SMOOTH FINITE SPLITTINGS OF
AZUMAYA ALGEBRAS OVER SURFACES

MANUEL OJANGUREN AND RAMAN PARIMALA

INTRODUCTION

Let k be an algebraically closed field of characteristic zero, X a quasi-projective smooth
surface over k and A an Azumaya algebra over X of rank n?. We construct a smooth
irreducible quasi-projective surface Y and a flat finite map 7y : ¥ — X of degree n such
that 7*A is trivial in the Brauer group Br(Y). We further show that the Galois closure of
Y over X is a smooth irreducible quasi-projective surface Z and that the Galois group of
k(Z) over k(X) is the symmetric group S,,.

The smooth finite splitting ¥ — X was announced, for k of arbitrary characteristic, by
Artin and de Jong [dJ], but no proof seems to have been published.

The splitting Y — X that we construct is locally of the form

Spec(Ox,.[T]/(P(T)))

where P(T') is the characterisitic polynomial of a section of 4. This leads to a very easy
construction of a deformation of Y into a union of copies of X, like the one in Lemma
5.1 of [dJ]. From this deformation, following the arguments in [dJ], we deduce a splitting
criterionfor A. For the use of these results in the proof of de Jong’s theorem we refer to

[CT].

We thank Jean-Louis Colliot-Thélene, Aise Johan de Jong, and David Saltman for several
discussions.

1. THE CHARACTERISTIC POLYNOMIAL OF THE GENERIC MATRIX

In this section we suppose that k is an algebraically closed field, of arbitrary charactersitic.
We denote by Sing(X) the singular locus of a given scheme X.

Let
k[ X11, Xi2, .. Xon] [T
(P(T))
where P(T') is the characteristic polynomial of the generic matrix (X;;) with 1 <4, j <n.
Let Y,, = Spec(A,,). We study the singular locus of Y,,.

A, =

Typeset by ApS-TEX



2 MANUEL OJANGUREN AND RAMAN PARIMALA

Lemma 1.1. Let g = diag(By, ..., B,,) be a matrix consisting of m cyclic Jordan blocks

A 10 - - - 0 0
0 N 1 -0 0
o o o0 - - - XN 1
o o o - - - i

with distinct eigenvalues ;. Then, for any i, the scheme Y,, is smooth at (3, \;).

Proof. We denote by I,, the identity matrix of size n. Developing the determinant of
(Xi;) — T -1, along the first column we get

+P(T) = (X11 — T)Py(T) + Xo 1 Po(T) + - - - + X 1 Po(T)

where the polynomials P; are the cofactors of the first column. Let k; be the size of
B;. We see that Py, (T)(B, A1) is (up to sign) the determinant of a matrix of the form
diag(Ig, 1, Ba — AM1k,, . . ., By — A1, ), it being understood that the first block is missing
if k1 = 1. Since Ay # \;, this shows that OP(T)/0Xk, 1 = Pk, (T) is not zero at (B, \1).
Thus Y,, is smooth at (5, A1) and the same clearly holds for any other A;.

Lemma 1.2. Every neighbourhood of a matrix o with an eigenvalue \ # 0 contains an
invertible semisimple matrix with eigenvalue \.

Proof. We may assume that « is in Jordan form. The given neighbourhood of o contains an
open set defined by the non-vanishing of a polynomial g in the coordinates of the generic
matrix (X;;). We may assume that the diagonal entries of a are (A, Ag,...,A,). Since
g(a@) # 0 we may find values \,, ..., A/ all distinct and different from A and different from
0, such that when we replace A; by A, in o we obtain an o’ for which g(a’) # 0. This new
o’ is in the given neighbourhood and is semisimple.

Let Y,, be as before. The injection k[X11, X12,..., Xnn] — A, induces a finite map w :
Y, — A" . The projection C' = 7(Sing(Y,)) is a closed subscheme of A" and is contained

in the ramification locus of 7, which is the closed subscheme of A™ whose closed points
correspond to matrices with at least two equal eigenvalues.

Lemma 1.3. Let V C A" be the set of semisimple invertible matrices with at least two
coincident eigenvalues. Then V C (.

Proof. 1t suffices to check that any matrix of the form § = diag(u1, ..., tn—2, A, A) is in C.
We show that (3, A) belongs to Sing(Y,,). Writing X;; = p; + X, fori <n—-2, X;; = A+ X;
fori >n—1,T = A+t and v; = pu; — A we see that P(T) is the determinant of the matrix

v + X X192 e Xin
Xo1 1+ Xy Xon
Xn—l —t Xn—l,n
Xn,n—l Xn —t
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and it is clear that it does not contain any linear term in X;,X;; or t. Thus the variety
it defines is singular at the origin, which corresponds to the point (3, A) in the previous
coordinates.

Lemma 1.4. Let W C M, (k) be the set of all semisimple invertible matrices with at
least n — 1 distinct eigenvalues. Then W is open and dense in M, (k).

Proof. The set of all semisimple invertible matrices is open and dense in M, (k). We claim
that matrices having at least n — 1 distinct eigenvalues is open in M, (k). In fact this set
is the inverse image under the eigenvalue map M, — A" / S, of the complement of the
closed set of points with three equal coordinates. Hence W is open and clearly non empty.

