SMOOTH FINITE SPLITTINGS OF AZUMAYA ALGEBRAS OVER SURFACES

MANUEL OJANGUREN AND RAMAN PARIMALA

Introduction

Let k be an algebraically closed field of characteristic zero, X a quasi-projective smooth surface over k and A an Azumaya algebra over X of rank n^2 . We construct a smooth irreducible quasi-projective surface Y and a flat finite map $\pi_Y: Y \to X$ of degree n such that π^*A is trivial in the Brauer group Br(Y). We further show that the Galois closure of Y over X is a smooth irreducible quasi-projective surface Z and that the Galois group of k(Z) over k(X) is the symmetric group S_n .

The smooth finite splitting $Y \to X$ was announced, for k of arbitrary characteristic, by Artin and de Jong [dJ], but no proof seems to have been published.

The splitting $Y \to X$ that we construct is locally of the form

$$\operatorname{Spec}(\mathcal{O}_{X,x}[T]/(P(T)))$$

where P(T) is the characterisitic polynomial of a section of \mathcal{A} . This leads to a very easy construction of a deformation of Y into a union of copies of X, like the one in Lemma 5.1 of [dJ]. From this deformation, following the arguments in [dJ], we deduce a splitting criterionfor \mathcal{A} . For the use of these results in the proof of de Jong's theorem we refer to [CT].

We thank Jean-Louis Colliot-Thélène, Aise Johan de Jong, and David Saltman for several discussions.

1. The characteristic polynomial of the generic matrix

In this section we suppose that k is an algebraically closed field, of arbitrary characteristic. We denote by Sing(X) the singular locus of a given scheme X.

Let

$$A_n = \frac{k[X_{11}, X_{12}, \dots, X_{nn}][T]}{(P(T))}$$

where P(T) is the characteristic polynomial of the generic matrix (X_{ij}) with $1 \le i, j \le n$. Let $Y_n = \operatorname{Spec}(A_n)$. We study the singular locus of Y_n . **Lemma 1.1.** Let $\beta = \operatorname{diag}(B_1, \ldots, B_m)$ be a matrix consisting of m cyclic Jordan blocks

$$B_i = \begin{pmatrix} \lambda_i & 1 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\ 0 & \lambda_i & 1 & \cdot & \cdot & \cdot & 0 & 0 \\ 0 & 0 & \lambda_i & \cdot & \cdot & \cdot & 0 & 0 \\ \cdot & \cdot \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & \lambda_i & 1 \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & 0 & \lambda_i \end{pmatrix}$$

with distinct eigenvalues λ_i . Then, for any i, the scheme Y_n is smooth at (β, λ_i) .

Proof. We denote by I_n the identity matrix of size n. Developing the determinant of $(X_{ij}) - T \cdot I_n$ along the first column we get

$$\pm P(T) = (X_{11} - T)P_1(T) + X_{2.1}P_2(T) + \dots + X_{n.1}P_n(T)$$

where the polynomials P_i are the cofactors of the first column. Let k_i be the size of B_i . We see that $P_{k_1}(T)(B, \lambda_1)$ is (up to sign) the determinant of a matrix of the form $\operatorname{diag}(I_{k_1-1}, B_2 - \lambda_1 I_{k_2}, \ldots, B_m - \lambda_1 I_{k_m})$, it being understood that the first block is missing if $k_1 = 1$. Since $\lambda_1 \neq \lambda_i$, this shows that $\partial P(T)/\partial X_{k_1,1} = P_{k_1}(T)$ is not zero at (B, λ_1) . Thus Y_n is smooth at (β, λ_1) and the same clearly holds for any other λ_i .

Lemma 1.2. Every neighbourhood of a matrix α with an eigenvalue $\lambda \neq 0$ contains an invertible semisimple matrix with eigenvalue λ .

Proof. We may assume that α is in Jordan form. The given neighbourhood of α contains an open set defined by the non-vanishing of a polynomial g in the coordinates of the generic matrix (X_{ij}) . We may assume that the diagonal entries of α are $(\lambda, \lambda_2, \ldots, \lambda_n)$. Since $g(\alpha) \neq 0$ we may find values $\lambda'_2, \ldots, \lambda'_n$ all distinct and different from λ and different from 0, such that when we replace λ_i by λ'_i in α we obtain an α' for which $g(\alpha') \neq 0$. This new α' is in the given neighbourhood and is semisimple.

Let Y_n be as before. The injection $k[X_{11}, X_{12}, \ldots, X_{nn}] \to A_n$ induces a finite map $\pi: Y_n \to \mathbb{A}^{n^2}$. The projection $C = \pi(\operatorname{Sing}(Y_n))$ is a closed subscheme of \mathbb{A}^{n^2} and is contained in the ramification locus of π , which is the closed subscheme of \mathbb{A}^{n^2} whose closed points correspond to matrices with at least two equal eigenvalues.

Lemma 1.3. Let $V \subset \mathbb{A}^{n^2}$ be the set of semisimple invertible matrices with at least two coincident eigenvalues. Then $V \subseteq C$.

Proof. It suffices to check that any matrix of the form $\beta = \operatorname{diag}(\mu_1, \dots, \mu_{n-2}, \lambda, \lambda)$ is in C. We show that (β, λ) belongs to $\operatorname{Sing}(Y_n)$. Writing $X_{ii} = \mu_i + X_i$ for $i \leq n-2$, $X_{ii} = \lambda + X_i$ for $i \geq n-1$, $T = \lambda + t$ and $\nu_i = \mu_i - \lambda$ we see that P(T) is the determinant of the matrix

$$\begin{pmatrix} \nu_1 + X_1 & X_{12} & \cdots & X_{1n} \\ X_{2,1} & \nu_2 + X_2 & \cdots & X_{2,n} \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & X_{n-1} - t & X_{n-1,n} \\ \cdots & \cdots & X_{n-n-1} & X_n - t \end{pmatrix}$$

and it is clear that it does not contain any linear term in X_i, X_{ij} or t. Thus the variety it defines is singular at the origin, which corresponds to the point (β, λ) in the previous coordinates.

Lemma 1.4. Let $W \subset M_n(k)$ be the set of all semisimple invertible matrices with at least n-1 distinct eigenvalues. Then W is open and dense in $M_n(k)$.

Proof. The set of all semisimple invertible matrices is open and dense in $M_n(k)$. We claim that matrices having at least n-1 distinct eigenvalues is open in $M_n(k)$. In fact this set is the inverse image under the eigenvalue map $M_n \to \mathbb{A}^n/\mathcal{S}_n$ of the complement of the closed set of points with three equal coordinates. Hence W is open and clearly non empty.

By 1.4 the set $U = W \cap C$ of all semisimple invertible matrices with exactly two equal eigenvalues is open in C.

Lemma 1.5. The set U is dense in C.

Proof. Let (β, λ) be a point of $\operatorname{Sing}(Y_n)$. By 1.1, β , which we may assume to be in Jordan canonical form, contains at least two cyclic Jordan blocks with the same eigenvalue. We write $\beta = \operatorname{diag}(\beta_1, \beta_2, \dots, \beta_r)$ with the β_i 's cyclic Jordan blocks of size s_i and β_1 , β_2 having the same eigenvalue λ . Suppose that β is in the open set defined by $f \neq 0$ for some polynomial function f in the entries X_{ij} of the generic $n \times n$ matrix. Let $\widetilde{\beta} = \operatorname{diag}(\widetilde{\beta}_1, \widetilde{\beta}_2, \dots, \widetilde{\beta}_r)$ be a matrix where each $\widetilde{\beta}_i$ has the same size as β_i and the same off-diagonal entries. Suppose further that $\widetilde{\beta}$ has n-1 distinct eigenvalues, with $\widetilde{\beta}_1$ and $\widetilde{\beta}_2$ retaining the eigenvalue λ . Then $\widetilde{\beta}$ is semisimple and, for a general $\widetilde{\beta}$, $f(\widetilde{\beta}) \neq 0$.

