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Abstract. Let Mm(D) be a finite dimensional F -central simple
algebra. It is shown that Mm(D) is a crossed product over a max-
imal subfield if and only if GLm(D) has an irreducible subgroup
G containing a normal abelian subgroup A such that CG(A) = A

and F [A] contains no zero divisor. Various other crossed product
conditions on subgroups of D∗ are also investigated. In particular,
it is shown that if D∗ contains either an irreducible finite subgroup
or an irreducible soluble-by-finite subgroup that contains no ele-

ment of order dividing deg(D)
2
, then D is a crossed product over

a maximal subfield.

1. Introduction

Let D be an F -central division algebra of index n. Assume that the
algebra Mm(D) is generated by a subgroup G of GLm(D) over a subring
S which is normalized by G (written Mm(D) = S[G]). For H = G∩SE

G, we say that Mm(D) is a crossed product of S by G/H if Mm(D) =
⊕t∈T tS, for some transversal T of H in G, and denote it by Mm(D) =
S ∗ G/H. The classical crossed product simple algebra corresponds to
the case where S is a maximal subfield of Mm(D) which is Galois over
F . Also, we call a subgroup G of GLm(D) irreducible if F [G] = Mm(D).
In [4] and [10], the authors ask whether a division algebra generated
by a soluble-by-finite irreducible subgroup G is necessarily a crossed
product over a maximal subfield. For some special cases where D
is of a prime power degree and G is soluble or finite, the answer to
the above mentioned question is shown to be positive. In [8], this
problem for arbitrary degree is investigated, and it is proved that when
G is irreducible soluble-by-finite, then D is a crossed product over
a (not necessarily maximal) subfield K. But for the case where G
is torsion free, or metabelian, or the degree of D has the property
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that every finite group of order deg(D)2 is nilpotent, then K may be
shown to be a maximal subfield. In this paper, we present a necessary
and sufficient condition for which a central simple algebra is a crossed
product over a maximal subfield in terms of its irreducible subgroups
that contain a self-centralizing normal abelian subgroup. Various other
crossed product conditions on subgroups of D∗ are also investigated.
To be more precise, it is proved that D is a crossed product over a
maximal subfield if D is spanned by an irreducible subgroup G such
that G is either finite or soluble-by-finite containing no element of order
dividing deg(D)2, or locally nilpotent. Other special cases such as G
being abelian-by-supersoluble or metabelian are also reviewed and it is
shown that in these cases the irreducible subgroups involved all contain
a self-centralizing normal abelian subgroup.

2. Notations and Conventions

Throughout, D is an F -central division algebra of index n and G is
a subgroup of GLm(D), the group of units of Mm(D). The F -linear
hull of G, i.e., the F -subalgebra generated by elements of G over F in
Mm(D), is denoted by F [G]. Given a subgroup H of G, NG(H) means
the normalizer of H in G and CG(H) the centralizer of H in G. By
Z(G) or Z(Mm(D)), we mean the center of the group G or the center
of the central simple algebra Mm(D), respectively.

3. Crossed products in terms of irreducible subgroups

We begin this section by a lemma which gives us a useful tool to re-
alize maximal Galois subfields of a central simple algebra in terms of
irreducible subgroups containing a self-centralizing normal abelian sub-
group.

Lemma 1.Let D be an F -central division algebra and G an irreducible

subgroup of GLm(D). If A is any abelian normal subgroup of G such

that F [A] contains no zero divisor, then Mm(D) is isomorphic to the

crossed product

Mm(D) = F [CG(A)] ∗ G/CG(A),

where F [CG(A)] is a simple subalgebra of Mm(D). Moreover, we have

[G : CG(A)] = dim(Z(F [CG(A)]) : F )

Proof. Consider F [A], the F -linear hull of A in Mm(D). By assump-
tion, F [A] is a commutative integral domain. Since D is of finite di-
mension over F , F [A] is algebraic over F . Thus, F [A] is a subfield of
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Mm(D). Now, applying Lemma 2.4 of [8], we obtain CMm(D)(F [A]) =
F [CG(A)] and that Mm(D) is a crossed product of CMm(D)(F [A]) by
G/CG(A). Now, by Centralizer Theorem ([2], p. 42), it is easily seen
that CMm(D)(F [A]) is a simple subalgebra of Mm(D). Hence, its center
is a subfield containing F . Also, the group G/CG(A) acts as a group
of automorphisms on the center of CMm(D)(F [A]), and F is the fixed
field of this action. Therefore, we obtain

[G : CG(A)] = dim(Z(F [CG(A)]) : F ),

as required. ¤

Now, we are prepared to prove the main theorem of this section as
follows:

Theorem 1. Let D be a finite dimensional F -central division algebra.

