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Abstract

In this paper, we define what we call (non)degenerate valued and graded division

algebras [Definition 3.1] and use them to give examples of division p-algebras that are

not tensor product of cyclic algebras [Corollary 3.17] and examples of indecomposable

division algebras of prime exponent [Theorem 5.2, Corollary 5.3 and Remark 5.5]. We

give also, many results concerning subfields of these division algebras.
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Preliminaries

Let F be an associative ring with a unit and Γ a totally ordered abelian group.

We say that F is a graded ring of type Γ if there are subgroups Fγ (γ ∈ Γ) of F such

that F = ⊕γ∈ΓFγ and FγFδ ⊆ Fγ+δ, for all γ, δ ∈ Γ. In this case, the set ΓF = {γ ∈ Γ

| Fγ 6= 0} is called the support of F .

If F is a graded ring of type Γ and x ∈ Fγ for some γ ∈ ΓF , we say that x is

a homogeneous element of F . In particular, if x is a nonzero element of Fγ , we say

that x has grade γ and we write gr(x) = γ. We denote by F h [resp. F ∗] the set of

homogeneous [resp. nonzero homogeneous] elements of F . A graded ring F which

is commutative and for which all nonzero homogeneous elements are invertible is

called a graded field. If in addition F has support Γ and there is a ring isomorphism

σ : F 7→ F0[Γ] such that σ(F0) = F0 and σ(Fγ) = F0γ for any γ ∈ Γ− {0}, then F is

called a graded field of group-ring type.

Let F be a commutative graded ring of type Γ. A (left) algebra A over F is called

a graded algebra over F (of type Γ) if A is a graded ring of type Γ and Fγ ⊆ Aγ ,

for all γ ∈ Γ. In particular, if F is a graded field, then graded algebras over F [resp.

commutative graded algebras over F ] for which homogeneous elements are invertible

are called graded division algebras (GDA) over F [resp. graded field extensions of F ].

If F is the center of a graded division algebra A, then A is called a graded central

division algebra (GCDA) over F .

We recall that a graded field extension K of a graded field F is totally ramified

over F if [K : F ] = (ΓK : ΓF ). It is inertial over F if [K : F ] = [K0 : F0] and K0

is separable over F0. K is called tame over F if K0 is separable over F0 and ΓK/ΓF

has no p-torsion, where p = char(F ). Finally, K is purely wild over F if K0 is purely
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inseparable over F0 and ΓK/ΓF is a p-group. By [HW(1)99, Lemma 3.6], K/F is

purely wild if and only if Frac(E)/Frac(F ) is purely inseparable.

Let F be a graded field and Frac(F )alg an algebraic closure of Frac(F ). We

recall that for any element λ of the divisible hull ∆F (= ΓF ⊗ZZ Q′ ) of ΓF , there is

a unique grading on the polynomial ring F [X] extending the grading of F and for

which X is a homogeneous element with gr(X) = λ. We denote this grading by

F [X](λ). A polynomial f ∈ F [X] is called homogenizable if there is λ ∈ ∆F such that

f ∈ (F [X](λ))h. Let x ∈ Frac(F )alg and denote by fx,Frac(F ) its minimal polynomial

over Frac(F ). We say that x is algebraic over F if fx,Frac(F ) is a homogenizable

polynomial of F [X]. If K is a graded field extension of F , we say that K is algebraic

over F if every homogeneous element of K is algebraic over F .

Let Falg = F [{x ∈ Frac(F )alg | x is algebraic over F}], then by [HW(1)99, Corollary

2.7(c)] Falg is an algebraic graded field extension of F and all subrings of Frac(F )alg

that are algebraic graded field extensions of F are graded subfields of Falg. We call

Falg ’the’ algebraic closure of F .

If F is a graded field and A is a graded division algebra over F , we denote by

Cq(A) the algebra of central quotients of A. Obviously, to the graded structure of A

corresponds a canonical valuation on Cq(A), defined by v(a) = gr(a) for any a ∈ A∗

(See [B98, §4] or [HW(2)99, §4]). We denote by HCq(A) the algebra Cq(A) ⊗Frac(F )

HFrac(F ), where HFrac(F ) is the Henselization of Frac(F ) with respect to its

canonical valuation (see [E72, §16]).

Conversely, let E be a field and v a valuation of E. Then, the filtration of E induced

by v yields a canonical graded field GE. Namely, let Eγ = {x ∈ E | v(x) ≥ γ}, E>γ

= {x ∈ E | v(x) > γ}. Obviously, E>γ is a subgroup of the additive group Eγ .
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So, we can define the quotient group GEγ = Eγ/E>γ. For x ∈ E\{0}, we denote

by x̃ the element x + E>v(x) of GEv(x). One can easily see that the additive group

GE = ⊕γ∈ΓGEγ with the multiplication law defined by x̃ỹ = x̃y is a graded field.

In the same way, if D is a valued division algebra over a field E (we refer to [JW90]

for non-commutative valuative definitions used in this paper), then the filtration of

D by the principal fractional ideals yields a graded division algebra GD (see [B98,

§4] or [HW(2)99, §4]). We recall that if F is a graded field and A is a graded central

division algebra over F , then A is graded isomorphic to GHCq(A) by means of the

mapping x 7→ x̃, where x is an arbitrary homogeneous element of A. Indeed, we have

A0 = (GHCq(A))0 and ΓA = ΓGHCq(A). We write A ∼=g GHCq(A).

A valued central division algebra D over a field E is called defectless (over E) if

[D : E] = [D̄ : Ē](ΓD : ΓE), where [D̄ : Ē] [resp. (ΓD : ΓE)] is the residue degree [resp.

ramification index] of D over E. If in addition, D̄ is a field and [D̄ : Ē] = (ΓD : ΓE),

we say that D is semiramified. If D has an inertial and a totally ramified maximal

subfields, we say that D is nicely semiramified (see [M05, Theorem 4]).

Let E be a Henselian valued field and D a defectless central division algebra over

E. We know that the map

θD : ΓD/ΓE → Gal(Z(D̄)/Ē)

γ + ΓE 7→ θD(γ + ΓE) : ā 7→ dad−1

(d being an arbitrary element of D such that v(d) = γ) is a surjective group homo-

morphism [JW90, Proposition 1.7]. We say that D is tame (over E) if it is defectless

over E, the center Z(D̄) of D̄ is separable over Ē and the characteristic of Ē does

not divide the cardinality of the kernel of θD.
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We recall that if F is a graded field and D is a graded central division algebra over

F , then HCq(D) is a tame central division algebra over HFrac(F ) (See [HW(2)99,

Theorem 5.1]. It suffices also to apply [B95, Corollary 4.4]). Analogously, to the

valued case, we say that D is semiramified [resp., nicely semiramified] if D0 is a field

and [D0 : E0] = (ΓD : ΓE) [resp., if D has an inertial and a totally ramified maximal

graded subfields].

It is well known that graded central division algebras over a graded field F play

the same role as central division algebras over a Henselian valued field. Indeed,

their equivalent classes form a Graded Brauer group GBr(F ) and there is a group

isomorphism GBr(F ) → TBr(HFrac(F )), where TBr(HFrac(F )) is the tame part

of Br(HFrac(F )) [HW(2)99, Theorem 5.1]. Conversely, for any Henselian valued

field E, there is a canonical group isomorphism TBr(E) → GBr(GE) [HW(2)99,

Theorem 5.3].

