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Abstract. Consider towers of fields F1 ⊂ F2 ⊂ F3, where F3/F2 is a quadratic

extension and F2/F1 is an extension, which is either quadratic, or of odd degree, or
purely transcendental of degree 1. We construct numerous examples of the above

types such that the extension F3/F1 is not 4-excellent. Also we show that if k is a

field, char k 6= 2 and l/k is an arbitrary field extension of degree 4, then there exists
a field extension F/k such that the extension lF/F is not 4-excellent.

1. Notation and terminology

The purpose of this paper is to construct nonexcellent field extensions of certain
types. Recall that a field extension L/F is called excellent (resp. n-excellent) if for
any quadratic form ϕ over F (resp. for any quadratic form ϕ over F of dimension at
most n) the anisotropic part of the form ϕL is defined over F . It is well known that
any quadratic extension is excellent (see for example [4]). Obviously, the same is
true for odd degree and purely transcendental extensions, since they can not make
an anisotropic form isotropic. We consider below towers of fields F1 ⊂ F2 ⊂ F3,
where the extension F3/F2 is quadratic and the extension F2/F1 is either quadratic
or of odd degree or purely transcendental of degree 1. We give numerous examples
of extensions F3/F1 of such types, which are not 4-excellent.

The main source of reference concerning quadratic forms over fields is the Schar-
lau book [4]. We keep the standard notation. All the fields considered in the sequel
are of characteristic different from 2. By a form we mean a nonsingular quadratic
form. If F is a field, then W (F ) is the Witt ring of F and I(F ) is the ideal of
evendimensional forms in W (F ). The anisotropic part of a form ϕ is denoted by
ϕan. Slightly abusing notation we write ϕ = 0 if ϕ is hyperbolic, i.e. its anisotropic
part is zero. By D(ϕ) we denote the set of nonzero values of ϕ. The function field
of the projective quadric related to the form ϕ is denoted by F (ϕ). If L/F is a field
extension, then ϕL is the extension of ϕ to L, i.e. the form ϕ ⊗F L. For a, b ∈ F ∗

the symbol 〈〈a, b〉〉 means the 2-fold Pfisterform 〈1,−a,−b, ab〉. If k is a field and
p ∈ k[x] is an irreducible polynomial, by k(p) we denote the residue field k[x]/p. If
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p is fixed, f ∈ k[x] and p does not divide f , then unless specified otherwise, f is

the image of f in k(p)∗/k(p)∗
2
.

The main tool in constructing of the examples in question is the notion of the
second residue homomorphism ∂p : I2/I3(k(x)) → k(p)∗/k(p)∗

2
for an arbitrary

irreducible polynomial p in x over a field k ([4]). Recall that the residue of the
2-fold Pfisterform 〈〈f, g〉〉 at the polynomial p is computed as follows:

∂p(〈〈f, g〉〉) =

{
0 if vp(f) = vp(g) = 0,

f if vp(f) = 0, vp(g) = 1
.

(vp is the corresponding discrete valuation on k(x)). In fact these equations deter-
mine the map ∂p on the whole group I2/I3(k(x)).

2. Nonexcellence of field extensions of degree 4

We begin with the following

Theorem 1. Let k be a field, a, b, c ∈ k, a ∈ k∗ \ k∗2, b2 − ac2 ∈ k∗ \ k∗2. Put

l = k(
√

b + c
√

a) and F = k(t, x, y), where t, x, y are indeterminates. Then there
exists a 4-dimensional quadratic form ϕ over F such that dim (ϕlF )an = 2 and the
form (ϕlF )an is not defined over F . (This means that the field extension lF/F is
not 4-excellent).

