement about the Witt indices for arbitrary ¢
and ¥ now follows by applying Witt decomposition to ¢ and ¥ over F. (|

The next result is a deep theorem due to Karpenko and Merkurjev [6]. It is the
crucial ingredient in our construction.
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Theorem 2.2 (Karpenko-Merkurjev). Let ¢ and i be anisotropic forms over F.
Suppose that @p(yy is isotropic. Then dim ¢ —i1(p) > dimv —i1(3p), and equality
holds if and only if Y, is isotropic as well.

The next lemma is also well-known, we include the straighforward proof for the
reader’s convenience.

Lemma 2.3. Let ¢ be a form over F and let ¢ be a subform of v, i.e. p =2 L T
for some form T.
(i) If v is isotropic and dimv > dim ¢ — iw (@), then v is isotropic as well.
(ii) Let ¢ be an anisotropic form over F and let ¢ be a subform of F with
dim ) > dim ¢ — i1(¢). Then dim¢ — i1(p) = dimy — i1 (¢).

Proof. (i) Consider 1 as the restriction of ¢ to a sub-vector space W of dimension
dim of the underlying vector space V of ¢. Now any maximal totally isotropic
subspace of ¢ is of dimension iy (p) and intersects therefore nontrivially with W
by an easy dimension count. Therefore, W contains a nonzero isotropic vector.
(ii) By assumption on dim+ and by (i), using that i1(¢) = iw (@p()), we have
that ¢ becomes isotropic over F'(p). On the other hand, 1) and therefore also ¢
becomes isotropic over F(1). The result now follows from Theorem 2.2 (]

In certain situations, one can say a little more about ;. This will allow us to
refine the main theorem slightly.

Lemma 2.4. Let m be an anisotropic n-fold Pfister form over F and let ¢ be
another form over F.

(i) There exist forms o and @, such that ™ ® @o is anisotropic, @p is hy-
perbolic, and m @ p 2 T ® w9 L ™ ® @n. In particular, iw (T ® @) =
27=1 dim ©n = 2niw(g0h).

(ii) Suppose T ® @ is anisotropic, and let ¥ be a subform of # ® ¢ and dimy >
2"(dim @ — 1). Then dimv —i1(¢) < 2™(dimp — 1).

Proof. (i) This is well-known, see e.g. [18, Theorem 2].
(ii) By (i) and the definition of i1, we have dim(m®¢)—i1 (7®¢) < 2" dim ¢—2" <
dim . By Lemma 2.3(ii), we have

dime) — i1 (¢) = dim(7 ® ¢) — i1 (7 ® ) < 2"(dimp —1) . O

We also need a few facts about orderings and signatures. Recall that an ordering
P on afield F'is a subset P C F such that P+P C P, P-P C P and PU(—P) =F.
One can readily check that if P is an ordering of F', then —1 ¢ P, PN (—P) = {0},
and every sum of squares is in P. In fact, by Artin-Schreier, F’ is real if and only
if F' has an ordering.

If P is an ordering on F' and if K/F is a field extension, then we say that P
extends to K if there is an ordering (Q on K such that Q N F = P.

Given an ordering P on F', we obtain a total ordering “<p” on F' by defining
a>pbifa—beP.

Let ¢ 2 {(ay,--- ,a,) be a quadratic form over a real field F', and let P be an
ordering on F. The signature of ¢ at P is defined by

sgnp () = {ilai >p 0} = [{i]ai <p O}

It is an invariant for the isometry class of ¢ (this is nothing but Sylvester’s law of
inertia). We say that ¢ is indefinite at P if dim¢ > |sgnp(p)|.
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Using Witt decomposition and the fact that sgnp(H) = 0, it is obvious that
dim @an > |sgnp(p)|.

Lemma 2.5. Let ¢ be a quadratic form over a real field F', dimy > 2, and let P
be an ordering on F. Then P extends to F(p) if and only if ¢ is indefinite at P.
In this situation and if ¢ is another form over I, then dim (v p(y))an > |sgnp(¥)|.

Proof. The first part is due to Elman-Lam-Wadsworth [3, Theorem 3.5] and inde-

pendently Knebusch [4, Lemma 10].
The second part follows readily from the remark preceding the proposition, using
the fact that if @ is an ordering on F'(¢) extending P, then sgnp () = sgng (¥ p(y))-
O

3. SOME OBSERVATIONS ABOUT THE LEVELS OF QUATERNION ALGEBRAS

Recall that a quaternion algebra over F' is a 4-dimensional central simple F-
algebra. If @ is a quaternion algebra, one can find a,b € F* and an F-basis
{1,4,4,k} of Q such that i? = a, j2 = b, and ij = —ji = k, in which case we denote
Q by (CL, b)F

Q = (a,b)p is a division algebra if and only if the Pfister form ((a, b)) is anisotropic
over F', and (a,b)r = (¢,d)p as F-algebras if and only if {(a,b)) = (c,d)) (see [9,
Ch.III, Theorems 2.5, 2.7]).