Now, let M/E be a finite-dimensional abelian field extension with Galois group

G; S = (σi)1≤i≤r be a basis of G (i.e. such that G = 〈σ1〉 ⊕ ... ⊕ 〈σr〉); qi = ord(σi)

for 1 ≤ i ≤ r; Mi (resp. Mij) be the subfield of M fixed by σi (resp. σi and σj);

Ni (resp. Nij) be the norm of M/Mi (resp. M/Mij); and I = {(m1, ..., mr) ∈ IN r |

0 ≤ mi < qi for 1 ≤ i ≤ r}. We recall that if M is a maximal subfield of a central

simple E-algebra A, then there exist invertible elements x1, ..., xr of A such that the

following conditions hold :

(0.1) A = ⊕m̄∈IMxm̄, where xm̄ = xm1

1 ...xmr
r ;

(0.2) xia = σi(a)xi for a ∈ M and 1 ≤ i ≤ r.

Let uij = xixjx
−1
i x−1

j and bi = xqi

i for 1 ≤ i, j ≤ r, then the matrices U = (uij)1≤i,j≤r

and B = (bi)1≤i≤r satisfy the following conditions (for 1 ≤ i, j, k ≤ r) :
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(0.3) uij and bi are non-zero elements of M ;

(0.4) uji = u−1
ij ;

(0.5) σi(ujk)σj(uki)σk(uij) = ujkukiuij ;

(0.6) Nij(uij) = 1 ;

(0.7) σj(bi)b
−1
i = Ni(uji).

Conversely, for any pair of matrices (U, B) satisfying conditions 0.3 to 0.7, we

can construct a central simple E-algebra (M, G, U, B) = ⊕m̄∈IMzm̄, where zi are

independent indeterminates that satisfy the following conditions : zia = σi(a)zi,

zizj = uijzjzi and zqi

i = bi (See [AS78, section 1]).

J.P. Tignol showed that conditions 0.3 to 0.7 mean that (U, B) is a 2-cocycle

with respect to a G-complex described in [T81, §1, p. 421]. Hence he denoted

(U, B) ∈ Z2
S(G, M∗). He wrote also US(G, M∗) to denote the set of matrices U (with

entries in M∗) satisfying conditions (0.3) to (0.6). A matrix U ∈ US(G, M∗) is said

to be degenerate (with respect to the field extension M/E) if there exist m̄, n̄ ∈ I

and a, b ∈ M∗ such that the subgroup 〈σm̄, σn̄〉 of G, generated by σm̄ and σn̄ is

non-cyclic, and um̄,n̄ = σm̄(a)a−1σn̄(b)b−1, where um̄,n̄ = xm̄xn̄(xm̄)−1(xn̄)−1 [AS78,

Definition, p. 81].

Now, for a matrix U = (uij)1≤i,j≤r of US(G, M∗), consider the amalgamated sum

M.E〈z1, ..., zr〉 over E of M and the free E-algebra on the independent indetermi-

nates zi (1 ≤ i ≤ r); then let I be the ideal of M.E〈z1, ..., zr〉, generated by the

elements zizj − uijzjzi and zia − σi(a)zi, for 1 ≤ i, j ≤ r and a ∈ M . We recall that

the generic abelian crossed product (M, G, U) is the algebra of central quotients of

M.E〈z1, ..., zr〉/I. Let B = (bi)1≤i≤r be a matrix of M such that (U, B) ∈ Z2
S(G, M∗)

and let Zi = b−1
i zqi

i , then the center of (M, G, U) is E(Z1, ..., Zr) [T81, §2, p. 428].
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We have proved in [BM00, Theorem 1.1] that there is a graded field F and a semi-

ramified graded division algebra D over F such that E(Z1, ..., Zr) = Frac(F ) and

(M, G, U) = Cq(D). The valuation of E(Z1, ..., Zr) defined by the graded structure

of F will be called the canonical valuation of E(Z1, ..., Zr).

Let M/E be as above an abelian finite-dimensional field extension, F a graded field

with F0 = E and with support ΓF and MF the graded subfield of Falg generated by M

and F . Assume there is a totally ordered abelian group ∆ containing ΓF with ordering

extending that of ΓF and suppose ǫ : ∆ → G is a group homomorphism with kernel

ΓF . Let δi ∈ ∆ such that ǫ(δi) = σi, and consider a family (xqiδi
)1≤i≤r of elements of

F ∗ with x0 = 1 and gr(xqiδi
) = qiδi. For a cocycle (U, B) ∈ Z2

S(G, M∗), consider the

iterated twisted polynomial ring A := MF [X1, ..., Xr; σ1, ..., σr] defined by XiXj =

uijXjXi, Xia = σi(a)Xi for all 1 ≤ i, j ≤ r and a ∈ MF (see [AS, p. 78]), and let I

be the left ideal of A, generated by the elements Xqi

i − bixqiδi
. Then, I is a two-sided

ideal of A. Indeed, for any 1 ≤ i, j ≤ r, we have (Xqi

i − bixqiδi
)Xj = Ni(uij)XjX

qi

i −

Xjσ
−1
j (bi)xqiδi

= Xj(σ
−1
j (Ni(uij))X

qi

i − σ−1
j (bi)xqiδi

) = Xjσ
−1
j (Ni(uij))(X

qi

i − bixqiδi
).

So, we can consider the quotient ring (MF, ǫ, G, U, B) := A/I. One can easily see

that (MF, ǫ, G, U, B) is a semiramified graded division algebra over F .

In the first section of the present paper we give some new results in Galois theory

of graded fields. In particular, we show that if E is a field and M is a defectless

normal finite-dimensional valued field extension of E, then GM is a normal graded

field extension of GE (and that we can drop the condition ’defectless’ when E is

Henselian) [Theorem 1.4]. We prove also that if E is a Henselian valued field, M is a

finite-dimensional field extension of E, g =
∑n

i=0 ãiX
i is a homogenizable irreducible

polynomial of GE[X] (ai ∈ E) with a simple root α in GM and f =
∑n

i=0 aiX
i, then
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f is irreducible and has a simple root a in M such that ã = α [Proposition 1.5]. We

show also that if E is a Henselian valued field with residue characteristic p > 0 and

L is a purely wild [resp., a defectless simple purely wild] finite-dimensional graded

field extension of GE, then there is a defectless field [simple field] extension K of E

such that GK = L. Furthermore, K can be chosen to be a purely inseparable field

extension of E when char(E) = p [Proposition 1.7]. Then, we use Proposition 1.5 to

give a new proof of [HW(1)99, Theorem 5.2] which for an arbitrary Henselian valued

field E establish a one-to-one correspondence between the set of isomorphism classes

of finite-dimensional tame field extensions of E and the set of isomorphism classes of

finite-dimensional tame graded field extensions of GE [Corollary 1.8]. Finally, in the

last part of this section, we prove some results concerning cyclic and Kummer graded

field extensions.

The second section deals with the structure of nicely semiramified valued division

algebras. We recall that these algebras were defined in [JW90, Definition p.149]

to be defectless finite-dimensional valued division algebras with inertial and totally

ramified of radical type maximal subfields. As indicated in [JW90, p.128], nicely

semiramified division algebras appeared in [Pl76] as examples of division algebras

with nonzero SK1. They appeared also in the similarity decomposition of any tame

division algebra over a Henselian valued field [JW90, Lemma 5.14 and Lemma 6.2]. As

seen above, we have proved in [M05, Theorem 4] that any finite-dimensional central

division algebra over a Henselian valued field E with an inertial maximal subfield and

a totally ramified maximal subfield (not necessarily of radical type) [resp. split by an

inertial and a totally ramified field extensions of E] is nicely semiramified. We use in

this section this new characterization of nicely semiramified division algebras to give

many new properties describing them. We are precisely interested here in determining
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relations between cyclic division p-algebras and nicely semiramified division algebras

over Henselian valued fields (see [Proposition 2.5 and Proposition 2.9]).