For example, if

$$\beta = \begin{pmatrix} \lambda & 1 & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 & 0 \\ 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{pmatrix}$$

then

$$\widetilde{\beta} = \begin{pmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 & 0 \\ 0 & 0 & 0 & \lambda_3 & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{pmatrix}$$

with λ , λ_1 , λ_2 , λ_3 distinct.

Corollary 1.6. The dimension of C is equal to the dimension of U.

Lemma 1.7. The dimension of U is $n^2 - 3$.

Proof. Let $\Sigma_{n-1} \subset (k^*)^{n-1}/S_{n-1}$ be the set of all $\{\lambda, \lambda_3, \dots, \lambda_n\}$ consisting of n-1 distinct elements of k^* . Clearly Σ_{n-1} has dimension n-1. Mapping each matrix in U to the set of its eigenvalues we obtain a surjective map $p: U \to \Sigma_{n-1}$. The linear group $GL_n(k)$ acts transitively on each fiber of p and the stabilizer of the matrix $\operatorname{diag}(\lambda, \lambda, \lambda_3, \dots, \lambda_n)$ is

 $GL_2(k) \times (k^*)^{n-2}$. Hence the dimension of U is $\dim(GL_n(k)) - \dim(GL_2(k) \times (k^*)^{n-2}) + \dim(\Sigma_{n-1}) = n^2 - (4+n-2) + n - 1 = n^2 - 3$.

Corollary 1.8. The closed set $Sing(Y_n)$ is of codimension 3.

Proof. The closure of U is $C = \pi(\operatorname{Sing}(Y_n))$ and π is a finite map.

2. Finite smooth splittings

Let X be a smooth quasi-projective surface over an algebraically closed field k, and A an Azumaya algebra of degree n over X. Let K = k(X) be the field of rational functions of X and A_K the generic fibre of A. We do not assume that A_K is a division ring.

Lemma 2.1. There exists an element σ in \mathcal{A}_K whose characteristic polynomial is irreducible, separable and has Galois group \mathcal{S}_n .

Proof. Let $\sigma_1, \ldots, \sigma_m$ be a K-basis of \mathcal{A}_K (m being equal to n^2). Let $K \subset L$ be a separable finite extension of K such that $\mathcal{A}_K \otimes_K L = M_n(L)$. Let X_1, \ldots, X_m be indeterminates and $\widetilde{\sigma} = X_1\sigma_1 + \cdots + X_m\sigma_m$. After an L-linear change of variables the characteristic polynomial $P_{\widetilde{\sigma}}(T)$ of $\widetilde{\sigma}$ is the characteristic polynomial of the generic matrix, hence it is irreducible and separable over $L(X_1, \ldots, X_m)$, and has Galois group \mathcal{S}_n . Since it is defined over $K(X_1, \ldots, X_m)$ it has the same properties over this smaller field. By Hilbert's irreducibility theorem (see for instance [FJ], Prop. 16.1.5) there exist ξ_1, \ldots, ξ_m in K such that the characteristic polynomial of $\sigma = \xi_1\sigma_1 + \cdots + \xi_m\sigma_m$ is irreducible, separable, with Galois group \mathcal{S}_n .

We fix a smooth embedding of X in a projective space. If d is sufficiently large, the twisted sheaf A(d) is generated by global sections $s_1, \ldots s_{N-1}$ and, for some global section f of $\mathcal{O}_X(d)$ and σ as in Lemma 1, $s_N = \sigma f$ is a global section of A(d). We set $\mathcal{L} = \mathcal{O}_X(d)$.

Let s be any global section of $\mathcal{A}(d) = \mathcal{A} \otimes_{\mathcal{O}_X} \mathcal{L}$. Choose an arbitrary affine nonempty open set $U \subset X$ over which \mathcal{L} is principal: $\mathcal{L}_{|U} = \mathcal{O}_U f$ for some $f \in \mathcal{L}(U)$. Then $sf^{-1} \in \mathcal{A}(U)$, which is an Azumaya algebra over $\mathcal{O}_X(U)$. Let

$$P_{f,U}(T) = T^n + b_1 T^{n-1} + \dots + b_n$$

with $b_1, \ldots, b_n \in k[U]$ be the characteristic polynomial of sf^{-1} . We define $J_{f,U}$ as the ideal of

$$Sym(\mathcal{L}^{-1}|_{U}) = \mathcal{O}_{U} \oplus \mathcal{L}^{-1}|_{U} \oplus \mathcal{L}^{-2}|_{U} \oplus \cdots = \mathcal{O}_{U} \oplus \mathcal{O}_{U}f^{-1} \oplus \mathcal{O}_{U}f^{-2} \oplus \cdots$$

generated by $f^{-n} \oplus b_1 f^{-(n-1)} \oplus \cdots \oplus b_n$.

Lemma 2.2. Let Λ be an Azumaya algebra of rank n^2 over a ring R. For any $\alpha \in \Lambda$ and any $c \in R$, the characteristic polynomial $P_{\alpha}(T)$ of α satisfies the relation $c^n P_{\alpha}(T) = P_{c\alpha}(cT)$.

Proof. It immediately follows from the split case $\Lambda = M_n(R)$.

Lemma 2.3. The ideal $J_{f,U}$ does not depend on the choice of f.

Proof. We apply 2.2 with f = ug for some other generator g of $\mathcal{L}|_{U}$ and u invertible on U. (We note that the suffixes f or g stand for the elements s/f, s/g in the algebra). We have

$$P_{g,U}(T) = P_{u^{-1}f,U}(T) = u^n P_{f,U}(u^{-1}T) = T^n + ub_1 T^{n-1} + \dots + u^n b_n$$
.

Thus the ideal $J_{q,U}$ is generated by

$$g^{-n} \oplus b_1 u g^{-(n-1)} \oplus \cdots \oplus u^n b_n = u^n (f^{-n} \oplus b_1 f^{-(n-1)} \oplus \cdots \oplus b_n).$$

and coincides therefore with $J_{f,U}$.

Patching the ideals $J_{f,U}$ over a suitable affine covering of X yields a global ideal J_s of $Sym(\mathcal{L}^{-1})$ that only depends on the section s. We call J_s the characteristic ideal of s.

The ideal J_s defines a closed subscheme Y_s of Spec $\left(Sym(\mathcal{L}^{-1})\right)$ which is clearly finite and flat over X.

To simplify notation, if $s = \lambda_1 s_1 + \cdots + \lambda_N s_N$ we put $\lambda = (\lambda_1, \dots, \lambda_N) \in k^N$, $J_s = J_\lambda$ and $Y_s = Y_\lambda$. We denote by $\pi_\lambda : Y_\lambda \to X$ the natural map.

Theorem 2.4. There exists a nonempty open set $U \subset k^N$ such that, for any $\lambda \in U$, Y_{λ} is an irreducible quasi-projective surface.

Before proving this theorem we recall, without proof, two easy lemmas.

Lemma 2.5. Let $\pi: Y \to X$ be a flat dominant morphism, with X integral. Then Y is reduced if and only if the generic fibre of π is reduced.

Lemma 2.6. Let $\pi: Y \to X$ be a flat dominant morphism, with X integral. Then Y is irreducible if and only if the generic fibre of π is irreducible.