Proof. Let f = ((t2 − a)x2 − (b2 − ac2))((t2 − a)y2 − 1),

ϕ1 ≃ (t +
√

a)〈1, −(b + c
√

a)〉,

ϕ2 ≃ (t +
√

a)〈1, −f(b + c
√

a)〉.
Let us find q ∈ F ∗ such that the forms (t +

√
a)〈〈q〉〉 and q(t +

√
a)(b + c

√
a)〈〈qf〉〉

are defined over F . Provided q satisfies this condition we get that the form

ϕ ≃ ϕ2 ⊥ −qϕ1 ≃ (t +
√

a)〈〈q〉〉 ⊥ q(t +
√

a)(b + c
√

a)〈〈qf〉〉

is defined over F as well.
The following lemma is well known, but in view of the absence of a convenient

reference and for the sake of completeness we give the proof.

Lemma 2. Suppose that q /∈ F ∗2 ∪ aF ∗2 and the elements α, β ∈ F are such that
〈〈q, α2 − aβ2〉〉 = 0. Then the form (α + β

√
a)〈〈q〉〉 is defined over F . Moreover, if

elements X, Y ∈ F are such that X2 − qY 2 = α2 − aβ2, then (α + β
√

a)〈〈q〉〉 ≃
(2X + 2α)〈〈q〉〉.
Proof. Since (X + Y

√
q)(X − Y

√
q) = (α + β

√
a)(α − β

√
a), we have

NF (
√

a,
√

q)/F (
√

a)(α + β
√

a + X + Y
√

q) =

= (α + β
√

a + X + Y
√

q)(α + β
√

a + X − Y
√

q) = (α + β
√

a)(2X + 2α).

Therefore, since obviously, 〈〈q, NF (
√

a,
√

q)/F (
√

a)(α+β
√

a+X +Y
√

q)〉〉 = 0, we get

〈〈q, α+β
√

a〉〉 ≃ 〈〈q, (α+β
√

a)NF (
√

a,
√

q)/F (
√

a)(α+β
√

a+X+Y
√

q)〉〉 ≃ 〈〈q, 2X+2α〉〉,
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or, equivalently (α + β
√

a)〈〈q〉〉 ≃ (2X + 2α)〈〈q〉〉. The lemma is proved. ¤

Since

((t2 − a)y)
2 − t2 − a

(t2 − a)y2 − 1
((t2 − a)y2 − 1)

2
= t2 − a,

and

((t2 − a)x)
2 − t2 − a

(t2 − a)y2 − 1
f = (t2 − a)(b2 − ac2) = NF (

√
a)/F (b + c

√
a)(t +

√
a),

we obtain that

〈〈 t2 − a

(t2 − a)y2 − 1
, t2 − a〉〉 = 〈〈 t2 − a

(t2 − a)y2 − 1
f, (t2 − a)(b2 − ac2)〉〉 = 0.

Therefore, constructing the form ϕ we can put q = t2−a
(t2−a)y2−1

. By Lemma 2 we get

(t +
√

a)〈〈q〉〉 ≃ (2(t2 − a)y + 2t)〈〈q〉〉,

q(t +
√

a)(b + c
√

a)〈〈qf〉〉 ≃ (2(t2 − a)x + 2(bt + ac))〈q,−f〉,
hence

ϕ ≃ (2(t2 − a)y + 2t)〈1,−q〉 ⊥ (2(t2 − a)x + 2(bt + ac))〈q,−f〉.

We are going to prove that the form ϕ provides a counterexample to 4-excellency
of the field F . However, we don’t need the explicit form of the coefficients of ϕ,
which look somewhat complicated.

It is obvious that

(ϕlF )an ≃ (ϕ2)lF ≃ (t +
√

a)〈1, −f〉lF .