By 1.4 the set U = W N C of all semisimple invertible matrices with exactly two equal
eigenvalues is open in C.

Lemma 1.5. The set U is dense in C.

Proof. Let (3, \) be a point of Sing(Y;,). By 1.1, 3, which we may assume to be in Jordan
canonical form, contains at least two cyclic Jordan blocks with the same eigenvalue. We
write 0 = diag(f1, 02, ..., 0,) with the (§;’s cyclic Jordan blocks of size s; and (1, (2
having the same eigenvalue A. Suppose that (§ is in the open set defined by f # 0 for
some polynomlal function f in the entries Xw of the generic n x n matrix. Let ﬂ =
dlag(ﬁl, ﬁg, .. ﬁr) be a matrix where each Bl has the same size as [3; and the same off-
diagonal entries Suppose further that ﬂ has n — 1 distinct eigenvalues, with 61 and ﬁg
retaining the eigenvalue A\. Then ﬂ is semisimple and, for a general ﬂ, f (6) # 0.

For example, if

A1 0 0 O

O A1 0 0

=10 0 X 0 O

0O 0 0 X 1

0O 0 0 0 A

then

A1 0 0 O
B 0 X 1 0 O
6=10 0 X 0 O
0 0 0 X3 1
0O 0 0 0 A

with A, A1, Ao, A3 distinct.
Corollary 1.6. The dimension of C' is equal to the dimension of U.
Lemma 1.7. The dimension of U is n® — 3.

Proof. Let ¥,,_1 C (k:*)”_l/Sn_l be the set of all {\, A3, ..., A\, } consisting of n—1 distinct
elements of k*. Clearly ¥,,_; has dimension n — 1. Mapping each matrix in U to the set
of its eigenvalues we obtain a surjective map p : U — X,,_;. The linear group GL, (k)
acts transitively on each fiber of p and the stabilizer of the matrix diag(A, A\, As, ..., \,) is
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GLa(k) x (k*)"~2. Hence the dimension of U is dim(GL,,(k)) — dim(G Lz (k) x (k*)"~2) +
dim(X,_ 1) =n?>—(4+n—-2)+n—-1=n?-3.

Corollary 1.8. The closed set Sing(Y;,) is of codimension 3.
Proof. The closure of U is C = 7(Sing(Y;,)) and 7 is a finite map.

2. FINITE SMOOTH SPLITTINGS

Let X be a smooth quasi-projective surface over an algebraically closed field k, and A an
Azumaya algebra of degree n over X. Let K = k(X) be the field of rational functions of
X and Ak the generic fibre of A. We do not assume that Ag is a division ring.

Lemma 2.1. There exists an element o in Ax whose characteristic polynomial is irre-
ducible, separable and has Galois group S,,.

Proof. Let o1, ...,0m, be a K-basis of Ax (m being equal to n?). Let K C L be a separable
finite extension of K such that Ax ®x L = M,(L). Let Xy,...,X,, be indeterminates
and 0 = Xy01 + -+ X,,0,,. After an L-linear change of variables the characteristic
polynomial P5(T) of & is the characteristic polynomial of the generic matrix, hence it
is irreducible and separable over L(Xj,...,X,,), and has Galois group S,,. Since it is
defined over K(X1,...,X,,) it has the same properties over this smaller field. By Hilbert’s
irreducibility theorem (see for instance [FJ], Prop. 16.1.5) there exist &1, ...,&,, in K such
that the charactersitic polynomial of o = &01 + - - - + &,,0,, is irreducible, separable, with
Galois group &,,.

We fix a smooth embedding of X in a projective space. If d is sufficiently large, the twisted
sheaf A(d) is generated by global sections si,...sy—1 and, for some global section f of
Ox(d) and o as in Lemma 1, sy = of is a global section of A(d). We set £ = Ox (d).

Let s be any global section of A(d) = A®e, L. Choose an arbitrary affine nonempty open
set U C X over which £ is principal: £y = Oy f for some f € L(U). Then sf~ € A(U),
which is an Azumaya algebra over Ox (U). Let

Pry(T)=T"+b,T" ' +-- 4 by

with by,...,b, € k[U] be the characteristic polynomial of sf~!. We define J;y as the
ideal of

Sym(L o) =0v oL v ® L lu®- =0y dOuf ' @O0uf > ®---

generated by f" @b f~ "V a...ab,.

Lemma 2.2. Let A be an Azumaya algebra of rank n? over a ring R. For any o € A
and any ¢ € R, the characteristic polynomial P, (T) of « satisfies the relation ¢" P, (T) =
P.o(cT).

Proof. It immediately follows from the split case A = M,,(R).
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Lemma 2.3. The ideal Jy ; does not depend on the choice of f.

Proof. We apply 2.2 with f = ug for some other generator g of £|y and u invertible on U.
(We note that the suffixes f or g stand for the elements s/f, s/g in the algebra). We have

Pyu(T) = Pyigu(T) =u"Pry(u™'T) = T" + ubt T" " + - +u"by,

Thus the ideal J, i is generated by
g n D blug—(n—l) D P Unbn — un(f—n D blf—(n—l) DD bn) ‘

and coincides therefore with Jy .

Patching the ideals Jy 7 over a suitable affine covering of X yields a global ideal J, of
Sym(L~1) that only depends on the section s. We call J the characteristic ideal of s.