In the third section, we define what we call degenerate (valued and graded) division

algebras [Definition 3.1] and we determine when a tame semiramified division alge-

bra is degenerate [Proposition 3.6, Proposition 3.9, Proposition 3.11 and Proposition

3.12]. We prove also many equivalent statements for a semiramified graded division

algebra D over a graded field F to be degenerate [Proposition 3.16]. In particular, we

show that D is degenerate if and only if D0Frac(F ) is a degenerate maximal subfield

of Cq(D) (see [BM00, Definition 0.12]). We use then nondegenerate division algebras

to give examples of division p-algebras that are not tensor products of cyclic algebras

[Corollary 3.17] (see also Remark 3.19(1)). As a consequence of Corollary 3.17, we

get a new proof of [AS78, Theorem 3.2] (see [Corollary 3.18]).

We show in the forth section many results concerning subfields of nondegener-

ate tame semiramified division algebras of prime power degree over Henselian valued

fields. In particular, we prove that a nondegenerate tame semiramified division alge-

bra D over a Henselian valued field E with ΓD/ΓE non-cyclic cannot have a totally

ramified (non-trivial) subfield [Proposition 4.2]. This enables us to prove that if E

has residue characteristic p > 0, D is a nondegenerate tame semiramified division

algebra of degree a power of p over E with ΓD/ΓE non-cyclic, and K is a normal

subfield of D, then K is an inertial Galois subfield of D. Hence, there is a subgroup

H of Gal(D̄/Ē) such that Gal(K/E) ∼= Gal(D̄/Ē)/H . In particular, if K is a Galois

maximal subfield of D, then Gal(K/E) ∼= Gal(D̄/Ē) [Proposition 4.3]. This Propo-

sition generalizes [S78, Theorem 3.1] and [McK05, Theorem 2.3]. We prove also that

if char(Ē) is arbitrary, deg(D) is a power of a prime integer p and rk(ΓD/ΓE) ≥ 3,
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then all abelian subfield of D are inertial over E [Proposition 4.9]. Then, we show

that if rk(ΓD/ΓE) is arbitrary but exp(ΓD/ΓE) = p, then any non-maximal subfield

of D is inertial over E. Also, if K is a non-quaternion normal maximal subfield of D,

then K is either cyclic with dimension ≤ p2 or inertial over E [Theorem 4.11]. More

results for the case where char(Ē) does not divide deg(D) are proved at the end of

this section.

Finally, in the last section we prove that nondegenerate tame semiramified divi-

sion algebras of prime power degree over Henselian valued fields are indecomposable

[Theorem 5.2]. This can be used to construct indecomposable division algebras of

prime exponent (see [Remark 5.4]).

We will give in a next paper many results concerning prime to p-extensions of

nondegenerate inertially split division algebras of degree a power of p over a Henselian

valued field (where p is a prime positive integer).

1 Graded and valued field extensions

Let F be a graded field and E an algebraic graded field extension of F . We recall that

E is called normal over F if every homogenizable irreducible polynomial of F [X] that

has a root in E splits completely (i.e., into degree one factors) in E[X]. Let g be a

homogenizable irreducible polynomial of F [X]. Assume g has a root x ∈ E\{0} and

let fx,Frac(F ) be the minimal polynomial of x over Frac(F ). By Claim A.1 comments

below, we have g = afx,Frac(F ) for some a ∈ F ∗. So, by [HW(1)99, Proposition 2.2

and corollary 2.5] x ∈ E∗ . Therefore, E is normal over F if and only if for any

x ∈ E∗, fx,Frac(F ) splits into one degree polynomials in E[X].
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Lemma 1. 1 Let E/F be an algebraic graded field extension. Then, E is normal

over F if and only if Frac(E) is a normal field extension of Frac(F ).

Proof. Suppose that E is normal over F and consider a Frac(F )-isomorphism

σ from Frac(E) into Frac(E)alg. Let x ∈ E∗ and let fx,Frac(F ) be its minimal

polynomial over Frac(F ). Obviously, we have fx,Frac(F )(σ(x)) = 0. So, σ(x) ∈ E∗.

See that we have Frac(E) = EFrac(F ), hence σ(Frac(E)) = Frac(E). Therefore,

Frac(E) is a normal field extension of Frac(F ).

Conversely, suppose that Frac(E) is a normal field extension of Frac(F ) and let

x ∈ E∗. Then, fx,Frac(F ) splits into one degree polynomials in Frac(E)[X]. Let y

be a root of fx,Frac(F ) and let σ be a Frac(F )-automorphism of Frac(E) such that

y = σ(x). By [HW(1)99, Corollary 2.5(d)] the restriction of σ to E is a graded

F -automorphism of E. So, y ∈ E∗.

Proposition 1. 2 Let E/F be a finite-dimensional graded field extension. Then the

following statements are equivalent :

(1) E/F is tame and normal.

(2) E is a Galois graded field extension of F .

Proof. By [HW(1)99, Theorem 3.11(a), (b)] and Lemma 1.1.

Let E/F be a normal finite-dimensional graded field extension. As in the ungraded

case, we call the group G consisting of graded F -isomorphisms of E into Ealg the

Galois group of E/F .

Proposition 1. 3 Let E/F be a finite-dimensional normal graded field extension of
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Galois group G and let FixG(E) be the graded subfield of E, elementwise invariant

under the action of G. Then, FixG(E) is purely wild over F and E is Galois over

FixG(E). Moreover, if T is the tame closure of F in E, then E = TFixG(E) ∼=g

T ⊗F FixG(E).

Proof. Since E is normal over F , then by Lemma 1.1 Frac(E)/Frac(F ) is a nor-

mal field extension. Moreover, we have Frac(E) ∼= E ⊗F Frac(F ), so Gal(E/F ) =

Gal(Frac(E)/Frac(F )) -up to a group isomorphism- (See that by [HW(1)99, Corol-

lary 2.5(d)] the restriction to E of any σ ∈ Gal(Frac(E)/Frac(F )) is in Gal(E/F )).

By identification of Frac(E) and E ⊗F Frac(F ), for any element x ∈ Frac(E) there

are α ∈ E and β ∈ Frac(F ) such that x = α⊗ β (indeed, we can write x =
∑

ai ⊗ bi

where ai ∈ E and bi ∈ Frac(F ). Let 0 6= b ∈ F such that hi := bib ∈ F for all i,

then we have x = (
∑

aihi)⊗ b−1). So, for any σ ∈ Gal(Frac(E)/Frac(F )), σ(x) = x

if and only if σ(α) = α. Accordingly, FixG(Frac(E)) = FixG(E) ⊗F Frac(F ) =

Frac(FixG(E)). Therefore, by [Karp89, Proposition 7.7, p.283] and [HW(1)99, Theo-

rem 3.11(b) and Lemma 3.6], E/FixG(E) is Galois and FixG(E)/F is purely wild. By

[HW(1)99, (3.8)], Frac(T ) is the separable closure of Frac(F ) in Frac(E). Further-

more, we have TFixG(E) ⊗F Frac(F ) = Frac(T )FixG(Frac(E)). So, by [Karp89,

Proposition 7.7, p.283] TFixG(E) ⊗F Frac(F ) = Frac(E). Therefore, TFixG(E) =

E. Remark that Frac(T ) is separable over Frac(F ) and Frac(FixG(E)) is purely

inseparable over Frac(F ). Therefore, T and FixG(E) are linearly disjoint over F .