Proof of Theorem 2.4. We set $\mathbb{A}^N = \operatorname{Spec}(k[t_1, \ldots, t_N])$ and extend the base to $\widetilde{X} = X \times \mathbb{A}^N$. Let \widetilde{A} and $\widetilde{\mathcal{L}}$ be the inverse images of A and \mathcal{L} under the projection $\pi : \widetilde{X} \to X$. Put $\widetilde{s} = t_1 s_1 + \cdots + t_N s_N$ and let $\widetilde{J}_t(T)$ be the characteristic ideal of \widetilde{s} and \widetilde{Y} the closed subscheme of $\operatorname{Spec}(\operatorname{Sym}(\widetilde{\mathcal{L}}^{-1}))$ defined by $\widetilde{J}_t(T)$. Look at the diagram

The map π is clearly finite and flat and the two projections from $X \times \mathbb{A}^N$ are flat, hence p and q are flat. We set $\widetilde{Y}_K = \widetilde{Y} \times_X \operatorname{Spec}(K)$ and $q_K : \widetilde{Y}_K \to \mathbb{A}^N_K$ the restriction of q to \widetilde{Y}_K . We first note that, by the choice of s_N made above, the fibre $q_K^{-1}(0,\ldots,0,1)$ is integral. By Theorem 9.7.7 of [Gr], to prove the theorem it suffices to show that the geometric generic fibre of q is integral. Let Ω be an algebraic closure of $k(t_1,\ldots,t_N)$, $\widetilde{Y}_\Omega = \widetilde{Y} \times_{\mathbb{A}^N} \operatorname{Spec}(\Omega)$ the generic fibre of q, $\widetilde{X}_\Omega = X \times_k \Omega$ and $\pi_\Omega : \widetilde{Y}_\Omega \to \widetilde{X}_\Omega$ the extension of π . Let S be

the integral closure of $k[t_1,\ldots,t_N]$ in Ω and $\Lambda=K\otimes_k S$. We set $\widetilde{Y}_\Lambda=\widetilde{Y}\times_{\widetilde{X}}\operatorname{Spec}(\Lambda)$, $\widetilde{X}_\Lambda=\operatorname{Spec}(\Lambda)$ and $\pi_\Lambda:\widetilde{Y}_\Lambda\to\widetilde{X}_\Lambda$ the extension of π . Assume that \widetilde{Y}_Ω is not integral. Since π_Ω is flat, by 2.5 and 2.6 the generic fibre of π_Ω is not integral. But π_Λ is also flat and has the same generic fibre as π_Ω , hence, again by 2.5 and 2.5, \widetilde{Y}_Λ is not integral. The characteristic polynomial $P_{\widetilde{s}/f}(T)\in K[t_1,\ldots,t_N]$ that generates $\widetilde{J}_t(T)$ over a suitable open set of X is clearly separable over $K(t_1,\ldots,t_N)$, hence \widetilde{Y}_Λ is reduced by Lemma 2.5. If \widetilde{Y}_Λ is not integral, being reduced it has more than one component and since π_Λ is finite and flat, each component maps surjectively onto \widetilde{X}_Λ and hence no fibre is integral. Let z be a point of \widetilde{X}_Λ over the point $(0,\ldots,0,1)$ of \mathbb{A}_K^N . Specializing at z we get a contradiction with the irreducibility of $\pi_\Lambda^{-1}(0,\ldots,0,1)=\operatorname{Spec}(K)\times_X Y_{(0,\ldots,0,1)}$.

Corollary 2.7. Let U be as in 2.4. For any $\lambda \in W$ the field $k(Y_{\lambda})$ splits A_K .

Proof. By construction the field $k(Y_{\lambda})$ is a maximal subfield of \mathcal{A}_{K} .

We now show that, assuming that k is of characteristic zero, a general fibre is smooth.

Proposition 2.8. The dimension of $\operatorname{Sing}(\widetilde{Y})$ is at most N-1.

Proof.

We try to determine the singularities of \widetilde{Y} using the following lemma.

Lemma 2.9. Let $f: Z \to X$ be a flat map of schemes. Suppose that X is regular. If $z \in Z$ is a singular point of Z, then z is a singularity of its fiber $f^{-1}(f(z))$.

Proof. Let C be the local ring of Z at z and A be the local ring of f(z). By assumption the maximal ideal of A is generated by a regular sequence (x_1, \ldots, x_m) . Since f is flat, C is faithfully flat over A and this sequence is still regular as a sequence in C. If z is not a singular point of its fiber, then $C/(x_1, \ldots, x_m)$ is regular and hence its maximal ideal is generated by a regular sequence $(\overline{y}_1, \ldots, \overline{y}_r)$. This implies that the maximal ideal of C is generated by the regular sequence $(x_1, \ldots, x_m, y_1, \ldots, y_r)$, hence C is regular.

By 2.9 the singularities of \widetilde{Y} are contained in the union of the singularities of the fibers of p.

Lemma 2.10. The singular locus of every fiber $p^{-1}(x)$ of p has codimension 3 in $p^{-1}(x)$.

Proof. Let k(x) be the residue field of $x \in X$, Ω its algebraic closure and F_x the fiber of p at x. The geometric fibre $\mathcal{A}(\overline{x})$ of \mathcal{A} at x is a matrix algebra $M_n(\Omega)$ and

$$F_{\overline{x}} = \operatorname{Spec}\left(\Omega[t_1, \dots, t_N][T]/(P_x(T))\right) ,$$

where $P_x(T)$ is the characteristic polynomial of $\overline{s} = (t_1 s_1(x) + \cdots + t_N s_N(x))/f(x)$ for some generator f of $\mathcal{L}|_U$, U a neighbourhood of x. Since the sections $s_i(x)/f(x)$ generate $M_n(\Omega)$ over Ω , by a linear change of coordinates we may assume that $\overline{s} = t_1 e_1 + \cdots + t_m e_m$ where $m = n^2$ and $\{e_1, \ldots, e_m\}$ form a basis of $M_n(\Omega)$. Then

$$F_{\overline{x}} = Y_n \times \operatorname{Spec}(\Omega[t_{m+1}, \dots, t_N])$$
.

We proved that the singular locus of Y_n has codimension 3, hence the same holds for the singular locus of $F_{\overline{x}}$. For every $x \in X$ the fiber F_x is a finite cover of \mathbb{A}^N and hence the dimension of F_x is N. Let $\mathrm{Sing}(\widetilde{Y})$ be the singular locus of \widetilde{Y} . By 2.9, for every $x \in X$, the fiber at x of $p|_{\mathrm{Sing}(\widetilde{Y})}: \mathrm{Sing}(\widetilde{Y}) \to X$ is contained in the singular locus of F_x and has therefore dimension at most N-3. Since X is 2-dimensional, the dimension of $\mathrm{Sing}(\widetilde{Y})$ is at most N-1.

Theorem 2.11. There exists a nonempty open set $V \subset k^N$ such that, for any $\lambda \in V$, Y_{λ} is a smooth integral quasi-projective surface. Further, the pull-back $\pi_{\lambda}^* \mathcal{A}$ is trivial in $Br(Y_{\lambda})$.