In particular, dim (ϕlF )an = 2. If the form (ϕlF )an is defined over F , then there is
p ∈ F ∗ such that

(t +
√

a)〈1, −f〉 ≃ p〈1, −f〉,
i.e. 〈〈f, (t +

√
a)p〉〉lF = 0, which is equivalent to

〈〈f, (t +
√

a)p〉〉 ≃ 〈〈b + c
√

a, u + v
√

a〉〉

over F (
√

a) for some u, v ∈ F . We will show that in fact this is impossible. More
precisely we will prove the following a bit more general

Lemma 3. For any u, v, p ∈ F , w ∈ k(
√

a) one has

〈〈f, (t +
√

a)wp〉〉 6≃ 〈〈b + c
√

a, u + v
√

a〉〉. (1)

Proof. Put e = b2 − ac2. If e /∈ ak∗2, i.e. l/k is not a Galois extension, then the
residues at either t +

√
a or t −√

a of the left hand and on the right hand parts of
(1) are different, which proves the lemma in this case.
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If e ∈ ak∗2, the argument is more complicated. Assume that

〈〈f, (t +
√

a)wp〉〉 ≃ 〈〈b + c
√

a, u + v
√

a〉〉 (1’)

for some u, v, p ∈ k(t, y)[x], and that under this condition m = deg p is minimal (in
this section by deg we mean the degree with respect to the variable x). In particular,
the polynomial p is squarefree. Moreover, we may assume that deg(u + v

√
a) is

minimal provided that deg p = m. It follows that (t2 − a)x2 − e does not divide p,

for otherwise we would change p for −p (t2−a)y2−1
(t2−a)x2−e , a contradiction to minimality

of deg p. Also (t2 − a)x2 − e does not divide u + v
√

a, for in the opposite case the
isomorphism

〈〈f, (t +
√

a)w(b + c
√

a)p〉〉 ≃ 〈〈b + c
√

a,
u + v

√
a

(t2 − a)x2 − e
((t2 − a)y2 − 1)〉〉,

obtained from (1′) by adding 〈〈b+ c
√

a, f〉〉 to its both parts, would imply a contra-
diction to minimality of deg(u + v

√
a).

Let p =
∏

pi, where pi ∈ k(t, y)[x] are irreducible polynomials, deg pi ≥ 1. We
need the following

Lemma 4. For any pi the elements f and af are not squares in k(t, y)[x]/pi.

Proof. Suppose for instance that af is a square in k(t, y)[x]/p1. Consider two cases:
a) deg p1 ≥ 2, b) deg p1 = 1.

Case a).
Since af is a square in k(t, y)[x]/p1 we get P 2 − af = p1s, for some P, s ∈

k(t, y)[x], deg P ≤ deg p1 − 1. Since deg p1 ≥ 2 and deg f = 2 it follows that
deg(p1s) ≤ 2(deg p1 − 1), hence deg s ≤ deg p1 − 2. Over the field k(

√
a, t, y, x) we

have
〈〈f, p1s〉〉 ≃ 〈〈f, P 2 − af〉〉 ≃ 〈〈af, P 2 − af〉〉 = 0,

so
〈〈b + c

√
a, u + v

√
a〉〉 ≃ 〈〈f, (t +

√
a)wp〉〉 ≃ 〈〈af, (t +

√
a)wp〉〉 ≃

〈〈af, (t +
√

a)w
p

p1
s〉〉 ≃ 〈〈f, (t +

√
a)w

p

p1
s〉〉,

a contradiction to minimality of deg p, since deg p
p1

s ≤ deg p − 2.

Case b).
Let p1 = Qx + P . We may assume that Q, P ∈ k(t)[y]. Since af is a square in

k(t, y)[x]/p1, we conclude that a((t2 − a)P 2

Q2 − e)((t2 − a)y2 − 1) ∈ k(t, y)∗
2
. This

implies that (t2 − a)y2 − 1 is a divisor of (t2 − a)P 2 − eQ2 as a polynomial in y. It
follows that there are nonzero polynomials P1, Q1 ∈ k(t)[y] and a rationl function
g ∈ k(t)∗ such that degy P1, degy Q1 ≤ 1 and (t2 − a)P 2