Hence, E ∼=g T ⊗F FixG(E).

Let E be a Henselian valued field, M a finite-dimensional field extension of E,

(xi)
n
i=1 a family of elements of M such that v(xi) = v(xj) for all 1 ≤ i, j ≤ n and such
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that f :=
∏n

i=1(X−xi) is an element of E[X]. We aim to show here that
∏n

i=1(X− x̃i)

is an element of GE[X]. Let for m̄ = (m1, ..., mn) ∈ INn, supp(m̄) = {i | such that

mi 6= 0}, then let In
k = {m̄ = (m1, ..., mn) ∈ INn | card(supp(m̄)) = k and mi = 0 or 1

for all 1 ≤ i ≤ n}. For any m̄ = (m1, ..., mn) ∈ In
k , denote xm̄ =

∏
i∈supp(m̄) xi. Then,

∏n
i=1(X − xi) =

∑n
i=0 dkX

n−k [resp.
∏n

i=1(X − x̃i) =
∑n

i=0 d′
kX

n−k] , where d0 = 1

[resp. d′
0 = 1] and dk =

∑
m̄∈In

k
(−1)kxm̄ [resp. d′

k =
∑

m̄∈In
k
(−1)kx̃m̄] (for 1 ≤ k ≤ n).

See that v(xm̄) = kv(x) for any m̄ ∈ In
k . So, in GEkv(x)(= Ekv(x)/E>kv(x)) we have

d̄k =
∑

m̄∈In
k
(−1)kxm̄ =

∑
m̄∈In

k
(−1)kx̃m̄ = d′

k. So,
∏n

i=1(X − x̃i) ∈ GE[X].

Theorem 1. 4 Let E be a field and M a defectless finite-dimensional valued field

extension of E. If M is normal over E, then GM is normal over GE. If E is

Henselian, then this is true even if M is not defectless over E.

Proof. Let v be the valuation of M and let HM be the henselization of M with

respect to v [E72, §16]. Since M̄ ⊗Ē HE = M̄ and ΓM ∩ ΓHE = ΓE, then by [Mor89,

Theorem 1] M ⊗E HE is a field. So, HM = MHE = M ⊗E HE. Moreover,

because M ⊆ HM , (GM)0 = M̄ = (GHM)0 and ΓGM = ΓGHM , then GM = GHM .

Similarly, GE = GHE. Therefore, we can assume that E is Henselian.

Now, let x be an element of M and let fx,E be the minimal polynomial of x over E.

M being normal over E, then we can write fx,E =
∏n

i=1(X − xi), where xi = σi(x)

for some σi ∈ Gal(M/E). Since E is Henselian, then v(xi) = v(x). Therefore, by

the above the polynomial
∏n

i=1(X − x̃i) is in GE[X]. Hence, the minimal polynomial

fx̃,F rac(GE) of x̃ over Frac(GE) splits into one degree polynomials in GM [X].

Proposition 1. 5 Let E be a Henselian valued field, M a finite-dimensional field

extension of E, g =
∑n

i=0 ãiX
i a homogenizable irreducible polynomial of GE[X], with
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ai ∈ E, and f =
∑n

i=0 aiX
i. If g has a simple root α in GM , then f is irreducible

and has a simple root a in M such that ã = α.

Proof. Since X −α divides g and g is homogenizable, then α ∈ GMh and gr(α) =

gr(X). Therefore, α = ẽ for some e ∈ M . Let fα,Frac(GE) be the minimal polynomial

of α over Frac(GE). Then, by Claim A.1 comments below, g = βfα,Frac(GE) for some

β ∈ GEh. Let ΓM be the value group of M (for the extension of the valuation of

E to M), ∆M = ΓM ⊗ZZ Q′ (the divisible hull of ΓM) and µ = gr(g)(∈ ∆M). Then,

gr(ãi) + igr(ẽ) = µ for all 1 ≤ i ≤ n when ai 6= 0. See that ã0 6= 0 (because g is

irreducible). Hence e 6= 0.

We distinguish the following two cases:

i) If µ = 0, then setting Y = ẽ−1X, we get g =
∑n

i=0 aieiY i, with Y = 1 as a simple

root in M̄ . Therefore, by Hensel Lemma [E72, Corollary 16.6(iv)], there is a b ∈ VM

(where VM is the valuation ring of the extension of the valuation of E to M) such

that b̄ = 1 and
∑n

i=0 ai(eb)
i = 0. So, eb is a root of f and ẽb = ẽ = α.

ii) If µ 6= 0, then setting c = ake
k, where ak is a nonzero coefficient of f , Y = ẽ−1X

and h = c̃−1g, we get h =
∑n

i=0 c−1aieiY i. So again by Hensel Lemma, there is b ∈ VM

such that c−1 ∑n
i=0 ai(eb)

i = 0 and b̄ = 1. Hence, eb is a root of f with ẽb = α.

Now to prove that f is irreducible, remark that because g = βfα,Frac(GE), then

[GE[ã] : GE] = deg(g) = deg(f). Moreover, since f(a) = 0, then the mini-

mal polynomial fa,E of a over E divides f , hence [E[a] : E] ≤ deg(f). On the

other hand, we have [E[a] : E] ≥ [G(E[a]) : GE] ≥ [GE[ã] : GE]. Therefore,

[E[a] : E] = [G(E[a]) : GE] = [GE[ã] : GE] = deg(g) = deg(f). So, f is irreducible.

(The reader can see that E[a] is necessaraly defectless over E).

α being a simple root of g, then g has deg(g) distinct roots. Let N be a normal field
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extension of E which contains M . By Theorem 1.4, GN is a normal graded field

extension of GE. Hence all the roots of g are in GN . Moreover, by the previous

part of this proof, for any root δ of g there is a root d of f in N such that d̃ = δ.

Therefore, f has deg(f) distinct roots. This shows that a is a simple root of f .

Remark 1.6 Let E be a Henselian valued field, g =
∑n

i=0 ãiX
i a homogenizable

irreducible polynomial of GE[X], with ai ∈ E, and f =
∑n

i=0 aiX
i. If f has a root a

such that ã is a root of g, then using the same arguments as in Proposition 1.5, f is

irreducible in E[X] and G(E[a]) = GE[ã].

Proposition 1. 7 Let E be a Henselian valued field with residue characteristic p > 0

and L a purely wild [resp., simple purely wild] finite-dimensional graded field extension

of GE, then there is a defectless field extension [resp., simple field extension] K of E

such that GK = L. If char(E) = p, then K can be chosen to be a purely inseparable

field extension of E.

Proof. Let N be a normal field extension of E such that L ⊆ GN . Assume first

that L = GE[ã] (for some a ∈ N) and let pn = [L : GE]. Since Frac(L) is purely

inseparable over Frac(GE), then the minimal polynomial of ã over Frac(GE) is

g := Xpn

− ãpn

. We have L ∩ Frac(GE) ⊆ GN ∩ Frac(GE) = GE. So, there is

b ∈ E such that ãpn

= b̃. Let f = Xpn

− b and let x be a root of f in N . Clearly,

x̃ is a root of g. So, x̃ = ã (because x̃pn

= ãpn

in GN). By remark 1.6, we have

G(E[x]) = GE[x̃] = GE[ã] = L.

Now, let L be an arbitrary finite-dimensional purely wild graded field extension of

GE. Then, we can write L = GE[ã1, ..., ãr]. Therefore, one can easily proceed by

induction on r to end the proof.
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As a consequence of Proposition 1.5, we have the following Corollary that gives ex-

plicitly the correspondence between (finite-dimensional) tame valued field extensions

over a Henselian valued field and tame graded field extensions.