The ideal J4 defines a closed subscheme Yy of Spec (Sym(ﬁ_l)) which is clearly finite and
flat over X.

To simplify notation, if s = A5y + -+ + Anxsy we put A = (Ag,...,Ay) € kN, J, = Jy
and Y; = Y)\. We denote by m : Y\ — X the natural map.

Theorem 2.4. There exists a nonempty open set U C kv such that, for any \ € U, Yy
is an irreducible quasi-projective surface.

Before proving this theorem we recall, without proof, two easy lemmas.

Lemma 2.5. Let 7 : Y — X be a flat dominant morphism, with X integral. Then Y is
reduced if and only if the generic fibre of 7 is reduced.

Lemma 2.6. Let 7 : Y — X be a flat dominant morphism, with X integral. Then Y is
irreducible if and only if the generic fibre of w is irreducible.

Proof of Theorem 2.4. We set AN = Spec (k[t1,...,tn]) and extend the base to X =
X x AN, Let A and £ be the inverse images of A and L under the projection 7 : X - X.
Put s =t1s1 +---+tysy and let Jt( ) be the characteristic ideal of s and Y the closed
subscheme of Spec (Sym(Z‘l)) defined by J;(T). Look at the diagram

X j)/ E}W\\Q{AN

The map 7 is clearly finite and flat and the two projections from X x AN are flat, hence p
and ¢ are flat. We set YK =Y X x Spec(K) and g : YK — AN the restriction of ¢ to YK
We first note that, by the choice of s made above, the fibre ¢, 1(0,...,0,1) is integral. By
Theorem 9.7.7 of [Gr], to prove the theorem it suffices to show that the geometric generic
fibre of ¢ is integral. Let 2 be an algebraic closure of k(t1,...,In), Yo =Y x,~ Spec()
the generic fibre of ¢, XQ = X x; Q and 7q : YQ — XQ the extension of w. Let S be
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the integral closure of k[t1,...,tn] in Q and A = K ®; S. We set Yo=Y X ¢ Spec(A),
)A(:A = Spec(A) and 7y : ?A — )A(:A the extension of 7. Assume that ?Q is not integral.
Since 7q is flat, by 2.5 and 2.6 the generic fibre of 7 is not integral. But 7, is also flat
and has the same generic fibre as 7, hence, again by 2.5 and 2.5, Y, is not integral.

The characterstic polynomial Ps/¢(T') € K][t1,...,txn] that generates Ji(T) over a suitable
open set of X is clearly separable over K(¢1,...,tx), hence Y, is reduced by Lemma 2.5.
If Y, is not integral, being reduced it has more than one component and since 7, is finite
and flat, each component maps surjectively onto X, and hence no fibre is integral. Let z
be a point of X over the point (0,...,0,1) of A¥. Specializing at z we get a contradiction
with the irreducibility of WXI(O, ...,0,1) = Spec(K) xx Y(o,....0,1)-

Corollary 2.7. Let U be as in 2.4. For any A € W the field k(Y)) splits Ag.

Proof. By construction the field k(Y)) is a maximal subfield of Agk.

We now show that, assuming that k is of characteristic zero, a general fibre is smooth.
Proposition 2.8. The dimension of Sing(Y) is at most N — 1.

Proof.
We try to determine the singularities of Y using the following lemma.

Lemma 2.9. Let f : Z — X be a flat map of schemes. Suppose that X is regular. If
2 € Z is a singular point of Z, then z is a singularity of its fiber f=1(f(z)).

Proof. Let C be the local ring of Z at z and A be the local ring of f(z). By assumption
the maximal ideal of A is generated by a regular sequence (z1,...,T,,). Since f is flat, C
is faithfully flat over A and this sequence is still regular as a sequence in C. If z is not a
singular point of its fiber, then C/(x1,...,x,,) is regular and hence its maximal ideal is
generated by a regular sequence (7, ...,7,). This implies that the maximal ideal of C' is
generated by the regular sequence (z1,...,Zm,¥Y1,--.,Yr), hence C' is regular.

By 2.9 the singularities of Y are contained in the union of the singularities of the fibers of
.

Lemma 2.10. The singular locus of every fiber p~1(x) of p has codimension 3 in p~1(x).
Proof. Let k(x) be the residue field of z € X, Q its algebraic closure and F, the fiber of p
at x. The geometric fibre A(T) of A at x is a matrix algebra M,,(€2) and

Fz = Spec (Qty, ..., tn][T]/(Pe(T))) ,

where P, (T) is the characteristic polynomial of 5 = (t1s1(z) + -+ + tnsn(z))/f(z) for
some generator f of L]y, U a neighbourhood of x. Since the sections s;(z)/f(z) generate
M, (R2) over 0, by a linear change of coordinates we may assume that 5 =tie;+---+t,em
where m = n? and {ey,..., e, } form a basis of M, (). Then

Fr =Y, x Spec (Qtmt1,---,tN]) -
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We proved that the singular locus of Y,, has codimension 3, hence the same holds for the
singular locus of F5. For every x € X the fiber F; is a finite cover of A" and hence the
dimension of F, is N. Let Smg( ) be the singular locus of Y. By 2.9, for every z € X,
the fiber at = of p|Slng(Y) Sing(Y) — X is contained in the singular locus of F, and has

therefore dimension at most N — 3. Since X is 2-dimensional, the dimension of Sing(Y) is
at most N — 1.