1 − eQ2
1 = g((t2 − a)y2 −

1) (here by degy we mean the degree with respect to y). It is easy to see that

this implies g〈(t2 − a),−1〉 ≃ 〈(t2 − a),−e〉 over k(t), a contradiction, since the
discriminants on the left-hand and on the right-hand sides of the last isomorphism
are different. The case where f is a would-be square in k(t, y)[x]/p1 is treated quite
similar. Lemma 4 is proved. ¤
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We return to the proof of Lemma 3. By Lemma 4 we get that every pi is a divisor
of the polynomial u+v

√
a ∈ k(

√
a, t, y)[x], since otherwise the residues at pi (more

precisely at some irreducible divisor of pi over k(
√

a, t, y)[x]) on the left-hand and
the right- hand sides of the equality 〈〈f, (t+

√
a)wp〉〉 ≃ 〈〈b+ c

√
a, u+v

√
a〉〉 would

be different. So we obtain that u + v
√

a = p(u1 + v1
√

a), hence

〈〈f, (t +
√

a)wp〉〉 ≃ 〈〈b + c
√

a , p(u1 + v1

√
a)〉〉 (2)

for some u1, v1 ∈ k(t, y)[x], and, since p is squarefree, the polynomials u1 + v1
√

a
and p are relatively prime. Multiplying by some square in k(t)∗ we may assume
that vt2−a(p) equals either 0 or 1. Suppose that vt2−a(p) = 1. Then applying the
automorphism W (F (

√
a)) → W (F (

√
a)) determined by t → −t to the equality (2)

written as

〈〈f, (t −
√

a)
p

t2 − a
w〉〉 ≃ 〈〈b + c

√
a,

p

t2 − a
(u1 + v1

√
a)(t2 − a)〉〉

and changing p(t, x, y) for p(−t, x, y)(t2 − a)
−1

, we reduce the problem to the case
vt2−a(p) = 0.

We claim that deg(u1 + v1
√

a) = 0. Indeed, suppose s ∈ k(
√

a, t, y)[x] is a prime
divisor of u1 + v1

√
a. Since s does not divide ((t2 − a)x2 − e)p, we get that

∂s(〈〈b + c
√

a, p(u1 + v1

√
a)〉〉) = ∂s(〈〈f, (t +

√
a)wp〉〉) = 1.

By the same argument as in Lemma 4 we can diminish deg(u1+v1
√

a) in (2), which
contradicts minimality of deg(u + v

√
a) in (1′). Thus, we conclude that there are

no prime divisors of u1 + v1
√

a at all, i.e. u1, v1 ∈ k(t, y). The equality (2) implies

〈〈(b + c
√

a)f, (t +
√

a)wp〉〉 ≃ 〈〈b + c
√

a, (t +
√

a)(u1 + v1

√
a)w〉〉,

and the right- hand side of the last isomorphism is defined over k(
√

a, t, y). Denote
it by π. Since π splits by the square root of

(b + c
√

a)((t2 − a)y2 − 1)((t2 − a)x2 − e),

we conclude that πk(
√

a,t,y)(τ) = 0, where

τ ≃ 〈〈((t2 − a)y2 − 1)(b + c
√

a)(t2 − a),−((t2 − a)y2 − 1)(b + c
√

a)e〉〉.
Therefore, either π = 0, or

π ≃ τ ≃ 〈〈((t2 − a)y2 − 1)(b + c
√

a)(t2 − a), −((t2 − a)y2 − 1)(b + c
√

a)e〉〉. (3)

On the one hand, since vt2−a(p) = 0, we have

∂(t+
√

a)(π) = ∂(t+
√

a)(〈〈f(b + c
√

a), (t +
√

a)wp〉〉) = b − c
√

a,

so π 6= 0, hence (3) holds. On the other hand,

∂(t−
√

a)(π) = ∂(t−
√

a)(〈〈f(b + c
√

a), (t +
√

a)wp〉〉) = 1,

and

∂(t−
√

a)(〈〈((t2 − a)y2 − 1)(b + c
√

a)(t2 − a), −((t2 − a)y2 − 1)(b + c
√

a)e〉〉) =

(b + c
√

a)e = b − c
√

a,

a contradiction in view of (3). This proves Lemma 3, hence also Theorem 1. ¤

¤
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Corollary 5. Let k be a field, let l/k be an arbitrary field extension of forth degree.
Then there is a field extension F/k such that the extension lF/F is not 4-excellent.