Proof. Look at $q: \widetilde{Y} \to \mathbb{A}^N$. Since $\operatorname{Sing}(\widetilde{Y})$ is at most (N-1)-dimensional, its image $q(\operatorname{Sing}(\widetilde{Y}))$ is contained in a proper closed subset of \mathbb{A}^N . Choose an open set $W \subset \mathbb{A}^N$ which does not intersect $q(\operatorname{Sing}(\widetilde{Y}))$ and let $\widetilde{W} = q^{-1}(W)$. We now have a map $q: \widetilde{W} \to W$ of smooth varieties. This map is clearly flat and surjective and therefore, if k is of characteristic zero, it is generically smooth (see [Ha], Ch. III, Corollary 10.7). By definition of generic smoothness there exists a dense open set $U' \subset \mathbb{A}^N$ such that $q^{-1}(U') \to U'$ is smooth. Thus for any $\lambda \in U'$ the fiber $Y_{\lambda} = q^{-1}(\lambda)$ is smooth. By 2.4, if $\lambda \in U$ then Y_{λ} is integral, hence for any $\lambda \in V = U \cap U'$ the surface Y_{λ} is smooth and integral. By 2.7 the field $k(Y_{\lambda})$ splits \mathcal{A}_K . But Y_{λ} being smooth, the canonical map $\operatorname{Br}(Y_{\lambda}) \to \operatorname{Br}(k(Y_{\lambda}))$ is injective and thus $\pi_{\lambda}^* \mathcal{A}$ is trivial in $\operatorname{Br}(Y_{\lambda})$.

Scholium 2.12 (suggested by D. Saltman). For any $\lambda \in V$ the \mathcal{O}_X -algebra $(\pi_{\lambda})_*\mathcal{O}_{Y_{\lambda}}$ embeds into \mathcal{A} as a smooth locally free maximal commutative subalgebra.

Proof. Write Y, s and π instead of Y_{λ} , s_{λ} and π_{λ} . Over any sufficiently small affine open set U the line bundle \mathcal{L} is generated by a local section f and $\pi_*\mathcal{O}_Y(U) = k[U][T]/(P_{s/f}(T))$ maps isomorphically onto k[U][s/f], which is a commutative subalgebra of $\mathcal{A}(U)$. It is easy to see that these local isomorphisms patch to give an isomorphism of $(\pi_{\lambda})_*\mathcal{O}_{Y_{\lambda}}$ onto a subsheaf \mathcal{S} of subalgebras of \mathcal{A} locally generated by sections of the form s/f. The generic fibre of \mathcal{S} is a maximal subfield $K(s/f) \simeq k(Y)$ of \mathcal{A}_K . Since $\mathcal{S}(U) = k[U][s/f]$ is smooth, it is integrally closed and therefore it is a maximal k[U]-order of K(s/f). This shows that it is a maximal commutative subalgebra of $\mathcal{A}(U)$.

Remark. Theorem 2.11 is not true in positive characteristic. Let for instance X be the affine plane $X = \operatorname{Spec}(k[u,v])$ over a field of characteristic $p \neq 0$ and \mathcal{A} the trivial Azumaya algebra $M_2(\mathcal{O}_X)$ over X. Then \mathcal{A} is generated by its global sections

$$s_1 = \begin{pmatrix} 1 & u^p \\ 0 & 0 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad s_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

and the generic splitting that we denoted \widetilde{Y} is the spectrum of

$$S = k[u, v, t_1, t_2, t_3, t_4][T]/(P(T))$$

where P is the determinant of $T - (t_1s_1 + t_2s_2 + t_3s_3 + t_4s_4)$. We find

$$P(T) = T^2 - (t_1 + t_4)T + t_1t_4 - t_2t_3 - u^p t_1t_3.$$

The algebra S is smooth over k if and only if P, P', $\partial P/\partial u$ and $\partial P/\partial v$ have no common zero over the algebraic closure of $k(t_1, t_2, t_3, t_4)$. But in fact, eliminating T, u and v we find the equation

$$(t_1 - t_4/2)^2 + t_2t_3 + u^p t_1 t_3 = 0$$

which is solvable with respect to u.

Nevertheless, a better choice of the twisting $\mathcal{A}(d)$ and of the sections s_1, \ldots, s_N might still lead to a proof in the positive characteristic case.

3. Galois splittings

We now construct, for any $\lambda \in k^N$, a Galois covering Z_{λ} of X with group $G = \mathcal{S}_n$, such that $X = Z_{\lambda}/G$. Notice that, in general, even if Y_{λ} is smooth and $Y_{\lambda} \to X$ is a projective map, the Galois closure of Y_{λ} is not smooth. Therefore, in order to have Y and Z smooth in the characteristic zero case, we must construct both at the same time. We achieve this by globalizing the construction of the universal splitting algebra of a monic polynomial, which we now recall.

Let R be a commutative ring and $P(T) = T^n + b_1 T^{n-1} + \cdots + b_n$ a monic polynomial with coefficients in R. For $1 \le i \le n$ let σ_i be the i-th elementary symmetric function in the n variables T_1, \ldots, T_n . The universal splitting algebra of P(T) is the quotient S of the polynomial algebra $R[T_1, \ldots, T_n]$ by the ideal I generated by the elements

$$\sigma_i(T_1,\ldots,T_n)-(-1)^ib_i,\quad 1\leq i\leq n.$$

We denote by τ_1, \ldots, τ_n the classes modulo I of T_1, \ldots, T_n . We clearly have

$$P(T) = (T - \tau_1) \cdots (T - \tau_n) .$$

The symmetric group S_n operates on S by permuting τ_1, \ldots, τ_n .

We will use the following properties of S. (For more details and proofs see [Bou] or [EL]).

P1. The construction of S commutes with scalar extensions ([EL], 1.9).

P2. As an R-module S is free of rank n! ([EL], 1.10).

P3. For any commutative R-algebra A and any n-tuple (a_1, \ldots, a_n) of elements of A such that $p(T) = (T - a_1) \cdots (T - a_n)$ in A[T] there is a unique R-homomorphism $\varphi : S \to A$ such that $\varphi(\tau_i) = a_i$ ([EL], 1.3).

P4. The subalgebra $R[\tau_n]$ of S is isomorphic to R[T]/(P(T)) and S is the universal splitting algebra of $P(T)/(T-\tau_n)$ over $R[\tau_n]$ ([EL], 1.8).

P5. If the discriminant of P(T) is a regular element of R, then $S^{S_n} = R$ ([EL], 2.2).

P6. If R is a field and P(T) is separable with Galois group S_n , then S is a Galois extension of R with Galois group S_n .

We now construct Z_{λ} . Let $U \subset X$ be an affine open set for which $\mathcal{L}|_{U}$ is isomorphic to $\mathcal{O}_{U}f$ for some section f on U. Let $\mathcal{L}, s_{1}, \ldots, s_{N} \in H^{0}(X, \mathcal{A} \otimes_{\mathcal{O}_{X}} \mathcal{L})$ and $s = \lambda_{1}s_{1} + \cdots + \lambda_{n}s_{n}$ be as in §2. Let $P_{f,U}(T) = T^{n} + b_{1}T^{n-1} + \cdots + b_{n}$ be the characteristic polynomial of

 $s/f \in \mathcal{A}(U)$. We choose n isomorphic copies $\mathcal{L}_1, \ldots, \mathcal{L}_n$ of \mathcal{L} and for each $i, f_i = f$ the generator of $\mathcal{L}_i|_U$. Consider

$$\mathcal{T} = Sym(\mathcal{L}_1^{-1} \oplus \cdots \oplus \mathcal{L}_n^{-1})$$
.