Theorem 2.11. There exists a nonempty open set V. C k¥ such that, for any \ € V,

Y\ is a smooth integral quasi-projective surface. Further, the pull-back w3y A is trivial in
BI‘(Y)\).

Proof. Look at ¢ : Y — AN. Since Sing(Y) is at most (N — 1)-dimensional, its image
q(Sing(Y)) is contained in a proper closed subset of AN, Choose an open set W C AN
which does not intersect ¢(Sing(Y')) and let W = ¢ '(W). We now have a map q :

W — W of smooth varieties. This map is clearly flat and surjective and therefore, if £ is of
characteristic zero, it is generically smooth (see [Ha], Ch. III, Corollary 10.7). By definition
of generic smoothness there exists a dense open set U’ C AN such that ¢~1(U’) — U’ is
smooth. Thus for any A € U’ the fiber Y) = ¢~ 1()\) is smooth. By 2.4, if A\ € U then Y
is integral, hence for any A\ € V' = U N U’ the surface Y} is smooth and integral. By 2.7
the field £(Y)) splits Agx. But Y, being smooth, the canonical map Br(Y)) — Br(k(Y)))
is injective and thus 734 is trivial in Br(Y)).

Scholium 2.12 (suggested by D. Saltman). For any A\ € V the Ox-algebra (my).Oy,
embeds into A as a smooth locally free maximal commutative subalgebra.

Proof. Write Y, s and 7 instead of Y), sy and 7. Over any sufficiently small affine open
set U the line bundle £ is generated by a local section f and 7,.Oy (U) = k[U][T]/(Ps, (T
maps isomorphically onto k[U][s/f], which is a commutative subalgebra of A(U). It is
easy to see that these local isomorphisms patch to give an isomorphism of (7,).Oy, onto a
subsheaf S of subalgebras of A locally generated by sections of the form s/f. The generic
fibre of S is a maximal subfield K (s/f) ~ k(Y') of Ax. Since S(U) = k[U][s/ f] is smooth,
it is integrally closed and therefore it is a maximal k[U]-order of K (s/f). This shows that
it is a maximal commutative subalgebra of A(U).

Remark. Theorem 2.11 is not true in positive characteristic. Let for instance X be the
affine plane X = Spec(k[u, v]) over a field of characteristic p # 0 and A the trivial Azumaya
algebra M5(Ox) over X. Then A is generated by its global sections

(1w (01 /0 0 (00
S1 = 0 0 ’ S2 = 0o 0]/’ S3 = 1 0/ S4 = 0 1 )

and the generic splitting that we denoted Y is the spectrum of
S = kfu, v, t1,ts, t3, ta][T]/(P(T))
where P is the determinant of T' — (151 + toso + t3s3 + t454). We find

P(T) =T? — (t; + t4)T + t1ty — tots — uPtits .
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The algebra S is smooth over k if and only if P, P’, 9P/0u and dP/0v have no common
zero over the algebraic closure of k(t1,to,ts,t4). But in fact, eliminating T, v and v we
find the equation

(ty — ta/2) + tats + uPtits = 0
which is solvable with respect to w.

Nevertheless, a better choice of the twisting A(d) and of the sections s1, ..., sy might still
lead to a proof in the positive characteristic case.

3. GALOIS SPLITTINGS

We now construct, for any A € kv, a Galois covering Z, of X with group G = S,,, such
that X = Z,/G. Notice that, in general, even if Y) is smooth and Y, — X is a projective
map, the Galois closure of Y) is not smooth. Therefore, in order to have Y and Z smooth
in the characteristic zero case, we must construct both at the same time. We achieve this
by globalizing the construction of the universal splitting algebra of a monic polynomial,
which we now recall.

Let R be a commutative ring and P(T) = T"™ + byT"! + ... + b, a monic polynomial
with coefficients in R. For 1 <i < n let g; be the i-th elementary symmetric function in
the n variables 77, ..., T,. The universal splitting algebra of P(T') is the quotient S of the
polynomial algebra R[T1,...,T,]| by the ideal I generated by the elements

oi(Th, ..., Ty) — (=1)'b;, 1<i<n.
We denote by 71, ..., 7, the classes modulo I of T},...,T,,. We clearly have

P(T)=(T—=m) (T =)

The symmetric group &,, operates on S by permuting 71, ..., 7.

We will use the following properties of S. (For more details and proofs see [Bou] or [EL]).
P1. The construction of S commutes with scalar extensions ([EL], 1.9).

P2. As an R-module S is free of rank n! ([EL], 1.10).

P3. For any commutative R-algebra A and any n-tuple (aq,...,a,) of elements of A such
that p(T) = (T'—ay) --- (T — ay) in A[T] there is a unique R-homomorphism ¢ : S — A
such that ¢(7;) = a; ([EL], 1.3) .

P4. The subalgebra R[r,] of S is isomorphic to R[T]/(P(T)) and S is the universal splitting
algebra of P(T) /(T — 7,,) over R[r,] ([EL], 1.8).

P5. If the discriminant of P(T) is a regular element of R, then S» = R ([EL], 2.2).