If Q is not division, then Q = M5 (F') and we have s(Q) = 1. Indeed,

(43)-(0 )

Remark 3.1. This also readily implies that for any split even-dimensional central
simple algebra A, i.e. A = My, (F) for some n > 1, we get s(A) = 1. In the
odd-dimensional split case, the situation is more complicated. The full result for
split algebras M., (F), m > 2, reads

1 if m > 2 is even
(M (F)) = { min{3,s(F)} if m >3 is odd
This follows readily from a more general result due to Richman [17] that states
that every element = € M,,(F) is a sum of two squares provided x is not of type
cl,, with m odd and ¢ € F* not a sum of two squares. Such elements cl,,, can be
written as sums of three but not two squares (here, I,,, denotes the m x m identity
matrix).

Let us from now on assume that @ = (a,b)r is a division quaternion algebra over
F (with F-basis {1,1, j, k} as above). We start with some elementary observations.

Let ( € Q. Then ¢ = = + yi + zj + wk with z,y,z,w € F, and we call x the
scalar part of ¢, and (' = yi + zj + wk its pure part. If z =0, then {( = (' is called
a pure quaternion. One readily computes that

% = 2% + ay® + b2% — abw® + 2z¢’
in particular, the scalar part of (2 is represented by the quadratic form (1, a, b, —ab),

whereas (> = ay?+bz?—abw? is an element in F represented by the form (a, b, —ab).
This immediately leads to the following observation:

Lemma 3.2. (i) If —1 is a sum of n squares in @, then —1 is represented by
n x (1,a,b,—ab) over F, i.e., (1) L (n x (1,a,b, —ab)) is isotropic over F.
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(ii) —1 is a sum of n squares of pure quaternions in Q if and only if —1 is
represented by n x (a, b, —ab) over F', i.e., (1) L (nx {(a,b, —ab)) is isotropic
over F'.

For n > 1, let us put

Y, = (1) L (nx{(1,a,b,—ab)),
on = (1) L (nx{a,b,—abd)) .

Note that dim,, = 4n 4+ 1 and dim ¢,, = 3n + 1.
The previous lemma readily implies the following criterion.

Corollary 3.3. Let n > m > 0 be integers. Let Q = (a,b)r and @, and ¥, be as
above. If oy, is isotropic and V., is anisotropic, then s(Q) € [m + 1,n].

Remark 3.4. With this criterion at hand, one might try the following ‘generic’
construction of quaternion algebras of a given level in [m + 1, n].

Start with a quaternion division algebra (a,b)r over a suitably chosen F' (in
which —1 is not a square) such that ¢, and 1, are anisotropic (m < n). Let now
Ky = F(¢n).

The 4-dimensional form ((a, b)), which is anisotropic over F' since (a,b)p is di-
vision, will stay anisotropic over K. Indeed, otherwise {(a,b)) would become hy-
perbolic over K, thus ¢, would be similar to a subform of (a,b)) over F' (see,
e.g., [9, Ch. X, Cor. 4.9]). This is impossible for dimension reasons if n > 2,
and it is also impossible for n = 1 by comparing determinants because det p; =
det (1,a,b,—ab) = —1 = —det ((a,b)) € F*/F** with —1 not a square in F. In
particular Qg, = (a,b)k, will be division.

Clearly, (¢n)k, isisotropic, in particular, s(Qk, ) < n. If one can now show that
m stays anisotropic over K,,, then by the previous corollary, s(Qg, ) € [m + 1, n].

If this reasoning worked for m = n — 1, we could deduce that s(Qg,) = n. And
although this construction might indeed yield a quaternion algebra of level n, we
cannot, unfortunately, employ the above reasoning for m = n — 1 in general as the
following result shows (which generalizes Proposition 2.5 in [8]).

Proposition 3.5. Keep the notations as above. Let n = 2"s be a positive integer
with s odd, and let t > 1 be mazimal such that s = —1 mod 2. Assume that t > 3
orr > 2, and that @, is isotropic. Then so is Pp_1.