Writing $f_i^{-1}f_j^{-1}$ instead of $f_i^{-1}\otimes_{\mathcal{O}_U}f_j^{-1}$ we shall write the restriction of \mathcal{T} to U simply as

$$\bigoplus \mathcal{O}_U f_1^{-i_1} \cdots f_n^{-i_n} .$$

Note that $\mathcal{O}_U[T_1,\ldots,T_n]$ is isomorphic to $\mathcal{T}|_U$ under $T_i \mapsto f_i^{-1}$. We define $\mathcal{J}_{f,U} \subset \mathcal{T}|_U$ as the ideal generated by

$$\sigma_i(f_1^{-1},\ldots,f_n^{-1})-(-1)^ib_i \ 1\leq i\leq n \ .$$

It corresponds in the polynomial algebra to the ideal generated by

$$\sigma_i(T_1, \dots, T_n) - (-1)^i b_i \ 1 \le i \le n$$

which defines the universal splitting algebra of $P_{f,U}(T)$. As in the preceding section, it is easy to check that these ideals do not depend on the choice of f and can therefore be patched over the various U's to obtain a global ideal $\mathcal{J}_{\lambda} \subset \mathcal{T}$.

Let Z_{λ} be the closed subscheme of $\operatorname{Spec}(\mathcal{T})$ defined by \mathcal{J}_{λ} .

Proposition 3.1. Assume that $\lambda \in k^N$ has been chosen such that $P_{f,U}(T) = P(T)$ is separable and irreducible over K. The symmetric group \mathcal{S}_n acts on Z_λ via its obvious action on \mathcal{T} . The quotient Z_λ/\mathcal{S}_n coincides with X and Y_λ coincides with the quotient $Z_\lambda/\mathcal{S}_{n-1}$, where \mathcal{S}_{n-1} is the isotropy group of 1.

Proof. It suffices to deal with the affine case, when S is the universal splitting algebra of P(T) over R = k[U] and show that $S^{S_n} = R$ and $S^{S_{n-1}} = R[T]/(P(T))$. Since P(T) is separable over K the first assertion follows from property P6 and the second from properties P3 and P6.

We want to prove the following theorems.

Theorem 3.2. There exists a nonempty open set $U \subset k^N$ such that, for any $\lambda \in U$, Z_{λ} is an irreducible quasi-projective surface and the natural map $Z_{\lambda} \to X$ is a ramified Galois cover with group S_n .

Theorem 3.3. Assume that k is of characteristic zero. There exists a nonempty open set $U \subset k^N$ such that, for any $\lambda \in U$, Z_{λ} is a quasi-projective smooth surface.

The proofs require some preliminaries. Let X_{ij} with i, j running from 1 to n be indeterminates and write $P(T) = T^n + a_1 T^{n-1} + \cdots + a_n$ for the characteristic polynomial of the generic matrix (X_{ij}) . Let A be the polynomial k-algebra in the X_{ij} . Consider another set T_1, \ldots, T_n of indeterminates and put

$$B_n = A[T_1, \dots, T_n]/I$$

where I is the ideal generated by all the polynomials $\sigma_i(T_1, \ldots, T_n) - (-1)^i a_i$ for $1 \leq i \leq n$. Let $Z_n = \operatorname{Spec}(B_n)$. We want to determine $\operatorname{Sing}(Z_n)$.

A k-point of Z_n is a pair (α, t) with $\alpha \in M_n(k)$ and $t = (t_1, \ldots, t_n) \in k^n$ such that t_1, \ldots, t_n are the eigenvalues of α , i.e. the roots of the characteristic polynomial of α , which we write as

$$P(\alpha)(T) = T^n + a_1(\alpha)T^{n-1} + \dots + a_n(\alpha) .$$

Let $\pi: Z_n \to \operatorname{Spec}(A)$ be the first projection and let $S = \pi(\operatorname{Sing}(Z_n))$. We want to compute the dimension of S.

Let (α, t) be a singularity of Z_n . Since no $\sigma_i(T_1, \ldots, T_n)$ involves the X_{ij} and no a_j involves the T_i , if we order the X_{ij} lexicographically, the Jacobian matrix of the equations $\sigma_i(T_1, \ldots, T_n) - (-1)^i a_i = 0$ is of size $(n^2 + n) \times n$ and looks as follows:

$$J = \begin{pmatrix} \frac{\partial \sigma_1}{\partial T_1} & \cdots & \frac{\partial \sigma_n}{\partial T_1} \\ \vdots & & \vdots \\ \frac{\partial \sigma_1}{\partial T_n} & \cdots & \frac{\partial \sigma_n}{\partial T_n} \\ \frac{\partial a_1}{\partial X_{11}} & \cdots & \frac{\partial a_n}{\partial X_{11}} \\ \vdots & & \vdots \\ \frac{\partial a_1}{\partial X_{nn}} & \cdots & \frac{\partial a_n}{\partial X_{nn}} \end{pmatrix}.$$

By 3.1, π is a finite map and the dimension of Z_n is n^2 . The point (α, t) being a singularity of Z_n , the Jacobian criterion implies that the rank of J at (α, t) is at most n-1. Thus, in particular, the determinant δ of the top $n \times n$ block of J must vanish at (α, t) . It is well-known (and can be proved by an easy induction on n) that $\delta = \pm \prod_{i < j} (T_i - T_j)$. This shows that α has at least two equal eigenvalues. In other words, denoting by V(-) the vanishing locus of a given set of polynomials, (α, t) belongs to the vanishing locus $V(\delta^2)$ of the discriminant δ^2 of P(T).

Consider now $\operatorname{Sing}(Z_n) \cap V(a_1, \ldots, a_n)$. Since $\operatorname{Sing}(Z_n) \subset V(\delta^2)$ we have

$$\operatorname{Sing}(Z_n \cap V(a_1, \dots, a_n)) = \operatorname{Sing}(Z_n \cap V(\delta^2, a_1, \dots, a_n))$$
.

But the vanishing of a_1, \ldots, a_{n-1} and δ^2 already implies the vanishing of a_n ; in fact, if $T^n - a_n$ has a multiple root, then $a_n = 0$ (we are in characteristic 0). Thus

$$\operatorname{Sing}(Z_n) \cap V(a_1, \dots, a_{n-1}) = \operatorname{Sing}(Z_n) \cap V(a_1, \dots, a_n)$$

and therefore $\dim(\operatorname{Sing}(Z_n)) \leq \dim(\operatorname{Sing}(Z_n) \cap V(a_1, \ldots, a_n)) + n - 1$. The set $V(a_1, \ldots, a_n)$ is the set \mathcal{N} of nilpotent matrices. On the other hand, the bottom block of the Jacobian matrix must have rank at most n-1, which means that α is a singular point of \mathcal{N} . This shows that $\operatorname{Sing}(Z_n) \cap \mathcal{N} \subseteq \operatorname{Sing}(\mathcal{N})$ and from the previous inequality we obtain the next result.

Lemma 3.4. The dimension of $\operatorname{Sing}(Z_n)$ is at most $\dim(\operatorname{Sing}(\mathcal{N})) + n - 1$.

We now compute the dimension of $\operatorname{Sing}(\mathcal{N})$. As pointed out by George McNinch, our computation could be deduced from results already in the literature (see for instance [Ja], §7) but we prefer to be as self-contained as possible. We begin with the computation of the dimension of \mathcal{N} .

Proposition 3.5. Let $\mathcal{N} \subset M_n$ denote the variety of nilpotent matrices. Then the dimension of \mathcal{N} is $n^2 - n$.

Proof. Since \mathcal{N} is defined by the ideal (a_1,\ldots,a_n) of $A=k[X_{11},X_{12},\ldots,X_{nn}]$, it suffices to show that this ideal has height n. Let I be the ideal generated by $(a_1,\ldots a_n,X_{ij}\mid i\neq j)$. We claim that this ideal has height n^2 . The ring A/I is isomorphic to $k[X_{11},X_{2,2},\ldots,X_{nn}]/J$ where J is the ideal generated by elementary symmetric functions σ_1,\ldots,σ_n in X_{ii} . Since $k[X_{11},\ldots,X_{nn}]$ is finite over $k[\sigma_1,\ldots,\sigma_n]$, the ideal J has height n in $k[X_{11},\ldots,X_{nn}]$. Hence I is supported only at closed points. Since the a_i are homogeneous, it follows that the ideal (a_1,\ldots,a_n) has height n.