Corollary 1. 8 [HW(1)99, Theorem 5.2] Let E be a Henselian valued field. Then,

the map K 7→ GK gives a one-to-one correspondence between the set of isomorphism

classes of finite-dimensional tame field extensions of E and the set of isomorphism

classes of finite-dimensional tame graded field extensions of GE. Moreover, K is a

Galois tame (finite-dimensional) field extension of E if and only if GK is a Galois

(finite-dimensional) graded field extension of GE and in such a case Gal(K/E) is

isomorphic to Gal(GK/GE).

Proof. If K is a tame field extension of E, then obviously GK is a tame graded field

extension of GE. Let K ′ be a tame field extension of E such that K ′ ∼= K. Since E

is Henselian, then clearly GK ∼=g GK ′. Conversely, if L is a tame finite-dimensional

graded field extension of GE, then we can write L = GE[x̃1, ..., x̃r], where xi ∈ Ealg

with x̃i separable over Frac(GE). Assume first that r = 1 and let M = E[x1]. By

Proposition 1.5, there is a1 ∈ M such that ã1 = x̃1 and [E[a1] : E] = [L : GE].

Hence, G(E[a1]) = L. By induction, assume there are a1, ..., ar−1 ∈ E[x1, ..., xr−1]

such that G(E[a1, ..., ar−1]) = GE[x̃1, ..., x̃r−1]. Then, again by Proposition 1.5, there

is ar ∈ E[x1, ..., xr] such that G(E[a1, ..., ar]) = L (this is obtained by applying

Proposition 1.5 on the field extension M/E ′, where E ′ = E[a1, ..., ar−1]). Clearly,

K := E[a1, ..., ar] is tame over E. If K ′ is an other tame field extension of E such that

GK ′ ∼=g L, then by Proposition 1.5, there is a′
1 ∈ K ′ such that G(E[a′

1])
∼=g G(E[a1])

and both a′
1 and a1 have the same minimal polynomial over E. So, E[a′

1]
∼= E[a1].

By induction, we prove that K ′ ∼= K.
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Now, let K be a Galois tame finite-dimensional field extension of E. By Proposi-

tion 1.2 and Theorem 1.4, GK is a Galois graded field extension of GE. Since v is

Henselian, then for any σ ∈ Gal(K/E), we can define a graded GE-automorphism

σ̃ : GK → GK by extending the mapping x̃ 7→ σ̃(x). Let φ : G → Gal(GK/GE) be

the group homomorphism defined by φ(σ) = σ̃, B be the valuation ring of the exten-

sion of v to K and let Gv the ramification group of B over E. See that φ(σ) = idGK

if and only if v(σ(x)
x

− 1) > 0, for any x ∈ K∗. Otherwise said, φ(σ) = idGK if and

only if σ ∈ Gv. But Gv = {idK} (since K is tame over E). Therefore, φ is injec-

tive. Remark that Gal(K/E) and Gal(GK/GE) have the same cardinality (since

Gal(GK/GE) ∼= Gal(Frac(GE)/Frac(GE))). So, φ is a group isomorphism.

Let M be a tame finite-dimensional field extension of E such that GM is a Galois

graded field extension of GE and consider a Galois tame finite-dimensional field exten-

sion N of E containing M . By the above GN is a Galois graded field extension of GE

[resp., of GM ] and Gal(N/E) ∼= Gal(GN/GE) [resp., Gal(N/M) ∼= Gal(GN/GM)].

Since GM is a Galois graded field extension of GE, then Gal(GN/GM) is a normal

subgroup of Gal(GN/GE), therefore Gal(N/M) is a normal subgroup of Gal(N/E).

Hence, M is a Galois field extension of E.

Let F be a graded field and K a finite-dimensional graded field extension of F .

For an arbitrary abelian group A -namely for A = ΓK/ΓF - and a family a1, a2..., ar of

elements of A, we say that a1, a2..., ar are independent if the subgroup 〈a1, a2, .., ar〉

of A, generated by a1, a2..., ar, equals ⊕r
i=1〈ai〉. We recall that K is called totally

ramified of radical type (TRRT ) over F if there are homogeneous elements t1, ..., tr ∈

F ∗ and nonnegative integers n1, ..., nr such that the following conditions are satisfied:

(1) K = F [t
1/n1

1 , ..., t1/nr
r ] and
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(2) gr(t
1/ni

i ) + ΓF (1 ≤ i ≤ r) are independent elements of ΓK/ΓF , with order ni,

respectively.

One can see that in the same way as for TRRT valued field extensions (See [JW90,

Lemma 4.1]), a totally ramified finite-dimensional graded field extension K of F is

TRRT over F if and only if there is a subgroup G of K∗/F ∗ such that the mapping

G → ΓK/ΓF , defined by xF ∗ 7→ gr(x) + ΓF , is a group isomorphism.

Lemma 1. 9 Let F be a graded field and K a totally ramified finite-dimensional

graded field extension of F . Then, K is TRRT over F .

Proof. [M05, Lemma 1].

Corollary 1. 10 [Sch50, p.64, Theorem 3] Let E be a Henselian valued field and

K a tame totally ramified finite-dimensional field extension of E, then K is totally

ramified of radical type.

Proof. By Lemma 1.9 GK is totally ramified of radical type. Write GK =

GE[α1] ⊗GE ... ⊗GE GE[αr] for some α1, ..., αr ∈ GK∗ where gr(αi) + ΓGE are in-

dependent elements of ΓGK/ΓGE . Assume first that r = 1. By Proposition 1.5 there

is x1 ∈ K such that x̃1 = α1 and [E[x1] : E] = [GE[α1] : GE] = [GK : GE].

Hence, E[x1] = K and v(E[x1]) = 〈gr(α1) + ΓGE〉 = 〈v(x1) + ΓE〉. More gener-

ally, for an arbitrary positive integer r, by the above there are xi ∈ K such that

[E[xi] : E] = [GE[αi] : GE] and v(xi) + ΓE generates ΓE[xi]/ΓE. Hence, by [Mor89,

Theorem 1] K = E[x1] ⊗E ... ⊗E E[xr].
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Let E/F be a Galois finite-dimensional graded field extension. In the same

way as for ungraded fields, one may define the norm NE/F of E/F (i.e. NE/F =
∏

σ∈Gal(E/F ) σ(x) for all x ∈ E). Then, the following lemma is a direct consequence of

[L84, Theorem 6.1, p323].

Lemma 1. 11 Let E/F be a finite-dimensional cyclic graded field extension with

dimension n and with Galois group generated by σ and x ∈ E∗. Then, NE/F (x) = 1

if and only if there exists y ∈ E∗ such that x = yσ(y)−1

Proof. Assume that NE/F (x) = 1. Then, NFrac(E)/Frac(F )(x)(= NE/F (x)) = 1. So, by

[L84, Theorem 6.1, p. 323] there is z ∈ Frac(E)∗ such that x = zσ(z)−1. We may

assume z ∈ E∗. Write z = z1 + ...+zr , where zi (1 ≤ i ≤ r) are nonzero homogeneous

elements of E with gr(zi) < gr(zi+1), for all 1 ≤ i < r. Since σ(z)x = z and x is

homogeneous, then for all 1 ≤ i ≤ r, σ(zi)x = zi. The converse is clear.

Remark that an alternative cohomological proof of Lemma 1.11 can be obtained

by considering the G-module E∗.