P6. If R is a field and P(T) is separable with Galois group S, then S is a Galois extension
of R with Galois group S,,.

We now construct Zy. Let U C X be an affine open set for which £|y is isomorphic to Oy f
for some section f on U . Let £, s1,...,sy € HY(X, A®p, L) and s = A\181 + -+ A\n Sy,
be as in §2. Let Pry(T) =T" + byT" ! + .-+ b, be the characteristic polynomial of
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s/f € A(U). We choose n isomorphic copies Lq,...,L, of L and for each i, f; = f the
generator of £;|yy. Consider

T=Sym(Li' e @L,").

n

Writing fi_1 fj_1 instead of fi—1 Roy fj_1 we shall write the restriction of 7 to U simply as

Dovi

Note that Oy[Th,...,T,] is isomorphic to 7|y under T; — fi_l.
We define Jy¢ iy C 7|y as the ideal generated by

oi(fit . T = (=) 1<i<n.
It corresponds in the polynomial algebra to the ideal generated by
oi(Ty, .., Tn) = (1)’ 1 <i <n

which defines the universal splitting algebra of Py (7). As in the preceding section, it
is easy to check that these ideals do not depend on the choice of f and can therefore be
patched over the various U’s to obtain a global ideal 7, C 7.

Let Zy be the closed subscheme of Spec(7) defined by 7.

Proposition 3.1. Assume that A € kY has been chosen such that Py y(T) = P(T) is
separable and irreducible over K. The symmetric group S, acts on Z, via its obvious
action on T. The quotient Z)/S,, coincides with X and Y) coincides with the quotient
Z\/Sn—_1, where S,,_1 is the isotropy group of 1.

Proof. 1t suffices to deal with the affine case, when S is the universal splitting algebra of
P(T) over R = k[U] and show that S%» = R and S»-1 = R[T]/(P(T)). Since P(T)
is separable over K the first assertion follows from property P6 and the second from
properties P3 and P6.

We want to prove the following theorems.

Theorem 3.2. There exists a nonempty open set U C k™ such that, for any A € U, Zy is
an irreducible quasi-projective surface and the natural map Z, — X is a ramified Galois
cover with group S,,.

Theorem 3.3. Assume that k is of characteristic zero. There exists a nonempty open set
U C kY such that, for any A € U, Zy is a quasi-projective smooth surface.

The proofs require some preliminaries. Let X;; with ¢, j running from 1 to n be indeter-
minates and write P(T) =T™ +a;T"" ! +- - -+ a,, for the characteristic polynomial of the
generic matrix (X;;). Let A be the polynomial k-algebra in the X;;. Consider another set
Ty,...,T, of indeterminates and put

B, =A[Ty,...,T,)/I
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where I is the ideal generated by all the polynomials (T, ..., T,) —(—1)%a; for 1 <i < n.
Let Z,, = Spec(B;,). We want to determine Sing(Z,,).

A k-point of Z,, is a pair («,t) with a € M, (k) and ¢t = (t1,...,t,) € k™ such that
t1,...,t, are the eigenvalues of «a, i.e. the roots of the characteristic polynomial of «,
which we write as

P)(T)=T" + a1 ()T" + - +ap(a) .

Let m : Z, — Spec(A) be the first projection and let S = w(Sing(Z,)). We want to
compute the dimension of S.

Let (a,t) be a singularity of Z,. Since no o;(T4,...,T,) involves the X;; and no a;
involves the T;, if we order the X;; lexicographically, the Jacobian matrix of the equations
oi(T1,...,Ty) — (=1)'a; = 0 is of size (n? + n) x n and looks as follows:

991 ..  99a

Ty 0Ty

90, ... 090,

| o7, oT,

J o 8(11 - aan

0X11 0X11

oa; . _day

axnn 8X'ﬂ'ﬂ

By 3.1, 7 is a finite map and the dimension of Z,, is n?. The point (, t) being a singularity
of Z,, the Jacobian criterion implies that the rank of J at («,t) is at most n — 1. Thus,
in particular, the determinant § of the top n x n block of J must vanish at («,t). It is
well-known (and can be proved by an easy induction on n) that 6 = £[],_,(7; —T}). This
shows that « has at least two equal eigenvalues. In other words, denoting by V(-) the
vanishing locus of a given set of polynomials, (o, t) belongs to the vanishing locus V (§2)
of the discriminant 6% of P(T).

Consider now Sing(Z,) NV (ai,...,a,). Since Sing(Z,) C V(§?) we have
Sing(Z, NV (ai,...,a,)) = Sing(Z, NV (6%, a1,...,a,)) .

But the vanishing of a1,...,a,_1 and §? already implies the vanishing of a,; in fact, if
T™ — a, has a multiple root, then a,, = 0 (we are in characteristic 0). Thus

Sing(Z,) NV (a1,...,an—1) = Sing(Z,) NV (ay,...,an)

and therefore dim(Sing(Z,,)) < dim(Sing(Z,,)NV (a1, ...,a,))+n—1. Theset V(ay,...,a,)
is the set N of nilpotent matrices. On the other hand, the bottom block of the Jacobian
matrix must have rank at most n — 1, which means that « is a singular point of A/. This
shows that Sing(Z,,) NN C Sing(N) and from the previous inequality we obtain the next
result.
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Lemma 3.4. The dimension of Sing(Z,,) is at most dim(Sing(N)) +n — 1.