Then, Mm(D) is a crossed product over a maximal subfield if and only if

there exists an irreducible subgroup G of Mm(D) and a normal abelian

subgroup A of G such that CG(A) = A, and F [A] contains no zero

divisor.

Proof. Assume that Mm(D) is a crossed product over a maximal sub-
field K. Then, K/F is Galois and by a theorem of ([2], p.92), we can
write Mm(D) = ⊕σ∈Gal(K/F )Keσ, where eσ ∈ GLm(D) and for each x ∈
K and σ ∈ Gal(K/F ) there exists σ(x) ∈ K such that eσx = σ(x)eσ.
Therefore, the elements eσ’s as well as the group K∗ are contained
in NGLm(D)(K

∗). This implies that NGLm(D)(K
∗) is an irreducible

subgroup of Mm(D). Now, using the Skolem-Noether Theorem ([2],
p.39) and the fact that CMm(D)(K) = K, we obtain the isomorphism
NGLm(D)(K

∗)/K∗ ≃ Gal(K/F ). Hence, taking G := NGLm(D)(K
∗) and

A := K∗, one side of the proof is done.
On the other hand, let G be an irreducible subgroup of Mm(D), and
A a normal abelian subgroup of G such that CG(A) = A, and F [A]
contains no zero divisor. By Lemma 1, we conclude that Mm(D) is
a crossed product of F [A] by G/A. Furthermore, F [A] is a subfield
of Mm(D) such that [G : A] = dim(Z(F [A]) : F ) = dim(F [A] : F ).
Therefore, F [A] is in fact a maximal Galois subfield of Mm(D) with
Galois group isomorphic to G/A. Hence, the result follows. ¤

We observe that in the special case m = 1, the above result reduces to
the following:

Theorem 2. Let D be a finite dimensional F -central division algebra.

Then D is a crossed product over a maximal subfield if and only if there
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exists an irreducible subgroup G ⊆ D∗ and a normal abelian subgroup

A of G such that CG(A) = A.

4. irreducible subgroups which imply that D is a crossed

product over a maximal subfield

In this section we deal with the special case where our central simple
algebra is a non-commutative finite dimensional F -central division al-
gebra D. In fact, we investigate some classes of irreducible subgroups
G whose existence in D∗ give rise to a crossed product division alge-
bra D over a maximal subfield. To do this, we consider the following
cases and apply mainly Theorem 2 of the last section. In all cases
below G will be an irreducible subgroup of D∗. We also remark that
given an irreducible subgroup G of an F -central division algebra D, if
F̄ is the algebraic closure of F , then D ⊗F F̄ = Mn(F̄ ) and we have
F̄ [G] = Mn(F̄ ). So, G is also an irreducible subgroup in the linear
group sense.

Case 1. Abelian-by-supersoluble groups

Let G be an abelian-by-supersoluble subgroup of D∗. We shall prove
that D is a crossed product over a maximal subfield. By Theorem 2, it is
enough to find an abelian normal subgroup in G such that CG(A) = A.
To do this, take A maximal abelian normal in G such that G/A is
supersoluble. If CG(A)/A 6= 1, then there exists a normal subgroup H
of CG(A) such that H/A is a nontrivial normal cyclic subgroup of G/A.
Now, take H/A to be the smallest nontrivial intersection of CG(A)/A
by the terms of the normal cyclic series of group G/A. It is easily seen
that H is an abelian normal subgroup of G properly containing A. This
contradicts the choice of A. Hence, we have CG(A) = A.

Case 2. Metabelian groups

Let G be a metabelian subgroup of D∗. Take A maximal abelian normal
in G such that G/A is also abelian. If CG(A)/A 6= 1, then for every
element x ∈ CG(A) \ A the group H =< A, x > is easily seen to be an
abelian normal subgroup properly containing A. This contradicts the
choice of A. So, we must have CG(A) = A.

Case 3. Locally nilpotent groups

Assume that G is a locally nilpotent subgroup of D∗. Then, by a
theorem in [3], G is hypercentral. This reduces to the next item.

Case 4. Hypercentral groups
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If G is hypercentral, then by an exercise of ([7],p.354), we conclude
that every maximal abelian normal subgroup of G is self centralizing.
Hence, we get the result.