Proof. There is a field extension k1/k, which is either cubic or trivial, such that
lk1/k1 is the tower of quadratic extensions. If this tower is not the composite of two
quadratic extensions of k1 we can apply Theorem 1. The opposite case is considered
in [5]. ¤

If k(
√

b + c
√

a)/k is not a Galois extension i.e. e /∈ k∗2 ∪ ak∗2, then Theorem
1 can be strengthened and the proof becomes much simpler. Namely, we have the
following

Proposition 6. Let k be a field, a, b, c ∈ k, a ∈ k∗ \ k∗2, e = b2 −ac2 ∈ k∗ \ (k∗2 ∪
ak∗2), l = k(

√
b + c

√
a). Let t be an indeterminate, F = k(t). Then there exists a

4-dimensional form ϕ over F such that the following holds:

For any field l̃ ⊃ l such that b− c
√

a is not a square in l̃ and t is transcendental

over l̃ the form (ϕelF )
an

is not defined over F . In particular, the field l itself satisfies
these conditions.

Proof. Let

ϕ ≃ 〈2t, 2t(t2 − a), −2(bt + ac), −2e(bt + ac)(t2 − a)〉.

It is easy to see that

ϕF (
√

a) ≃ (t −
√

a)〈1, −(b − c
√

a)〉 ⊥ (t +
√

a)〈1, −(b + c
√

a)〉,

hence dim(ϕelF )an = 2. Assume that the form (ϕelF )an is define over F . Then there
is z ∈ F ∗ such that

(t −
√

a)〈1, −(b − c
√

a)〉 ≃ z〈1, −(b − c
√

a)〉,

i.e. 〈〈b − c
√

a, (t −√
a)z〉〉elF

= 0. On the other hand, since b− c
√

a is not a square

in l̃ and z ∈ F ∗, the residue of this 2-fold Pfisterform at either t −√
a or t +

√
a is

nontrivial, a contradiction. ¤

3. Nonexcellence of 2n-degree extensions for an odd n

In this section we consider towers of two field extensions one of which is a Galois
extension of odd degree and the other is quadratic.

Proposition 7. Let k be a field, l = k(α, β) is a finite Galois field extension
of odd degree n > 1. Assume that α /∈ k and β /∈ k(α). Let further t, x, y be
indeterminates, a, b, d ∈ k∗ such that d,−ab,−abd /∈ k∗2. Set ϕ ≃ 〈a, b, x, abdx〉,
K = k(t, x, y), L = lK, E = L(

√
−(xt2 + aα2)(by2 + abdxβ2)). Then

1) dim (ϕE)an = 2.
2) The form (ϕE)an is not defined over K.

Proof. The argument is somewhat similar to the one in Theorem 1.
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1) Obviously,

ϕL ≃ 〈xt2 + aα2, ax(xt2 + aα2), by2 + abdxβ2, adx(by2 + abdxβ2)〉,

hence ϕE is isotropic and (ϕE)an ≃ ax(xt2 + aα2)〈1,−d〉.
2) Assume that the form (ϕE)an is defined over K. Then there is p ∈ K∗ such

that
ax(xt2 + aα2)〈1,−d〉E ≃ p〈1,−d〉E,

i.e. 〈〈d, ax(xt2 + aα2)p〉〉E = 0. This means that

〈〈d, ax(xt2 + aα2)p〉〉L ≃ 〈〈−(xt2 + aα2)(by2 + abdxβ2), q〉〉L (4)

for some q ∈ L∗.
We may assume that p ∈ k(t, x)[y] and m = deg p is minimal (in this section

we mean by deg the degree with respect to the variable y). Notice also that by2 +

abdxβ2 6 |p, for otherwise by2 + abdx(σβ)
2|p for any σ ∈ G(l/k) and comparing

the residues of both parts of (4) at by2 + abdx(σβ)
2
, with σβ 6= β would give us a

contradiction.
Now let p =

∏
pi, where pi ∈ k(t, x)[y] are irreducible polynomials in y.