Lemma 3.6. A nilpotent matrix α whose Jordan form consists of only one cyclic block is not a singularity of \mathcal{N} . More precisely, the determinant of $\left(\frac{\partial a_i}{\partial X_{j1}}\right)$ is not zero at α .

Proof. Let A be as before and $P(T) = T^n + a_1 T^{n-1} + \cdots + a_n$ the characteristic polynomial of the generic matrix (X_{ij}) . The variety of nilpotent matrices is $\mathcal{N} = V(a_1, \ldots, a_n)$. We show that at

$$\alpha = \begin{pmatrix} 0 & 1 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\ 0 & 0 & 1 & \cdot & \cdot & \cdot & 0 & 0 \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\ \cdot & \cdot \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & 0 & 1 \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & 0 & 0 \end{pmatrix}$$

the jacobian matrix $\left(\frac{\partial a_i}{\partial X_{ij}}\right)$ has rank n. We compute the $n \times n$ matrix $\left(\frac{\partial a_i}{\partial X_{j1}}\right)$. The derivative of a_i by X_{j1} is the coefficient of T^{n-i} in $\frac{\partial P(T)}{\partial X_{j1}}$. Developing the determinant of $(X_{ij}) - TI_n$ along the first column we find

$$\pm P(T) = (X_{11} - T)P_1(T) + X_{2,1}P_2(T) + \dots + X_{n,1}P_n(T)$$

where $P_i(T)$ is the determinant of an $(n-1)\times(n-1)$ matrix M_i . At $(X_{ij})=\alpha$ we find

$$M_i(\alpha) = \begin{pmatrix} B_1 & 0\\ 0 & B_2 \end{pmatrix}$$

with

$$B_1 = \begin{pmatrix} 1 & 0 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\ -T & 1 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\ 0 & -T & 1 & \cdot & \cdot & \cdot & 0 & 0 \\ \cdot & \cdot \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & 1 & 0 \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & -T & 1 \end{pmatrix}$$

of size j-1 and

$$B_2 = \begin{pmatrix} -T & 1 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\ 0 & -T & 1 & \cdot & \cdot & \cdot & 0 & 0 \\ 0 & 0 & -T & \cdot & \cdot & \cdot & 0 & 0 \\ \cdot & \cdot \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & -T & 1 \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & 0 & -T \end{pmatrix}$$

of size n-j. Thus $P_j(T)=\pm T^{n-j}$ and $\frac{\partial a_i}{\partial X_{j1}}(\alpha)$ is ± 1 for j=i and zero otherwise. This proves the lemma.

Lemma 3.7. The set \mathcal{N}_2 of nilpotent matrices whose Jordan form has exactly two cyclic blocks are dense in the set of nilpotent matrices whose Jordan form has two or more blocks.

Proof. Let $\alpha = \operatorname{diag}(B_1, B_2, \ldots, B_m)$ be a nilpotent matrix which we can assume to be in Jordan form with blocks $B_1, \ldots, B_m, m \geq 3$. Let $g \neq 0$ with $g \in A$ define a neighbourhood of α . We can find constants $\epsilon_2, \ldots, \epsilon_{m-1}$ such that replacing the zeros between the superdiagonals of B_2 and B_3 , between the superdiagonals B_3 and B_4 and so on, by the ϵ_i we obtain a matrix α' such that $g(\alpha') \neq 0$. Clearly α' has two cyclic blocks.

Lemma 3.8. If $\alpha \in \mathcal{N}$ has a Jordan form with two or more cyclic blocks, then α is a singularity of \mathcal{N} .

Proof. We may assume that α is in Jordan form and can be written as $\operatorname{diag}(B_1, B_2, \dots, B_m)$ where $m \geq 2$, each B_i is a cyclic Jordan block, B_1 is of size p and B_2 of size q. We can write the generic matrix as $(X_{ij}) = (\alpha + Y_{ij})$. Then $\frac{\partial a_i}{\partial X_{ij}}(\alpha) = \frac{\partial a_i}{\partial Y_{ij}}(0)$. But in the matrix $\alpha + (Y_{ij})$ the p-th line and the (p+q)-th line are linear homogeneous in the Y_{ij} , hence developing the determinant of $\alpha + (Y_{ij})$ along these two lines we see that $a_n(Y_{ij} \mid 1 \leq i, j \leq n)$ has no constant and no linear term. This shows that all the derivatives $\frac{\partial a_n}{\partial Y_{ij}}$ vanish at the origin and therefore the Jacobian matrix $\frac{\partial a_i}{\partial Y_{ij}}$ cannot be of rank n.

Corollary 3.9. The set \mathcal{N}_2 is dense in $\operatorname{Sing}(\mathcal{N})$

The set \mathcal{N}_2 is the union of the $GL_n(k)$ -orbits $S_{p,q}$ of all the matrices of the form $\beta = \operatorname{diag}(B_p, B_q)$ where B_p is the nilpotent cyclic Jordan block of size p and B_q the nilpotent cyclic Jordan block of size q = n - p. In particular, it is the finite union of the constructible sets $S_{p,q}$. The dimension of $S_{p,q}$ is $n^2 - s$ where s is the dimension of the isotropy group of β

Lemma 3.10. For $n \geq 3$ the dimension of the isotropy group of diag (B_p, B_q) is $n + 2\min(p,q)$. In particular it is always at least n + 2.

Proof. Let $\Gamma \subset GL_n(K)$ be the isotropy group of $\beta = \operatorname{diag}(B_p, B_q)$. Let

$$\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

be an element of Γ , written with blocks A, B, C, D of suitable sizes. The condition $\gamma \beta \gamma^{-1} = \beta$ is equivalent to the conditions

$$AB_p = B_p A \; , \; DB_q = B_q D \; , \; BB_q = B_p B \; , \; CB_p = B_q C \; . \label{eq:absolute}$$

We compute the dimension of the linear subspace Γ_0 of $M_n(K)$ consisting of matrices that satisfy the four conditions above.

An explicit matrix computation shows that the first condition gives

$$A = \begin{pmatrix} a_1 & a_2 & a_3 & \cdot & \cdot & \cdot & a_{p-1} & a_p \\ 0 & a_1 & a_2 & \cdot & \cdot & \cdot & a_{p-2} & a_{p-1} \\ 0 & 0 & a_1 & \cdot & \cdot & \cdot & a_{p-3} & a_{p-2} \\ \cdot & \cdot \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & a_1 & a_2 \\ 0 & 0 & 0 & \cdot & \cdot & \cdot & 0 & a_1 \end{pmatrix}$$

A similar result holds for D, hence the matrices $\operatorname{diag}(A, D)$ in Γ_0 span a linear space of dimension p + q = n.

Assume now that $p \leq q$. An explicit computation shows that the third condition gives

A similar result holds for C, hence, when $p \leq q$ the dimension of Γ_0 is $n+p+p=n+2\min(p,q)$ and clearly this is also the dimension (as a variety) of Γ .

Proposition 3.11. For $n \geq 3$ the dimension of $Sing(\mathcal{N})$ is $n^2 - n - 2$.

Proof. By 3.9 and 3.10, $\dim(\operatorname{Sing}(\mathcal{N})) = \dim(\mathcal{N}_2) = n^2 - \min_{p,q}(\dim(S_{p,q}))$. The isotropy group of minimal dimension is $S_{1,n-1}$ which has dimension n+2. Thus $\dim(\mathcal{N}_2) = n^2 - (n+2)$.