Case 5. Soluble-by-finite maximal subgroups of D∗

If M is a maximal subgroup of D∗ that is soluble-by-finite, then M is
not D∗. Otherwise, D∗ satisfies a group identity which is not possible
[1]. We now claim that M is an irreducible subgroup of D. Take
F [M ], the division subring of D generated by M over F . Since M is
maximal two cases are possible, either F [M ] = D or F [M ]∗ = M . But
the second case is not possible due to the fact that the multiplicative
group of a division algebra does not satisfy a group identity. Therefore,
D = F [M ], i.e., M is an irreducible subgroup of D. Now, by Mal’cev
Theorem ([11], p.44), M contains a normal abelian subgroup of finite
index. Take A maximal. First, we prove that CD∗(A) ⊆ M . If not,
then D∗ =< M, CD∗(A) >⊆ ND∗(A). This means that D = ND(F [A]),
which is a contradiction, by Cartan-Brauer-Hua Theorem [5]. Hence,
CD∗(A) ⊆ M . Now, by Centralizer Theorem ([2], p.42), CD(A) is a
division subring of D with center F [A] whose multiplicative group is
contained in M . Since M is a soluble by finite group, so is CD∗(A). It
implies that CD(A) = F [A]. Since F [A]∗ is a normal abelian subgroup
of M containing A, we must have A = F [A]∗. Therefore, CD(A) = A,
as desired.

We observe that the above result actually generalizes Corollary 4 of [6].

Case 6. Finite groups

First we prove the problem for the case where G is a finite soluble sub-
group with a normal subgroup N such that G/N is supersolube and N
has all its Sylow subgroups abelian. For such a group G, take A max-
imal abelian normal in G. If A 6= CG(A), then CG(A)/A contains a
nontrivial normal abelian subgroup L/A of G/A. Since G/A is soluble,
we may take L/A to be the smallest nontrivial intersection of CG(A)/A
with the terms of the derived series of G/A. Clearly, A ⊆ Z(L), and
because A is the maximal abelian normal subgroup of G, we necessarily
have A = Z(L). Also, [L, L] = L′ ⊆ A ⊆ Z(L), So L is nilpotent of
class two. Hence, we may write L ∩ N ≃

∏
Lp, where Lp’s are the

p-Sylow subgroups of L∩N . By assumption , all p-Sylow subgroups of
N are abelian. Thus, we conclude that L∩N is an abelian normal sub-
group of G. We claim that L∩N ⊆ A. If not, since L∩N ⊆ CG(A), the
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group (L∩N)A is an abelian normal subgroup of G properly contain-
ing A. This contradicts the choice of A, so we must have L ∩ N ⊆ A.
We also claim that AN 6= LN . Otherwise, if LN = AN , then for
all x ∈ L, we have x = an for some a ∈ A and n ∈ N . It follows
that xa−1 = n ∈ L ∩ N ⊆ A, and so x ∈ A, a contradiction. Hence,
we necessarily have AN/N E LN/N E G/N . Now, G/N is supersol-
uble and consequently G/AN is a supersoluble group. Therefore, the
group LN/AN must contain a nontrivial normal cyclic subgroup in
G/AN denoted by < x > AN/AN , where x ∈ L. Now, if we take
A0 =< A, x >, then A0 is an abelian normal subgroup of G properly
containing A, which is a contradiction to the choice of A. Therefore,
we have CG(A) = A and we obtain the result.
Now, we consider the general case. By Amitsur’s Theorem ([9], p.46),
if G is a finite subgroup of the multiplicative group of a division ring,
then G is isomorphic to one of the following list of groups, and only
the last one is insoluble.

(a) A group that all of whose Sylow subgroups are cyclic.
(b) Cm]Q, where Q is a quaternion of degree 2t, and Cm a cyclic

group of order m. By Cm]Q, we mean the split extension of Cm

by Q in which Q acts on Cm.
(c) Q × M , where Q is quaternion of degree 8, and M a group of

type (a).
(d) The binary octahedral group of order 48.
(e) SL(2, 3) × M , where M is a group of type (a).
(f) SL(2, 5).