Lemma 8. d is not a square in k(t, x)[y]/pi for any pi.

Proof. Suppose for instance that d is a square in k(t, x)[y]/p1. We get P 2−d = p1s
for some P, s ∈ k(t, x)[y], deg P ≤ deg p1 − 1. Hence

deg s ≤ 2(deg p1 − 1) − deg p1 = deg p1 − 2.

Since 〈〈d, p1s〉〉 ≃ 〈〈d, P 2 − d〉〉 = 0, we can change the divisor p1 of p for s in (4), a
contradiction to minimality of deg p. The lemma is proved. ¤

Let pi =
∏

pij , where pij ∈ l(t, x)[y] are irreducible polynomials. Since l/k
is an odd degree Galois extension, we have l(t, x)[y]/pij ≃ l(k(t, x)[y]/pi) and,
moreover, deg[l(k(t, x)[y]/pi) : k(t, x)[y]/pi] is odd. Therefore, by Lemma 8 d is not
a square in l(k(t, x)[y]/pi), hence in l(t, x)[y]/pij . This means that the form (4) has
nonzero residues at each pij . This implies that q = pf , where f ∈ l(t, x)[y] and the
polynomials f and p are relatively prime, so we can represent (4) as

〈〈d, ax(xt2 + aα2)p〉〉L ≃ 〈〈−(xt2 + aα2)(by2 + abdxβ2), pf〉〉L. (5)

Just as in Lemma 2 we may assume that in equality (5), where deg p = m is fixed,
deg f is minimal. Denote the Pfisterform in (5) by π. Notice that by2 + abdxβ2

does not divide f , since otherwise we could change f for f
(xt2+aα2)(by2+abdxβ2)

, a

contradiction to minimality of deg f .

Lemma 9. deg f = 0.

Proof. Let f =
∏

fi, where fi ∈ l(t, x)[y] are irreducible polynomials. Since fi do
not appear on the left- hand side of (5), we have ∂fi

(π) = 1, for any fi. Assume
first that, say deg f1 ≥ 2. Since ∂f1

(π) = 1, we get that

P 2 + (xt2 + aα2)(by2 + abdxβ2) = f1s
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for some P, s ∈ l(t, x)[y] such that deg P ≤ deg f1 − 1. Since deg f1 ≥ 2 we get that

deg(P 2 + (xt2 + aα2)(by2 + abdxβ2)) ≤ 2(deg f1 − 1),

hence deg s ≤ deg f1 − 2, and we are done just as in Lemma 8. Now suppose that
deg f1 = 1, i.e. f1 = R(y − P

Q
), where P, Q ∈ l(x)[t], R ∈ l(x, t). Since ∂f1

(π) = 1,

we get that −(xt2 + aα2)(bP 2 + abdxβ2Q2) is a square in l(x)[t]. In particular,

xt2 + aα2|bP 2 + abdxβ2Q2.

Therefore, there are some nonzero polynomials P1, Q1 ∈ l(x)[t] such that degt P1, degt Q1 ≤
1 and xt2 + aα2|bP1

2 + abdxβ2Q2
1, i.e.

bP1
2 + abdxβ2Q2

1 = g(xt2 + aα2)

for some g ∈ l(x). It is easy to see that this implies 〈b, abdx〉l(x) ≃ 〈gx, ga〉, a
contradiction, since the discriminants on the left-hand and on the right-hand sides
of the last isomorphism are different. The lemma is proved. ¤

Adding to the both parts of (5) the Pfisterform 〈〈d, pf〉〉 we can represent (5) as

〈〈d, ax(xt2 + aα2)f〉〉L ≃ 〈〈−d(xt2 + aα2)(by2 + abdxβ2), pf〉〉L. (6)

By Lemma 8 the left-hand side of the last isomorphism is defined over l(t, x).