Theorem 3.12. For $n \geq 3$ the dimension of $\operatorname{Sing}(Z_n)$ is at most $n^2 - 3$

Proof. This immediately follows from 3.4 and 3.11.

Proof of Theorem 3.2. It suffices to show that for a general λ the fibre Z_{λ} is irreducible. We extend the base to $\widetilde{X} = X \times \mathbb{A}^N$ where $\mathbb{A}^N = \operatorname{Spec}(k[t_1, \dots, t_N])$ and define $\widetilde{\mathcal{A}}$, $\widetilde{\mathcal{L}}$ and $\widetilde{\mathcal{L}}_i$ for $1 \leq i \leq n$ as the inverse images of \mathcal{A} , \mathcal{L} and the \mathcal{L}_i 's under the projection $\pi : \widetilde{X} \to X$. Repeating the construction of \mathcal{J}_{λ} we obtain an ideal \mathcal{J}_t , where $t = (t_1, \dots, t_N)$, which specializes to \mathcal{J}_{λ} when we specialize t to λ . The scheme \widetilde{Z} is the closed subscheme of

$$\operatorname{Spec}(\widetilde{\mathcal{T}}) = \operatorname{Spec}(\operatorname{Sym}(\widetilde{\mathcal{L}_1}^{-1} \oplus \cdots \oplus \widetilde{\mathcal{L}_n}^{-1}))$$

defined by \mathcal{J}_t .

Look at the diagram

The map π is clearly finite and flat and the two projections from $X \times \mathbb{A}^N$ are flat, hence p and q are flat. As in the previous section we set $\widetilde{Z}_K = \widetilde{Z} \times_X \operatorname{Spec}(K)$ and $q_K : \widetilde{Z}_K \to \mathbb{A}^N_K$ the restriction of q to \widetilde{Z}_K .

We first note that, by the choice of s_N made above, the fibre $q_K^{-1}(0,\ldots,0,1)$ is integral. In fact, by construction, its coordinate algebra is the universal splitting algebra of the characteristic polynomial $P_{s_N/f}(T)$ of s_N/f . Since the Galois group of $P_{s_N/f}(T)$ is \mathcal{S}_n , its universal splitting algebra, by property P6, is a field. We can now complete the proof exactly as we did in the proof of Theorem 2.4. By Theorem 9.7.7 of [Gr], it suffices to show that the geometric generic fibre of q is integral. Let Ω , S, Λ and \widetilde{X}_{Λ} be as in section 2 and define \widetilde{Z}_{Ω} , \widetilde{Z}_{Λ} , π_{Ω} and π_{Λ} as we did there for \widetilde{Y}_{Ω} and so on. The proof given in section 2 goes through once we remark that the universal splitting algebra \widetilde{Z}_{Λ} is reduced. This is a special case of the following lemma.

Lemma 3.13. Let R be a domain, K its field of fractions and $P(T) \in R[T]$ a monic polynomial. Assume that P(T) is separable over K. Then the universal splitting algebra of P(T) over R is reduced.

Proof. Let S be the universal splitting algebra of P(T) over R. It is a free R-algebra of degree n!. The construction of the universal splitting algebra commutes with scalar extensions (property P1), hence $S \otimes_R K$ is the splitting algebra of P(T) over K. Since P(T) is separable over K, it follows immediately from property P4 that $S \otimes_R K$ is étale over K, in particular reduced. By Lemma 2.5 S is reduced too.

Proof of Theorem 3.3. If n=2 then $U=k^N$ and for any $\lambda \in k^N$, $Z_{\lambda}=Y_{\lambda}$. We therefore assume that $n\geq 3$. In this case the proof is on similar lines as the proof of Theorem 1.11. By 1.12 the singularities of \widetilde{Z} are contained in the union of the singularities of the fibers of p. Since, by Theorem 3.12, the singularities of the closed fibres of p are at worst in codimension 3, we can argue exactly as in the proof of Theorem 1.11 and conclude that q is generically smooth, from which the assertion of Theorem 3.3 immediately follows.

4. Deformations

We now construct a flat family of surfaces over $\mathbb{A}^1_k = \operatorname{Spec}(k[t])$ that deforms the surface Y constructed in $\S 2$ into a union of copies of X. As we mentioned in the introduction, this is a crucial step in the proof of the main result of [dJ] (see also [CT]).

Let $\overline{k}(t)$ be an algebraic closure of k(t)

Proposition 4.1. Let X be a smooth projective surface over an algebraically closed field k of characteristic zero and A an Azumaya algebra over X, of rank n^2 . There exists a

diagram

$$W \xrightarrow{g} X$$

$$f \downarrow \\ \mathbb{A}^1$$

such that

- (1) W is a 3-dimensional integral scheme with $W_{\overline{k(t)}}$ integral,
- (2) the map f is proper,
- (3) $W_1 = f^{-1}(1)$ has n irreducible components V_i , each with multiplicity 1 and such that $g|_{V_i}: V_i \to X$ is an isomorphism for every i,
- (4) W is normal at the generic point of each V_i ,
- (5) $Y = W_0 = f^{-1}(0)$ is an irreducible smooth projective surface, $g|_Y : Y \to X$ is finite and flat, and $g^*(A)|_Y$ is trivial in Br(Y).

Proof.

We fix a projective embedding of X and choose global sections s_1, \ldots, s_N of a suitable twist $\mathcal{A}(d)$, as we did in §2. Let $s = \lambda_1 s_1 + \cdots + \lambda_N s_N$ with $\lambda = (\lambda_1, \ldots, \lambda_N) \in k^N$ and, denoting $\mathcal{O}_X(d)$ by \mathcal{L} , let $J_s \in Sym(\mathcal{L}^{-1})$ be the characteristic ideal of s defined in §2. Recall that Y_λ is the subscheme of $\operatorname{Spec}(Sym(\mathcal{L}^{-1}))$ defined by J_s and that locally on any affine open set $U \subset X$ over which $\mathcal{L}|_U$ is generated by a section f, $J_s|_U$ is generated by $P_{f,U}(f^{-1}) = f^{-n} \oplus b_1 f^{-(n-1)} \oplus \cdots \oplus b_n$ where $P_{f,U}(T) = T^n + b_1 T^{(n-1)} + \cdots + b_n$ is the characteristic polynomial of $s/f \in H^0(U, \mathcal{A})$. We choose λ such that Y_λ is irreducible, smooth and splits \mathcal{A} . Let \widehat{X} be the scheme $X \times \mathbb{A}^1$, $p: \widehat{X} \to X$ its first projection and t the coordinate on \mathbb{A}^1 . We put $\widehat{\mathcal{L}} = p^*(\mathcal{L})$ and define an ideal in $Sym(\widehat{\mathcal{L}}^{-1})$ as follows. Let w_1, \ldots, w_n be n distinct global sections of \mathcal{L} . We choose them in such a way that no function w_i/f over U is a zero of $P_{f,U}(T)$. We denote by \widehat{U} the inverse image of U. For simplicity, we still denote by the same letter a function (or a section of a bundle, or a polynomial, \ldots) on an open set of X and its extension to \widehat{X} . Let $\widehat{I}_{f,U}$ be the ideal of $Sym(\widehat{\mathcal{L}}^{-1}|_{\widehat{U}})$ generated by $Q_{f,U}(t,f^{-1})$ where

$$Q_{f,U}(t,T) = (1-t)P_{f,U} + t(T-w_1/f)\dots(T-w_n/f)$$
.