Proposition 1. 12 Let F be a graded field with characteristic not dividing a positive

integer n, and assume F0 contains a primitive nth root of unity ζ. Then, the following

statements hold :

(1) If E is a cyclic graded field extension of F with dimension n, then there is x ∈ E∗

such that E = F [x], xn ∈ F ∗ and Gal(E/F ) is generated by the graded F -isomorphism

σ defined by σ(x) = ζx.

(2) Conversely, if a ∈ F ∗ and x is a root of the polynomial Xn − a in Falg, then F [x]

is a cyclic graded field extension of F with [F [x] : F ] = m dividing n and xm ∈ F .
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Proof. (1) Let σ a generator of Gal(E/F ). We have NE/F (ζ−1) = 1, so by Lemma

1.11 there is x ∈ E∗ such that σ(x) = ζx. Accordingly, σ(xn) = σ(x)n = (ζx)n = xn.

Hence, xn ∈ F ∗. Since σi(x)(= ζ ix) (1 ≤ i ≤ n) are pairwise distinct, then the

minimal polynomial of x over Frac(F ) is Xn − xn. So, F [x] = E.

(2) By [L84, Theorem 6.2, p. 324] Frac(F )(x)/Frac(F ) is cyclic with dimension m

dividing n and with xm ∈ Frac(F )∗. Hence, F [x]/F is cyclic of dimension m and by

[HW(1)99, Corollary 2.5(b)] xm ∈ F [x]∗ ∩ Frac(F )∗ = F ∗.

Let F be a graded field with characteristic p > 0. Then, Galois graded p-extensions

of F are inertial over F , so they are exactly graded fields of the form KFF , where

K runs over Galois p-extensions of F0. This because Galois graded p-extensions

are necessarily inertial. Therefore, a graded field extension E/F of dimension a

power of p is cyclic if E = F (x1, ..., xn), where x = (x1, ..., xn) ∈ Wn(E0) and

(xp
1, ..., x

p
n) − (x1, ..., xn) ∈ Wn(F0) (here Wn(E0) is the ring of Witt vectors asso-

ciated to the field E0). In particular, cyclic extensions of degree p of F are F [x],

where x is a root of a polynomial Xp − X − a for some a ∈ F0 with x /∈ F0.

Let F be a graded field and K a finite-dimensional abelian graded field extension

of F . We say that K is a Kummer graded field extension of F if F0 contains a prim-

itive mth root of unity, where m is the exponent of Gal(K/F ). In such a case, we

denote KUM(K/F ) = {x ∈ K∗ | xm ∈ F} and kum(K/F ) = KUM(K/F )/F ∗ (i.e.,

the quotient group). As for Kummer field extensions, one can see that kum(K/F ) is

isomorphic to Gal(K/F ).
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Let F be a graded field of characteristic not dividing a positive integer n. Readily,

F0 contains a primitive nth root of unity if and only if Frac(F ) does (indeed, if ξ is

a primitive nth root of unity in Frac(F ), then clearly F [ξ] is a graded field extension

of F . So, [F [ξ] : F ] = [Frac(F [ξ]) : Frac(F )] = 1. Hence ξ ∈ F0). Therefore,

for any finite-dimensional abelian graded field extension K of F , K is a Kummer

graded field extension of F if and only if Frac(K) [resp. HFrac(K)] is a Kummer

field extension of Frac(F ) [resp. HFrac(F )]. Moreover, if K is a Kummer graded

field extension of F , then kum(K/F ) embeds canonically in kum(Frac(K)/Frac(F ))

[resp. in kum(HFrac(K)/HFrac(F ))]. Since both groups have the same cardi-

nality, then -up to a group isomorphism- kum(Frac(K)/Frac(F )) = kum(K/F )

[resp. kum(HFrac(K)/HFrac(F )) = kum(K/F )]. Obviously, this isomorphism can

be deduced easily from the fact that Gal(K/F ) ∼=g Gal(Frac(K)/Frac(F )) [resp.,

Gal(K/F ) ∼=g Gal(HFrac(K)/HFrac(F ))], but the above shows that every class of

kum(Frac(K)/Frac(F )) [resp. kum(HFrac(K)/HFrac(F ))] can be represented by

an element of KUM(K/F ).

Proposition 1. 13 Let F be a graded field and K a totally ramified graded field

extension of F . Let m be the exponent of ΓK/ΓF . Then, the following statements are

equivalent :

(1) K is a Galois graded field extension of F .

(2) K is a Kummer graded field extension of F .

(3) F0 contains a primitive mth root of unity.

If K satisfies these conditions, then Gal(K/F ) ∼= kum(K/F ) ∼= ΓK/ΓF .

Proof. By [HW(1)99, Proposition 3.3].
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2 Nicely semiramified division algebras over Henselian val-

ued fields

Let F be a graded field and D a graded central division algebra over F . We recall that

in the same way as for valued central division algebras, D is called nicely semiramified

(NSR) (over F ) if it has an inertial and a totally ramified (of radical type) maximal

graded subfields. We recall also that D is NSR (over F ) if and only if Cq(D)

is NSR (over Frac(F )) ([B98, Proposition 6.4]). Moreover, Cq(D) is NSR (over

Frac(F )) if and only if HCq(D) is NSR (over HFrac(F )). Indeed, assume that

Cq(D) is NSR and let K [resp. L] be an inertial [resp. a TRRT ] maximal subfield of

Cq(D). Then, by [Mor89, Theorem 1], HK(= K ⊗Frac(F ) HFrac(F )) [resp. HL(=

L ⊗Frac(F ) HFrac(F ))] is an inertial [resp. a TRRT ] maximal subfield of HCq(D).

Conversely, if HCq(D) is NSR, then it has an inertial [resp. a TRRT ] maximal

subfield K ′ [resp. L′]. So GK ′ [resp. GL′] is an inertial [resp. a totally ramified]

maximal graded subfield of D(∼=g GHCq(D)). Hence D is NSR. Therefore, by the

above, Cq(D) is NSR.

The following lemma is the analogue of [JW90, Theorem 4.4]. It gives equivalent

statements for a graded central division algebra over a graded field to be NSR. In

condition 3(i) of this lemma, the graded field extensions L(i) are said to be linearly

disjoint if L(1) ⊗F .... ⊗F L(k) is a graded field.

Lemma 2. 1 Let F be a graded field and D a graded central division algebra of degree

n over F . Then the following statements are equivalent :

(1) D is NSR.

(2) D is split by an inertial and a totally ramified graded field extensions of F .
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(3) D ∼=g (L(1)/F, σ1, t1) ⊗F ... ⊗F (L(k)/F, σk, tk), where L(i), σi and ti satisfy the

following conditions :

(i) L(i) are linearly disjoint cyclic inertial graded field extensions of F with dimen-

sion [L(i) : F ] = ni and with Galois group generated by σi (1 ≤ i ≤ k),
∏k

i=1 ni = n,

(ii) ti are nonzero homogeneous elements of F such that gr(t
n/ni

i ) + nΓF are inde-

pendent elements of ΓF/nΓF , with order ni (1 ≤ i ≤ k), respectively.

In such a case, ΓD/ΓF = ⊕k
i=1〈gr(ti) + ΓF 〉.

Proof. [M05, Lemma 2].

Lemma 2. 2 Let E be a Henselian valued field and D a defectless central division

algebra over E. Then the following statements are equivalent :

(1) D is NSR over E.

(2) GD is NSR over GE.

Proof. [M05, Lemma 3].

Theorem 2. 3 Let E be a Henselian valued field and D a defectless central division

algebra over E. Then the following statements are equivalent:

(1) D is NSR.

(2) D has an inertial and a totally ramified maximal subfields.