Moreover, the right-hand side splits over l(t, x)(
√
−d(xt2 + aα2)(by2 + abdxβ2)).

So, just as for the form π from section 2, we have that either

a) 〈〈d, ax(xt2 + aα2)f〉〉l(t,x) = 0, or

b) 〈〈d, ax(xt2 + aα2)f〉〉l(t,x) ≃ 〈〈−bd(xt2 + aα2),−abx(xt2 + aα2)〉〉l(t,x).

Assume that case a) holds. We may suppose that f ∈ l(x)[t], p ∈ k(x, y)[t] and that
f and p are squarefree as polynomials in t. Obviously, xt2 + aα2|f , for otherwise
we would have

d = ∂xt2+aα2(〈〈d, ax(xt2 + aα2)f〉〉) = ∂xt2+aα2(0) = 1,

a contradiction. By the similar reason if σα 6= α (such σ exists, since β /∈ k(α)),

then xt2 + a(σα)
2 6 |f . Hence from (6) it follows that xt2 + a(σα)

2 6 |p, if σα 6= α,
or equivalently xt2 + aα2 6 |p.

Let f = f1(xt2 + aα2). Then

1 = ∂xt2+aα2(〈〈−d(xt2 + aα2)(by2 + abdxβ2), pf〉〉) =

df1(by2 + abdxβ2)p mod(xt2 + aα2) ∈ l(t)(u)∗/l(t)(u)∗
2
.

(7)

Since β /∈ k(α) and [k(α, β) : k] is odd we get that β2 /∈ k(α), and so there is
σ ∈ G(l/k) such that σα = α and σ(β2) 6= β2. Applying such σ to (7) we get

dσf1(by
2 + abdx(σβ)

2
)p mod(xt2 + aα2) = 1. (8)



NONEXCELLENCE OF CERTAIN FIELD EXTENSIONS 9

Combining (7) and (8) we get that

f1σf1(by2 + abdxβ2)(by2 + abdx(σβ)
2
) mod(xt2 + aα2) = 1.

Since f1σf1 mod(xt2 + aα2) ∈ l(t, x,
√
−ax) does not depend on y, and σ(β2) 6= β2,

we come to a contradiction. This shows that case a) is impossible.
Now assume that case b) holds, i.e.

〈〈d, ax(xt2 + aα2)f〉〉l(t,x) ≃ 〈〈−bd(xt2 + aα2), −abx(xt2 + aα2)〉〉l(t,x).

Comparing residues at x on the left-hand and on the right-hand sides of the last
isomorphism we obtain that either −ab ∈ k∗2, or −dab ∈ k∗2, which is not so by
the hypothesis. This shows that case b) is also impossible, which finishes the proof
of Proposition 7. ¤

Corollary 10. Let n ≥ 2 be an integer, which is not an odd prime. Then there
exists a finite 4-nonexcellent field extension of degree 2n.

Proof. If n is even, then 2n = 2km, where k ≥ 2 and m is odd. Let L/F be a
4-nonexcellent multiquadratic extension of degree 2k (the existence of such exten-
sions has been proven in [5]). Let further ϕ be a 4-dimensional form providing a

corresponding counterexample. Consider the extension L(t
1

m )/F (t) of degree 2n.
Applying the specialization t = 0 (the first residue map) it is easy to see that
the extension L(t)/F (t) is 4-nonexcellent with the form ϕF (t) as a counterexam-

ple. Since the extension L(t
1

m )/L(t) is of odd degree, we conclude that ϕF (t) is a

counterexample for the extension L(t
1

m )/F (t) as well.
Now assume that a number n is odd, a prime p 6= n divides n, and l/k is a Galois

extension of degree n. Let k ⊂ k1 ⊂ l, where the Galois group G(l/k1) is cyclic
of order p, l = k(β) and α ∈ k1 \ k. Then the extension l/k and the elements α
and β satisfy the hypothesis of Proposition 7, which implies an existence of a 4-
nonexcellent extension of degree 2n. ¤