If we replace f by another generator g such that g = uf for some invertible function u on U, then, as in 2.3, we see that $\widehat{I}_{f,U} = \widehat{I}_{g,U}$. Therefore these ideals patch over X and give rise to an ideal \widehat{I}_s of $Sym(\widehat{\mathcal{L}}^{-1})$. We define W as the closed subscheme of $Spec(Sym(\widehat{\mathcal{L}}^{-1}))$ defined by \widehat{I}_s .

The composite

$$W \to \operatorname{Spec}(Sym(\widehat{\mathcal{L}}^{-1})) \to X$$

defines a map $g:W\to X$ and the second projection defines a map $f:W\to \mathbb{A}^1.$

Property (2) follows from the fact that W is finite, hence proper over \widehat{X} which is proper over \mathbb{A}^1 .

The fibre W_1 is locally the spectrum of $R[T]/((T-w_1/f)...(T-w_n/f))$ whose irreducible components $\operatorname{Spec}(R[T]/(T-w_i/f))$ have multiplicity 1 and map isomorphically onto $\operatorname{Spec}(R)$ under g. This proves (3).

To show (4) let \mathfrak{p}_i be the generic point of V_i and $U = \operatorname{Spec}(R)$ a suitable affine open set such that its inverse image in W contains \mathfrak{p}_i . Then, locally at \mathfrak{p}_i , W is the spectrum of

$$S = (R[T, t]/((1-t)P_{f,U}(T) + t(T - h_1) \dots (T - h_n)))_{\mathfrak{p}_i}$$

with $h_i = w_i/f$. Since $T - h_i$ and 1 - t are in \mathfrak{p}_i we have $\mathfrak{p}_i = (T - h_i, 1 - t)$. We assumed that $P(h_i) \neq 0$ in $K = S/\mathfrak{p}_i$, hence $\mathfrak{p}_i S$ is generated by $T - h_i$. This proves that W is normal at the generic point of V_i .

The properties in (5) are clear from the construction of W.

To prove property (1) we observe that $f^{-1}(0) = Y$ is integral and that the polynomial defining k(W) over $k(X \times_k \mathbb{A}^1_k)$ is separable, hence the integrality of the geometric generic fibre of f can be proved as we did in §2 for $\widetilde{Y} \to \mathbb{A}^N_k$.

5. A SPLITTING CRITERION

We now show that the flat family of Proposition 4.1 can be used to show the triviality of an Azumaya algebra.

Proposition 5.1. Let X be an integral projective d-dimensional variety over an algebraically closed field k and A an Azumaya algebra over X, of rank n^2 . Assume that the characteristic of k is zero or a prime that does not divide n. Fix an element $\eta \in H^2(X, \mu_n)$ which maps to $[A] \in {}_n\mathrm{Br}(X) \subset H^2(X, \mathbb{G}_m)$. Suppose that there exists a diagram

$$W \xrightarrow{g} X$$

$$f \downarrow \\ \mathbb{A}^1$$

with $\mathbb{A}^1 = \operatorname{Spec}(k[t])$ and such that

- (1) W is a (d+1)-dimensional integral scheme with $W_{\overline{k(t)}}$ integral,
- (2) the map f is proper,
- (3) $W_1 = f^{-1}(1)$ has n irreducible components V_i , each with multiplicity 1 and such that $g|_{V_i}: V_i \to X$ is a birational isomorphism for every i,
- (4) W is normal at the generic point of each V_i ,
- (5) $g^*(\eta)|_{W_0} = 0$ in $H^2(W_0, \mu_n)$.

Then $A_{k(X)}$ is a matrix algebra over k(X).

Proof. Let R be the local ring of \mathbb{A}^1 at t=0 and R^h its henselization. Let $g_h: W \times_{\mathbb{A}^1} \operatorname{Spec}(R^h) \to X$ be the composite map $W \times_{\mathbb{A}^1} \operatorname{Spec}(R^h) \to W \xrightarrow{g} X$. The element $g_h^*(\eta) \in H^2(W \times_{\mathbb{A}^1} \operatorname{Spec}(R^h))$ maps to zero in $H^2(W_0, \mu_n)$. By proper base change ([Mi], Ch.

VI, 2.7), $g_h^*(\eta) = 0$, hence there exists a finite tale map $C_0 \xrightarrow{\alpha} \mathbb{A}^1$ of a curve onto a neighbourhood of 0, such that if $g_{C_0}: W \times_{\mathbb{A}^1} C_0 \to X$ denotes the restriction of g_h , then $g_{C_0}^*(\eta) = 0$. We extend $\alpha: C_0 \to \mathbb{A}^1$ to an $\alpha: C_1 \to \mathbb{A}^1$ such that the point t = 1 is the image of a rational point of C_1 . Such a point exists, since k is algebraically closed. Since $W_{\overline{k(t)}}$ is integral, the scheme $W \times_{\mathbb{A}^1} C_1$ is integral, with generic point $\operatorname{Spec}(k(W \times_{\mathbb{A}^1} C_0))$. The class $g_{C_1}^*(\eta) \in H^2(W \times_{\mathbb{A}^1} C_1, \mu_n)$ is generically zero. Since by (3) each V_i occurs with multiplicity 1 in the fibre of 1 and by (4) W is normal at the generic point of V_i , t-1 generates the maximal ideal of the discrete valuation ring \mathcal{O}_{W,V_i} . Let $1' \in C_1$ be a rational point such that $\alpha(1') = 1$. Then $V_i \times 1' \simeq V_i$ is an irreducible component of the fibre of 1'. Let S be its local ring in $k(W \times_{\mathbb{A}^1} C_1)$. The maximal ideal of S is generated by a local parameter of C_1 at 1', hence S is a discrete valuation ring with quotient field $k(W \times_{\mathbb{A}^1} C_1)$ and the map $H^2(S, \mu_n) \to H^2(k(W \times_{\mathbb{A}^1} C_1), \mu_n)$ is injective. Thus $g_{C_1}^*(\eta)$ restricts to zero in $H^2(S, \mu_n)$ and specializes to zero in

$$H^2(\kappa(V_i \times \{1'\}), \mu_n) = H^2(\kappa(V_i), \mu_n) = H^2(k(X), \mu_n)$$

under the map g. The composite map $k(X) \to \kappa(V_i) \xrightarrow{g} k(X)$ being the identity, we have $\eta_{k(X)} = 0$.

References

- [Bou] N. Bourbaki, Algèbre, Chapitre IV, Polynômes et fractions rationelles, Masson, Paris, 1981.
- [CT] J.-L. Colliot Thélène, Algères simples centrales sur les corps de fonctions de deux variables (d'après A. J. de Jong), exposé au séminaire Bourbaki, juin 2005.
- [dJ] A.J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. J. 123 (2004), 71–94.
- [EL] T. Ekedahl and D. Laksov, Splitting algebras, symmetric functions and Galois theory, J. Algebra Appl. 4 (2004), 59–75.
- [FJ] M.D. Fried and M. Jarden, *Field Arithmetic*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, 2005.
- [Gr] A. Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné)
 : IV. Étude locale des schémas et des morphismes de schémas, Troisième partie., Publications Mathématiques de l'IHÉS 28 (1966), 5–255.
- [Ha] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, 1977.
- [Ja] J. C. Jantzen, Nilpotent orbits in representation theory, Lie Theory: Lie Algebras and Representations (B. Ørsted, J.-Ph. Anker, eds.), Birkhuser, 2004.

MANUEL OJANGUREN, IGAT, EPFL, CH-1015 LAUSANNE, SWITZERLAND *E-mail address*: manuel.ojanguren@epfl.ch

RAMAN PARIMALA, EMORY UNIVERSITY, ATLANTA, GA, USA *E-mail address*: parimala@mathcs.emory.edu