(3) D is split by an inertial and by a totally ramified field extensions of E.

Proof. [M05, Theorem 4].

Corollary 2. 4 Let E be a Henselian valued field and D a tame semiramified division

algebra over E, then the following statements are equivalent.



2 NICELY SEMIRAMIFIED DIVISION ALGEBRAS OVER HENSELIAN VALUED FIELDS24

(1) D is nicely semiramified.

(2) D has a totally ramified maximal subfield.

(3) D is split by a totally ramified field extension of E.

Proof. Since D is tame semiramified, then D̄ is an abelian field extension of Ē.

So, D has an inertial maximal subfield (the inertial lift of D̄ over E in D). Therefore,

our Lemma follows by Theorem 2.3.

Proposition 2. 5 Let E be a Henselian valued field of characteristic p > 0 and D

a tame semiramified division p-algebra over E. Then, the following statements are

equivalent.

(1) D is nicely semiramified.

(2) D is a tensor product of cyclic algebras.

(3) D has a purely inseparable maximal subfield.

Proof. (1) ⇒ (2) This follows by [JW90, Theorem 4.4].

(2) ⇒ (3) Assume that D = D1 ⊗E ...⊗E Dr, where Di are cyclic algebras. By [A61,

Theorem 26, p. 107], each Di contains a (simple) purely inseparable maximal subfield

Ki. So, K := K1 ⊗E ... ⊗E Kr is a purely inseparable maximal subfield of D.

(3) ⇒ (1) Let K be a purely inseparable maximal subfield of D. Since D is defectless

over E and D̄ is separable over Ē, then K is totally ramified over E. So, D is nicely

semiramified (by Corollary 2.4).

Proposition 2. 6 Let E be a Henselian valued field and D an inertially split defect-

less central division algebra over E. Then the following statements hold :

(1) D is semiramified if and only if D̄ is a field.
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(2) Let L be a field extension of E in D and let C be the centralizer of L in D. If

D is semiramified, then C is also semiramified. Furthermore, if L is inertial over E

and D is nicely semiramified, then C is nicely semiramified.

(3) Suppose D is semiramified and D = D1 ⊗E D2 with D1 and D2 inertially split.

Then, each Di is semiramified, D̄ = D̄1 ⊗Ē D̄2, and ΓD/ΓE = ΓD1
/ΓE ×ΓD2

/ΓE (via

the canonical inclusion ΓDi
/ΓE → ΓD/ΓE). Furthermore, if D1 and D2 are nicely

semiramified, then D is nicely semiramified.

(4) If D is semiramified with a cyclic inertial maximal subfield, then D is nicely

semiramified and ΓD/ΓE is cyclic.

Proof. (1) This follows easily from the equality (ΓD : ΓE) = [Z(D̄) : Ē] obtained

from the isomorphism θD, since Z(D̄) is separable over Ē (see [JW90, Lemma 5.1]).

(2) Clearly, C is also inertially split. If D is semiramified, then by (1) C is also semi-

ramified (because C̄ ⊆ D̄). Assume L is inertial over E and D is nicely semiramified,

and let K be a totally ramified field extension of E that splits D, then by [Mor89,

Theorem 1], K ⊗E L is a totally ramified field extension of L that splits C, therefore

by Corollary 2.4 C is nicely semiramified.

(3) By (1) Di are semiramified. Let Li be the inertial lift of the field D̄i over E in Di

-see [JW90, Theorem 2.8]-, and let L = L1 ⊗E L2, which is a subfield of D. Clearly,

L is inertial over E, since it is a compositum of two inertial extensions of E. Hence,

L̄ = D̄1 ⊗Ē D̄2, which by dimension count must be all of D̄. Now, ΓD1
/ΓE acts triv-

ially on D̄2 via θD, as D1 centralizes D2; likewise ΓD2
/ΓE acts trivially on D̄1. Hence,

(ΓD1
/ΓE) ∩ (ΓD2

/ΓE) must be trivial, since it acts trivially on all of D̄1 ⊗Ē D̄2 = D̄

and θD is injective. Hence, (ΓD1
/ΓE) × (ΓD2

/ΓE) ⊆ ΓD/ΓE , and since these groups

have the same cardinality, they must be equal. Suppose that D1 and D2 are nicely
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semiramified, and let Ki be a totally ramified maximal subfield of Di, then by [Mor89,

Theorem 1] K1 ⊗E K2 is a totally ramified maximal subfield of D. So, D is nicely

semiramified.

(4) Let K be a cyclic inertial maximal subfield of D, then K̄(= D̄) is a cyclic field

extension of Ē. So, ΓD/ΓE is cyclic (since θD is an isomorphism). Let γ + ΓE be a

generator of ΓD/ΓE and let x be an element of D with valuation γ. Then, E[x] is a

totally ramified maximal subfield of D. Hence, D is nicely semiramified.

Corollary 2. 7 Let E be a Henselian valued field of residue characteristic p > 0

and D a tame central division algebra of degree a power of p over E. Then, D is

semiramified if and only if D̄ is a field.

Proof. Let K be a tame maximal subfield of D. Since D has degree a power of

p, then K is inertial over E. Therefore, our corollary follows by Proposition 2.6.

Remark 2.8 One can easily see that there are graded algebra analogues of Corollary

2.4, Proposition 2.5, Proposition 2.6 and Corollary 2.7. Indeed, let F be a graded

field and D a graded central division algebra over F . Then D is semiramified if and

only if HCq(D) is semiramified, and D is nicely semiramified if and only if HCq(D)

is nicely semiramified.

Let A be a tame valued division algebra over a Henselian valued field E. We will

say that A is t-indecomposable, if for any tame division algebras B and C over E

such that A ∼= B ⊗E C, necessarily B or C is trivial.

Proposition 2. 9 Let F be a graded field of characteristic p > 0, D a semirami-
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fied graded division p-algebra over F and K an immediate valued field extension of

Frac(F ) for its canonical valuation (i.e., such that K̄ = Frac(F ) and ΓK = ΓFrac(F )).

Then, the following statements are equivalent :

(1) D is cyclic.

(2) D0 is a cyclic field extension of F0.

(3) ΓD/ΓF is a cyclic group.

(4) D has a simple purely wild maximal graded subfield.

(5) D is indecomposable and nicely semiramified.

(6) D is nicely semiramified and exp(D) = deg(D).

(7) Cq(D)⊗Frac(F )K is nicely semiramified and exp(Cq(D)⊗Frac(F )K) = deg(Cq(D)⊗Frac(F )

K).

(8) Cq(D) ⊗Frac(F ) K is cyclic and indecomposable.

Furthermore, if HFrac(F ) ⊆ K, then the above statements are equivalent to the fol-

lowing condition :

(9) Cq(D) ⊗Frac(F ) K is cyclic and t-indecomposable.

Proof. (1) ⇒ (2) Assume that D has a cyclic maximal graded subfield K. By

[HW(1)99, Theorem 3.11] K is tame (hence inertial) over F . So, by [HW(1)99,

Remark 3.1] D0(= K0) is a cyclic field extension of F0.

(2) ⇔ (3) By [B98, Proposition 6.1].

(3) ⇒ (4) Let x ∈ D∗ such that gr(x) + ΓF generates ΓD/ΓF . Then, F [x] is a simple

totally ramified -hence a purely wild- maximal graded subfield of D.

(4) ⇒ (6) Clearly D0F is an inertial maximal graded subfield of D. Let L be a

simple purely wild maximal graded subfield of D. As D0 is separable over F0, then

L is totally ramified over F . So, D is nicely semiramified, and ΓD/ΓF (= ΓL/ΓF ) is
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cyclic (because L is simple over F ). Therefore, by [B98, Proposition 6.5] exp(D) =

exp(ΓD/ΓF ) = (ΓD : ΓF ) = deg(D).