4. Nonexcellence of extensions determined by hyperelliptic curves

In the last section of the present work we give examples of 4-nonexcellent ex-
tensions L/F , where L is the function field of a hyperelliptic curve over F . In this
case the extension L/F is a tower of a purely trancendental extension of degree
1 and a quadratic extension. This question is of some interest, since the function
field of a conic always determines an excellent extension ([1], [3]). More precisely
the following statement holds.

Proposition 11. Let k be a field, a, b ∈ k∗ and the Pfisterform 〈〈a, b〉〉 is anisotropic.
Suppose n > m ≥ 1 are positive integers. Let further F = k((t)), t being an in-
determinate, and let X be a hyperelliptic curve over F defined by the equation
y2 = ax2n + bx2m − t. Then the form (〈1,−a,−b, t〉F (X))an

is not defined over F .

Proof. Since the hyperbolic plane 〈1, −(ax2n + bx2m − t)〉F (X) is a subform of
〈1,−a,−b, t〉F (X), we get that the form 〈1,−a,−b, t〉F (X) is isotropic, hence

dim (〈1,−a,−b, t〉F (X))an
= 2.
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Assume for a moment that there are d, e ∈ F ∗ such that

(〈1,−a,−b, t〉F (X))an
≃ 〈d, e〉F (X),

or, equivalently that the form ϕ ≃ 〈1,−a,−b, t,−d,−e〉 becomes hyperbolic over
F (X). Then we have

(ϕan)F (x) ≃ 〈〈ax2n + bx2m − t〉〉 ⊗ τ (8)

for some form τ . Assume that dim τ is odd. Then disc(ϕan) = ax2n + bx2m − t.
On the other hand,

disc(ϕan) = −abdet 6= ax2n + bx2m − t (modF (x)∗
2
),

a contradiction. Hence dim τ is even, and so dim ϕan = 4. Applying the first residue
map (in fact the specialization x = 0) to (8) we conclude that ϕan is similar to the
form 〈〈−t,−c〉〉 for some c ∈ F ∗. Since 〈〈−t, t〉〉 = 0, we can assume that c ∈ k∗ and
−c /∈ k∗2. Furthermore, since ϕF (X) = 0, we have

ax2n + bx2m − t ∈ D(〈−c,−t,−ct〉F (x)).

Let r be a minimal nonnegative integer such that

t2r(ax2n + bx2m − t) = −(cp2
1 + tp2

2 + ctp2
3)

for some p1, p2, p3 ∈ k[[t]][x] (such r exists by the Cassels-Pfister theorem, (see, for
example [4])). Suppose r ≥ 1. Then p1 = tq1, q1 ∈ k[[t]][x], and so

t2r−1(ax2n + bx2m − t) = −(p2
2 + cp2

3 + ctq2
1).

Hence p2
2 + cp3

2 = 0, where p2, p3 ∈ k[x] are the reductions of p2, p3 modulo the

ideal (t) ⊂ k[[t]][x]. Since −c /∈ k∗2, we have p2 = p3 = 0 and so

p2 = tq2, p3 = tq3, q2, q3 ∈ k[[t]][x].

Therefore,
t2r−2(ax2n + bx2m − t) = −(cq2

1 + tq2
2 + ctq2

3),

a contradiction to minimality of r. Thus, we conclude that r = 0, hence

ax2n + bx2m − t = −(cp2
1 + tp2

2 + ctp2
3),

which implies ax2n + bx2m = −cp2
1. On the other hand, obviously, −(ax2n+bx2m)

c /∈
k[x]

2
, a contradiction, which proves Proposition 9. ¤
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