Proof. Assume first that ¢t > 3 and let 7 = (n+2")x (1, a, b, —ab). Then 2"t divides
n + 2" (but not 2"**! by the maximality of t), and we can write 7 = 2"+ x ¢
for some form o. Note that ¢, C 7, so 7 is isotropic. If the (r + ¢)-fold Pfister
{(—1,---,—1)) is isotropic and thus hyperbolic, then so is 7 and we clearly have
iw (1) > 27Tt This also holds if the (r+t)-fold Pfister (—1,---,—1)) is anisotropic
by Lemma 2.4. But we also have that ¥,_1 C 7, and

dim7 —dime, 1 =4(n+2") — (4(n—1)+1) =2"T? +3 < 2" < 2" <y (1) ,

hence 1,1 is isotropic by Lemma 2.3.

Suppose now that r > 2. Then we put 7 = n x (1,a,b, —ab). This time, 7 is
divisible by the r-fold Pfister (—1,---,—1), ¢, and v, _; are subforms of 7, and
similarly as before we get dim 7 —dim,—1 =4n—(4(n—1)+1) =3 < 2" < iw (1),
and again, v, is isotropic by Lemma 2.3. O
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So, for example, if @7 is isotropic (r = 0, s = 7, t = 3), then so is g, and for
any n divisible by 4, if ,, is isotropic, then so is 1, 1.

We do not know in general whether the construction described in Remark 3.4
will actually yield s(Qg, ) = n (except for small n or values of type n = 2* + 1 for
certain F, a, b, see Remark 4.4 below). However, the above reasoning to obtain
$(Qk,) € [m+ 1,n] will work (for certain a,b € F* over a suitably chosen F') if
we make n sufficiently large compared to m, using Theorem 2.2. We explain this
construction in the following section.

4. THE CONSTRUCTION

Throughout this section, let Fy be any real field, and let F' = Fy(a,b) be the
rational function field in the two variables a, b over Fy. Let Q = (a,b)r and let @,
Uy, be as above, with integers n > m > 0.

Lemma 4.1. Let K, = F(py,).

(i) Q is a division algebra over F and stays a division algebra over K, .
(ii) @ and ¥, are anisotropic.
(if) i1 (pn) = 1.
Proof. Tt follows easily from Fj being real together with Lemma 2.1 that {(a, b)),
©n and 9y, are anisotropic. In particular, @ = (a, b)r is a division algebra and will
stay so over K, as explained in Remark 3.4.
To show (iii), let P be any ordering on F with a <p 0 and b <p 0 (such orderings
always exist). Then —ab <p 0 and we get

|sgnp(pn)| = [sgnp((n x {(a,b,—ab)) L (1))| =3n—-1<3n+1=dimg, ,

SO oy, is indefinite at P and it follows from Lemma 2.5 that 3n—1 > dim((¢n) k., Jan >
|sgnp(¢n)| = 3n — 1, therefore dim((¢n )k, )an = 3n — 1 = dim ¢, — 2 and thus

Corollary 4.2. Let n > m > 0 be integers. If 4m + 1 — i1(¢,) < 3n, then
s(Qk) € [m+1,n].

Proof. We have dim ¢,, — i1(vpn) = 3n + 1 — i1(¢n) = 3n by Lemma 4.1(iii), and
dim ¢y, — i1 (Ym) = 4m + 1 — i1(,). By Theorem 2.2, if 4m + 1 — i1 () < 3n,
then ¢,, stays anisotropic over K, = F(¢,). It follows from Remark 3.4 that
s(Qk,) € [m+1,n]. O

Note that i1 () > 1 for m > 1, and hence, we can always construct Qg, as
above with s(Qk, ) € [m + 1,n] whenever 4m < 3n (this also clearly holds for
m = 0). Thus, we obtain Theorem 1.2 as corollary:

Corollary 4.3. Let n=m+ 14 [m/3]. Then s(Qk,) € [m+1,m+ 1+ [m/3]].

Remark 4.4. This corollary obviously allows us to get levels 1, 2, 3. It should
furthermore be noted that it is possible to show that in the above situation, yr
stays anisotropic over K,, = F(p,) with n = 2¥ + 1, so that we then get s(Q, ) =
2% 4 1. This was shown in [8] and it yields a construction of quaternion algebras of
levels of the form 2% + 1 that is different from Lewis’s original one.

The preceding corollary can be refined somewhat by getting more information
on i1(1)y,) for certain values of m.
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Corollary 4.5. Let m = 2Fm/ with m’ odd, and let £ > 1 be maximal such that
kot
"= —1mod 2¢. Letnzm—i—l—i—[%]. Then s(Qk,) € [m+1,n].

Before we prove this, let us remark that if £ = 1, then this yields an interval with
a larger upper bound than Corollary 4.3. If £ = 2, it yields the same interval, and
if £ > 2 it yields an interval with strictly smaller upper bound.