We now compute the dimension of Sing(N'). As pointed out by George McNinch, our
computation could be deduced from results already in the literature (see for instance [Ja],
§7) but we prefer to be as self-contained as possible. We begin with the computation of
the dimension of N.

Proposition 3.5. Let N C M, denote the variety of nilpotent matrices. Then the
dimension of N is n? — n.

Proof. Since N is defined by the ideal (a1,...,a,) of A= k[X11, X12,..., Xnn], it suffices

to show that this ideal has height n. Let I be the ideal generated by (a1, ...an, Xi; | i # j).
We claim that this ideal has height n2. The ring A/I is isomorphic to k[ X1, Xoo,..., X,m]/JI
where J is the ideal generated by elementary symmetric functions o, ..., 0, in X;;. Since
k[X11,...,Xnn] is finite over k[oy,...,0,], the ideal J has height n in k[X11,..., Xunl.
Hence I is supported only at closed points. Since the a; are homogeneous, it follows that
the ideal (aq, ..., a,) has height n.

Lemma 3.6. A nilpotent matrix o whose Jordan form consists of only one cyclic block

is not a singularity of N'. More precisely, the determinant of (%) is not zero at «.
J

Proof. Let A be as before and P(T) = T"+a,T" ! +- - - +a, the characteristic polynomial
of the generic matrix (X;;). The variety of nilpotent matrices is N' = V(aq,...,a,). We
show that at

o1 0 - - - 00
o o1 .- - 00
oo o0 - - 00
a = . . . . . . .
oo o - - - 01
o oo - - 00
the jacobian matrix ((%;:j) has rank n. We compute the n X n matrix (8%?;1). The

derivative of a; by X is the coefficient of T~ in %PT(TI)
(Xi;) — T1, along the first column we find
+P(T) = (X11 —T)P(T) + Xo 1 Po(T) + - -+ X, 1 P (T)

where P;(T') is the determinant of an (n — 1) x (n — 1) matrix M;. At (X;;) = a we find

- (3 3

. Developing the determinant of

with
1 0 0 0 O
-T 1 0 0 O
B, = 0o -7 1 0 O
0 0 0 1 0
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of size 7 — 1 and

=T 1 0 0 0
o -r 1 - - - 0 0
e I
0 0 o - - - =T 1
0 0 o - - - 0 -T

of size n — j. Thus P;(T) = 7" and %(a) is +1 for j = i and zero otherwise. This
proves the lemma.

Lemma 3.7. The set Ns of nilpotent matrices whose Jordan form has exactly two cyclic
blocks are dense in the set of nilpotent matrices whose Jordan form has two or more blocks.

Proof. Let a = diag(Bi, Ba, ..., By,) be a nilpotent matrix which we can assume to be in
Jordan form with blocks B, ... ,By,, m > 3. Let g # 0 with g € A define a neighbour-
hood of a. We can find constants es, ..., €, _1 such that replacing the zeros between the

superdiagonals of By and Bgs, between the superdiagonals B3 and B4 and so on, by the ¢;
we obtain a matrix o’ such that g(a’) # 0. Clearly o’ has two cyclic blocks.

Lemma 3.8. If « € N has a Jordan form with two or more cyclic blocks, then o is a
singularity of N.

Proof. We may assume that « is in Jordan form and can be written as diag(B1, Ba, . .., By)
where m > 2, each B; is a cyclic Jordan block, B; is of size p and By of size q. We can
write the generic matrix as (X;;) = (o +Y;;). Then 88)?; () = 88{}2 (0). But in the matrix
a + (Y;;) the p-th line and the (p + g)-th line are linear homogeneous in the Y;;, hence
developing the determinant of v+ (Y;;) along these two lines we see that a, (Y;; | 1 <14,j <

n) has no constant and no linear term. This shows that all the derivatives % vanish at
ij
the origin and therefore the Jacobian matrix 88{}?, cannot be of rank n.
ij

Corollary 3.9. The set N5 is dense in Sing(N)

The set N3 is the union of the GL,(k)-orbits S, , of all the matrices of the form § =
diag(B,, B,;) where B, is the nilpotent cyclic Jordan block of size p and B, the nilpotent
cyclic Jordan block of size ¢ = n—p. In particular, it is the finite union of the constructible
sets S, 4. The dimension of S, , is n? — s where s is the dimension of the isotropy group

of ¢

Lemma 3.10. For n > 3 the dimension of the isotropy group of diag(B,, B,) is n +
2min(p, q). In particular it is always at least n + 2.

Proof. Let I' C GL,,(K) be the isotropy group of § = diag(B,, B;). Let

(A B
T=\c b
be an element of I', written with blocks A, B, C, D of suitable sizes. The condition

vBy~ = 3 is equivalent to the conditions
AB,=B,A, DB,=B,D, BB,=B,B, CB, =B,C.
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We compute the dimension of the linear subspace I'g of M,,(K) consisting of matrices that
satisfy the four conditions above.

An explicit matrix computation shows that the first condition gives

a a2 a3 - - - Qp-1 ap
0 a a2 - - - Ap—2 QAp—1
A— 0 0 a - - - Qap—3 QAap—2
0 0 0 s al a9
o o o - - - 0 ay

A similar result holds for D, hence the matrices diag(A, D) in I'y span a linear space of
dimension p + ¢ = n.