The groups of (a), (b) and (c) are special cases of the soluble groups
that are dealt with previously. Now, we examine the case (d). The
binary octahedral group G of order 48, which has a normal quaternion
subgroup Q of order 8. If D = F [G] is a division algebra generated
by the octahedral subgroup G over the center F , then the division
subring F [Q] has degree 2 since Q is a nonabelian group with a cen-
ter containing two elements. It implies that Z(F [Q]) = F . Now,
by Theorem 2.6 of [8], we can write D as F [X1] ⊗F F [X2], where
F [X1] = F [Q] and F [X2] = CD(F [Q]). We also have F ∗ ⊆ X2, and
[G : CG(X2)] = [X2 : F ∗] in which CG(X2) = G ∩ F [X1]. This means
that [X2 : F ∗] is at most 6, and then it follows that X2 is abelian-
by-supersoluble. Hence, both F [X1] and F [X2] are crossed product
algebras over their maximal subfields by part 1, and so is D as desired.
To deal with the case (e), assume that D = F [G], where G is as in (e)
and let Q be the normal quaternion subgroup of SL(2, 3) of order 8. We
first claim that F [Q] = F [SL(2, 3)]. To do this, consider SL(2, 3) as a
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semidirect product of Q by C3, written by Q]C3, where C3 is the cyclic
group of order 3 with generator c and Q =< x, y|x2 = y2, y4 = 1, xy =
x−1 >. c acts on Q by cyclically permuting y, x, xy. But conjugation
by the element t = −(1 + x + y + xy)/2 ∈ F [Q] also has the same
effect. Thus ct−1 centralizes F [Q], and hence so does t. Therefore, c
commutes with t. But t and c are both cube roots of unity in the field
F [t, c]. It follows that c ∈< t >. Thus, F [Q] = F [SL(2, 3)] and hence
Z(F [Q]) = Z(F [SL(2, 3)]) = F . Now, again by Theorem 2.6 of [8], we
may write D = F [SL(2, 3)] ⊗F F [X2]. Repeating the same argument
as used in the proof of Theorem 2.6 of [8], we may take X2 = M .
So, one sees that both factors of the decomposition of D are crossed
product division algebras over their maximal subfields. Hence, D is
also a crossed product over a maximal subfield, as required.
To prove the final case (f), let D be the division algebra generated by
G = SL(2, 5). It is known from Theorem 2.1.11 of [[9], p. 51] that D
can be generated by the quaternion subgroup of order 8. Hence, D is
a crossed product over a maximal subfield.

We remark that the last result generalizes the case where the degree of
D is a prime power, which is dealt with in [4].

Case 7. Soluble subgroups containing no element of order
dividing deg(D)2

Let G be an irreducible soluble subgroup of D∗. By Mal’cev Theorem
([11], p.44), G contains an abelian normal subgroup A of finite index
. As before, take A maximal abelian normal in G. If CG(A)/A 6= 1,
then due to solublity of G/A, the group CG(A)/A contains a nontrivial
abelian subgroup L/A which is normal in G/A. We have also Z(L) = A.
For every a, b, c ∈ L, it is easily seen that for (a, b) = aba−1b−1 ∈ A
we have (a, b)(a, c) = (a, bc). Now, for every a ∈ L, define the group
homomorphism φa : L → A by φa(x) = (a, x), where x ∈ L. It is
clear that A ⊆ ker φa. Therefore, the image of φa is a finite subgroup
of A whose elements are of order dividing [L : A]. We now claim
that [L : A]|(D : F ). To do this, take a transversal l1, ..., lt of A
in L, and consider F [L], the F -linear hull of L in D. We want to
prove that li’s are a linearly independent generating set of F [L] over
F [A]. That F [L] is generated by li’s over F [A] is evident. But for
the latter, take the relation

∑s
i=1 aili = 0, where ai ∈ F [A], and s

is chosen minimal. For each lj, we have
∑s

i=1 ailjlil
−1
j = 0, and by

subtracting two relations we obtain
∑s

i=1 ai(ljlil
−1
j l−1

i − 1)li = 0. Since

s is minimal for each i we obtain ljlil
−1
j l−1

i = 1. In other words, L
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is an abelian normal subgroup of G properly containing A. This is
not possible by choice of A, hence li’s are linearly independent over
F [A]. Therefore, [L : A] = dim(F [L] : F [A]) divides deg(D)2. Because
each element of G is not of order dividing deg(D)2, we conclude that
φa(L) = {1}. Since a is chosen arbitrary in L, we conclude that L is
an abelain normal subgroup of G properly containing A. This is again
a contradiction. Therefore, we have CG(A) = A, as desired.

Case 8. G is soluble-by-finite satisfying the condition of part
7, and G does not contain any normal subgroup isomorphic
to SL(2,5).

Take A maximal abelian normal in G of finite index. If CG(A)/A 6=
1, then consider S, the maximal soluble normal subgroup of CG(A)
which clearly contains A in itself. We have A 6= S for otherwise from
Lemma 5.5 in [8] we obtain A = CG(A), a contradiction. Hence, S/A
is a nontrivial normal soluble subgroup of G/A which is contained
in CG(A)/A. Therefore, we can choose a nontrivial abelian normal
subgroup L/A of G/A that is contained in CG(A)/A. Now, apply a
similar argument as in the previous case to obtain an abelian normal
subgroup in G which is self-centralizing.

We observe that Cases 7 and 8 in fact generalize the last theorem of
[8] in which the torsion free case is investigated. Finally, we remark
that the counterexample given in the last section of [8] provides us with
an irreducible subgroup G whose maximal abelian normal subgroup A
does not satisfy the condition CG(A) = A. Therefore, in general it is
not true that every maximal abelian normal subgroup of an irreducible
subgroup G of D∗ is a self-centralizing abelian normal subgroup.
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