Proof. In view of the preceding remark, we may assume that ¢ > 2. Write m =
2F(r2¢ — 1) with r odd. Consider the form 7 = (m + 2%) x (1,a,b, —ab) (which
is clearly anisotropic). Since m + 2F = r2F+¢ it follows that 7 is divisible by the
(k+¢)-fold Pfister form ((—1,--- , —1)). Hence, by Lemma 2.4, we have i1 (1) > 2*+¢,

Now clearly 1, C 7. Furthermore, 2¢¥+2 < 2k+¢ gince we assumed ¢ > 2. Hence

dim ey, = 4m + 1 > 4(m + 2F) — 2878 = dim 7 — 274 > dim 7 — i1 (7)

and thus, by Lemma 2.4, we get dim 1, — i1 (1) = dim 7 —i1(7) < 4m—2F(2¢ —4).

Thus, if n = m +t is such that 3(m +1t) > 4m —2F(2° —4), i.e. 3t > m —2%(2¢ —4),

we have that s(Qk,) € [m + 1,n]. The smallest integer ¢ for which this holds is
'3

t=1+ [w] and with this t and n = m 4+t we get s(Qk,,) € [m+1,n] =

[+ 1,m o+ 1+ =220y O

Ezample 4.6. For m = 94 = 2(3.2* — 1), we have k = 1 and ¢ = 4. Corollary 4.3
yields a quaternion algebra whose level is in the interval [95,95+ [95/3]] = [95, 126],
whereas Corollary 4.5 yields a level in [95,95 + [(95 — 2(16 — 4))/3]] = [95, 118].

5. SOME REMARKS ON THE SUBLEVEL

The sublevel of a unitary ring R is defined as follows:

(1) If 0 is not a sum of nonzero squares in R, then s(R) = oo.
(2) If 0 is a sum of nonzero squares in R, then

s(R) =min{n|3x1,  ,Tn, Tpp1 € Rz} #0: 0=2af +-+ 22}

Generally, s(R) < s(R), and one clearly has equality if R is a field. For a quaternion
division algebra Q = (a,b)r over a field F' (of characteristic # 2), it is still an open
question how s(Q) and s(Q) are related to each other in general. In all cases where
the precise values are known, one has s(Q) € {s(Q),s(Q) + 1}.

Using a similar argument as before, one readily sees that if zzm > mx(1,a,b,—ab)
is anisotropic, then s(Q) > m. On the other hand, if ¢, (as before) is isotropic,
then one readily sees that 0 can be written in a nontrivial way as a sum of n + 1
squares and so (@) < n. It is now not surprising that similar techniques as in
our construction of certain new levels can be used to generate new sublevels, and
it was O’Shea [14] who adapted our method accordingly and gave explicit details.
We quickly sketch one of his results since all the tools are in place.

If, as in the previous section, F' = Fy(a,b) with real Fy and variables a, b, we see
that wm and ,, are anisotropic. Again, let K,, = F (cpn) If we write m = 2Fm
with m/ odd, then it follows from Lemma 2.4 that il(d)m) > 2%, Recall that
i1(¢n) = 1. Thus, by Theorem 2.2, we have that ¢m stays anisotropic over K, if
dim ¢, — i1(¢n) = 3n > 4m — 2% > dim 1/}m — 21(1/1m) This is satisfied whenever
n>m+ 1+ [(m—2%)/3], so we obtain
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Proposition 5.1 (O’Shea [14]). Let Q and m = 2*m’ (m’ odd) be as above. Put
n=m+1+[(m—2%)/3] and let K, be as above. Then m < 5(Qk,) < s(Qk,) <
m+ 1+ [(m—2%)/3].

For example, m = 5 yields a quaternion algebra of sublevel in [5, 7] This shows
that the sublevel of a quaternion division algebra can take values other than 3 or
powers of 2, and it is clear that the above construction yields infinitely many new
values that are not of that type, thus partially answering Open Question 2 in [13].

Remark 5.2. If we are only interested in the level, then Proposition 5.1 does not
yield smaller intervals with given lower bound than those obtained previously. For
if k = 0, then this proposition yields the interval [m’, m’+ 14 [(m’—1)/3]], whereas
Corollary 4.3 (with m + 1 = m/ there) gives [m’,m’ + [(m’ — 1)/3]] (and Corollary
4.5 might still yield smaller upper bounds depending on the 2-adic value of m’ —1).
If £ > 0, then one obtains the same interval as in Corollay 4.5 by replacing the
tuple (m, k,r,£) in the statement there by the tuple (m — 1,0,m’, k), using that
m=(m-—1)+1=(2Fm' - 1)+ 1.

For further results on levels and sublevels of quaternion and octonion algebras
obtained using variations of our methods, we refer to [14].
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