Assume now that p < ¢. An explicit computation shows that the third condition gives

0 - « - 0 by by by - - - by_y by
0 - - - 0 0 by by - - - byy by
0 -« -0 0 0 b - - - byg by
0 - « « « .« . ...y by
0 - - - -« .« < . . . .0 by

A similar result holds for C, hence, when p < ¢ the dimension of I'g isn+p+p =
n + 2min(p, ¢) and clearly this is also the dimension (as a variety) of T

Proposition 3.11. For n > 3 the dimension of Sing(N) is n? —n — 2.

Proof. By 3.9 and 3.10, dim(Sing(/N)) = dim(N2) = n? — min,, ,(dim(S, ,)). The isotropy
group of minimal dimension is Sy ,—1 which has dimension n + 2. Thus dim(N;) = n? —

(n+2).
Theorem 3.12. For n > 3 the dimension of Sing(Z,,) is at most n? — 3
Proof. This immediately follows from 3.4 and 3.11.

Proof of Theorem 3.2. 1t suffices to show that for a general A the fibre Z), is irreducible. We
extend the base to X = X x AN where AN = Spec (k[ty, ..., txn]) and define A, £ and L;
for 1 < i < n as the inverse images of A, £ and the £;’s under the projection 7 : X > X.
Repeating the construction of J) we obtain an ideal J;, where t = (¢1,...,tn), which
specializes to J, when we specialize t to A\. The scheme 7 is the closed subscheme of

Spec(7) = Spec(Sym(El ' O D Z;L_l))

defined by J;.
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A

X<—Xx AN ——= AN

Look at the diagram

The map 7 is clearly finite and flat and the two projections from X x AN are flat, hence p
and ¢ are flat. As in the previous section we set ZK =7 X x Spec(K) and ¢ : ZK — AN
the restriction of ¢ to Zk.

We first note that, by the choice of sy made above, the fibre ql_(l((), ...,0,1) is integral.
In fact, by construction, its coordinate algebra is the universal splitting algebra of the
characteristic polynomial P, ,¢(7T) of sy/f. Since the Galois group of P, /(T) is Sy,
its universal splitting algebra, by property P6, is a field . We can now complete the proof
exactly as we did in the proof of Theorem 2.4. By Theorem 9.7.7 of [Gr], it suffices to
show that the geometric generic fibre of ¢ is integral. Let 2, S, A and X A be as in section
2 and define ZQ, ZA, mq and o as we did there for 179 and so on. The proof given in
section 2 goes through once we remark that the universal splitting algebra Z is reduced.
This is a special case of the following lemma.

Lemma 3.13. Let R be a domain, K its field of fractions and P(T) € R[T] a monic
polynomial. Assume that P(T') is separable over K. Then the universal splitting algebra
of P(T) over R is reduced.

Proof. Let S be the universal splitting algebra of P(T') over R. It is a free R-algebra
of degree n!. The construction of the universal splitting algebra commutes with scalar
extensions (property P1), hence S ® K is the splitting algebra of P(T') over K. Since
P(T) is separable over K, it follows immediately from property P4 that S ®p K is étale
over K, in particular reduced. By Lemma 2.5 S is reduced too.

Proof of Theorem 3.3. If n = 2 then U = kv and for any A\ € KV, Z, = Y). We therefore
assume that n > 3. In this case the proof is on similar lines as the proof of Theorem 1.11.
By 1.12 the singularities of Z are contained in the union of the singularities of the fibers
of p. Since, by Theorem 3.12, the singularities of the closed fibres of p are at worst in
codimension 3, we can argue exactly as in the proof of Theorem 1.11 and conclude that ¢
is generically smooth, from which the assertion of Theorem 3.3 immediately follows.

4. DEFORMATIONS

We now construct a flat family of surfaces over Aj = Spec(k[t]) that deforms the surface
Y constructed in §2 into a union of copies of X. As we mentioned in the introduction, this
is a crucial step in the proof of the main result of [dJ] (see also [CT]).

Let k(t) be an algebraic closure of k()

Proposition 4.1. Let X be a smooth projective surface over an algebraically closed field
k of characteristic zero and A an Azumaya algebra over X, of rank n?. There exists a
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diagram
w2 x
/|
Al

such that

(1) W is a 3-dimensional integral scheme with Wi integral,

(2) the map f is proper,

(3) W1 = f~Y(1) has n irreducible components V;, each with multiplicity 1 and such that
glv, : Vi — X is an isomorphism for every i,

(4) W is normal at the generic point of each V;,

(5) Y = Wy = f~1(0) is an irreducible smooth projective surface, gly : Y — X is finite
and flat, and g*(A)|y is trivial in Br(Y").

Proof.

We fix a projective embedding of X and choose global sections s1,...,sy of a suitable
twist A(d), as we did in §2. Let s = A;s1 + -+ + Aysy with A = (A\1,..., A\y) € kY and,
denoting Ox (d) by L, let J, € Sym(L~1) be the characteristic ideal of s defined in §2.
Recall that Y), is the subscheme of Spec(Sym(ﬁ_l)) defined by Js and that locally on any
affine open set U C X over which L|y is generated by a section f, Jg|y is generated by
Pro(f Y =fm"abf " Ve .. .0b, where Py y(T) = T" + o171V 4+ ... + b, is
the characteristic polynomial of s/f € H°(U,.A). We choose A such that Yy is irreducible,
smooth and splits A. Let X be the scheme X x Al p: X — X its first projection and
t the coordinate on A'. We put £ = p*(£) and define an ideal in Sym(L 1) as follows.
Let wy,...,w, be n distinct global sections of £. We choose them in such a way that
no function w;/f over U is a zero of Py (T). We denote by U the inverse image of U.
For simplicity, we still denote by the same letter a function (or a section of a bundle, or
a polynomial, ...) on an open set of X and its extension to X. Let ff,U be the ideal of

Sym(2_1|ﬁ) generated by Q¢ y(t, f~1) where
Qrut,T)=0—-8)Pru+ T —wi/f)...(T —wn/f).

If we replace f by another generator g such that g = u f for some invertible function u on
U, then, as in 2.3, we see that Iy = I, y. Therefore these ideals patch over X and give
rise to an ideal I, of Sym(L~!). We define W as the closed subscheme of Spec(Sym(E_l))
defined by I,.

The composite

W — Spec(Sym(L™Y)) — X

defines a map g : W — X and the second projection defines a map f: W — Al

Property (2) follows from the fact that W is finite, hence proper over X which is proper
over Al.
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The fibre Wy is locally the spectrum of R[T|/((T — wi/f)...(T — wy,/f)) whose irre-
ducible components Spec(R[T]/(T — w;/f)) have multiplicity 1 and map isomorphically
onto Spec(R) under g. This proves (3).

To show (4) let p; be the generic point of V; and U = Spec(R) a suitable affine open set
such that its inverse image in W contains p;. Then, locally at p;, W is the spectrum of

S = (RIT.1/((1 = )Pru(T) + t(T = h1) ... (T = h))),,
with h; = w;/f. Since T — h; and 1 —t are in p; we have p; = (T'— h;, 1 — t). We assumed
that P(h;) # 0 in K = S/p;, hence p;S is generated by T" — h;. This proves that W is
normal at the generic point of V;.

The properties in (5) are clear from the construction of W.
To prove property (1) we observe that f~1(0) = Y is integral and that the polynomial
defining k(W) over k(X xj A}) is separable, hence the integrality of the geometric generic

fibre of f can be proved as we did in §2 for Y — AN,

5. A SPLITTING CRITERION

We now show that the flat family of Proposition 4.1 can be used to show the triviality of
an Azumaya algebra.

Proposition 5.1. Let X be an integral projective d-dimensional variety over an alge-
braically closed field k and A an Azumaya algebra over X, of rank n?. Assume that the
characteristic of k is zero or a prime that does not divide n. Fix an element n € H*(X, ,,)
which maps to [A] € ,Br(X) Cc H*(X,G,,). Suppose that there exists a diagram

w2 x
1|
Al

with A’ = Spec(k[t]) and such that

(1) Wis a (d 4 1)-dimensional integral scheme with Wiz, integral,

(2) the map f is proper,

(3) Wi = f~(1) has n irreducible components V;, each with multiplicity 1 and such that
glv, : Vi — X is a birational isomorphism for every 1,

(4) W is normal at the generic point of each V;,

(5) 4" (Dlwy = 0 in H?(Woy i),

Then Ay(x) is a matrix algebra over k(X).

Proof. Let R be the local ring of A! at t = 0 and R" its henselization. Let g : W x a1
Spec(R") — X be the composite map W x 1 Spec(R") — W % X. The element g} (n) €
H?(W xa1 Spec(R")) maps to zero in H?(Wy, uin,). By proper base change ([Mi], Ch.
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VI, 2.7), g5 (n) = 0, hence there exists a finite tale map Cy — Al of a curve onto a
neighbourhood of 0, such that if gc, : W x41 Cp — X denotes the restriction of g, then
96, (n) = 0. We extend o : Cy — A' to an a : C; — A' such that the point ¢ = 1 is the
image of a rational point of C;. Such a point exists, since k is algebraically closed. Since
VVkF) is integral, the scheme W x 41 C is integral, with generic point Spec(k(W X 41 Cp)).
The class g& (1) € H*(W x a1 C1, 1) is generically zero. Since by (3) each V; occurs with
multiplicity 1 in the fibre of 1 and by (4) W is normal at the generic point of V;, ¢t — 1
generates the maximal ideal of the discrete valuation ring Oy y,. Let 1’ € Cy be a rational
point such that «(1’) = 1. Then V; x 1’ ~ V; is an irreducible component of the fibre of
1’. Let S be its local ring in k(W x 1 C7). The maximal ideal of S is generated by a local
parameter of C; at 1’, hence S is a discrete valuation ring with quotient field k(W x 41 Cy)
and the map H?(S, pun) — H?(k(W x 41 C1), i) is injective. Thus g¢, (1) restricts to zero
in H2(S, iu,,) and specializes to zero in

HQ(/{(‘/Z‘ X {1,})7Mn> = H2(/{(‘/i)nun> = HQ(k(X>vﬂn>

under the map g. The composite map k(X) — x(V;) -5 k(X) being the identity, we have
Ne(x) = 0.
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