(6) ⇒ (5) Clear.

(5) ⇒ (1) By Lemma 2.1.

(6) ⇒ (7) We have G(Cq(D)⊗Frac(F ) K) ∼=g D. Indeed, let HK be the henselization

of K with respect to the (considered) valuation of K, then by [HW(1)99, Corollary

5.7] the following diagram is commutative :

TBr(HFrac(F ))
Ext
→ TBr(HK)

∼=↓ ∼=↓

GBr(F )
Ext
→ GBr(GHK)

(where the horizontal maps are the scalar extension homomorphisms and the ver-

tical ones are the canonical group isomorphisms seen in the Preliminaries). Since

K is immediate over Frac(F ), then GK ∼=g GHK ∼=g F . Moreover, we have

G(Cq(D)⊗Frac(F ) K) = G(Cq(D)⊗Frac(F ) HK). Hence, G(Cq(D)⊗Frac(F ) K) ∼=g D.

Therefore, Cq(D) ⊗Frac(F ) K is nicely semiramified and deg(Cq(D) ⊗Frac(F ) K) =

deg(D) = exp(D) = exp(Cq(D) ⊗Frac(F ) K).

(7) ⇒ (8) Obviously, Cq(D) ⊗Frac(F ) K is indecomposable, so D is indecomposable.

Moreover, as seen above, we have D ∼=g G(Cq(D)⊗Frac(F )HK). So, D is nicely semi-

ramified. Hence, by Lemma 2.1, D (so Cq(D)) is cyclic. Therefore, Cq(D)⊗Frac(F ) K

is cyclic.

Now, if HFrac(F ) ⊆ K, then (8) ⇒ (9) is evident.

(9) ⇒ (1) Since Cq(D)⊗Frac(F )K is t-indecomposable, GK ∼=g F and G(Cq(D)⊗Frac(F )

K) ∼=g D, then D is indecomposable (it suffices to use the canonical group isomor-

phism TBr(K) → GBr(GK)). Moreover, by [A61, Theorem 26, p. 107] Cq(D)⊗Frac(F )

K has a purely inseparable maximal subfield L. See that Cq(D)⊗Frac(F ) K is defect-
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less over K and Cq(D) ⊗Frac(F ) K(∼= D0) is separable over K̄(∼= F0), so L is totally

ramified over K. Therefore, Cq(D) ⊗Frac(F ) K (hence D) is nicely semiramified. So,

by Lemma 2.1 D is cyclic.

Remark 2.10 More generally, if F is a graded field of characteristic p > 0 and

D is a graded central division p-algebra over F , then in the same way as in [A61,

Theorem 26, p. 107], one can show that D is cyclic if and only if D contains a simple

purely wild maximal graded subfield (see Theorem C.6 comments below).

Let p be a prime positive integer and G a finite abelian p-group. Then, we can

write G = 〈σ1〉 ⊕ ... ⊕ 〈σr〉, where 〈σi〉 is the cyclic group generated by σi. We recall

that the number r is called the rank of G. We write r = rk(G).

(2.11) Now, let E be a Henselian valued field, D a nicely semiramified division alge-

bra of prime power degree over E and L a totally ramified of radical type maximal

subfield of D. Write L = E[t
1/n1

1 , ..., t1/nr
r ], where v(t

1/ni

i ) + ΓE (1 ≤ i ≤ r) are inde-

pendent elements of ΓL/ΓE , with order ni, respectively. Then, the integer r depends

only on D (because ⊕r
i=1〈v(t

1/ni

i ) + ΓE〉 = ΓL/ΓE = ΓD/ΓE). We call r the radical

length of D and we write r = rl(D). By definition, we have rl(D) = rk(ΓD/ΓE).

In the same way, for a graded field F and a nicely semiramified graded division

algebra D over F , we define rl(D) = rk(ΓD/ΓF ). Obviously, we have rl(D) =

rl(HCq(D)).

Corollary 2. 12 Let F be a graded field of characteristic p > 0 and D a semiramified
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graded division p-algebra over F . Then, D is nicely semiramified with radical length

r if and only if D is a tensor product of r cyclic graded division algebras.

Proof. If D = D1 ⊗F ... ⊗F Dr, where Di are cyclic graded division algebras, then

by Proposition 2.5, HCq(D) is nicely semiramified. So, D is nicely semiramified.

Moreover, by the graded version of Proposition 2.6(3) and Proposition 2.9, each Di

is semiramified (since Di are split by inertial graded field extensions of F ) ; ΓD/ΓF =

ΓD1
/ΓF ⊕ ... ⊕ ΓDr

/ΓF and ΓDi
/ΓF are cyclic. So, rl(D) = r. The converse follows

by Lemma 2.1.

3 Nondegenerate semiramified valued and graded division

algebras

Let M/E be a field extension and D a central division algebra over E. We denote by

DM the central division algebra over M similar to D ⊗E M with respect to Br(M).

We recall that if M is a subfield of D, then up to an algebra isomorphism, we have

DM = CM
D .

Definition 3.1 Let E be a Henselian valued field and D a central division alge-

bra of prime power degree over E. We say that D is degenerate if there is an inertial

field extension M of E in D such that DM is nicely semiramified (over M) with

radical length r ≥ 2.

Proposition 3. 2 Let E be a Henselian valued field and D an inertially split central

division algebra of prime power degree over E. Then, D is degenerate if and only if
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there is a subfield K of D such that ΓK/ΓE is non-cyclic.

Proof. Assume D is degenerate and let M be an inertial subfield of D such that

DM is nicely semiramified with rl(DM) ≥ 2. Let K be a totally ramified maximal

subfield of CM
D , then ΓCM

D
/ΓM = ΓK/ΓE. So ΓK/ΓE is non-cyclic.

Conversely, suppose that there is a subfield K of D such that ΓK/ΓE is non-cyclic.

Let L be a maximal subfield of D that contains K and let M be ’the’ inertial lift of

L̄ over E in L, then L is a totally ramified maximal subfield of the inertially split

division algebra CM
D . So, CM

D is nicely semiramified with rl(CM
D ) ≥ 2.

Corollary 3. 3 Let E be a Henselian valued field such that Ē is finite. Then, any

inertially split division algebra D of prime power degree over E is nondegenerate

cyclic nicely semiramified (over E) with exp(D) = deg(D).

Proof. Since Ē is finite, then D̄ is a cyclic field extension of Ē. Moreover, since D is

inertially split over E, then ΓD/ΓE is isomorphic to Gal(D̄/Ē). So, D is semiramified

and by Proposition 3.2, D is nondegenerate. Let v be the extension of the valuation

of E to D and let x ∈ D such that v(x)+ΓE generates ΓD/ΓE. Then, E[x] is a totally

ramified maximal subfield of D. Hence, by Corollary 2.4 D is nicely semiramified.

Therefore, D is cyclic (because it is nondegenerate and nicely semiramified). More-

over, by [JW90, Lemma 5.15], we have exp(D) = exp(ΓD/ΓE) = (ΓD : ΓE) = deg(D).

Remark : By [P82, Proposition 17.6] any local field E is Henselian. Therefore,

Corollary 3.3 can be considered as a generalization of [P82, Corollary 17.8(b) and

Corollary 17.10(b)].

Henselian valued fields with finite residue fields are called generalized local fields. The
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reader can see the thesis of F.H. Chang [Ch04] for more results concerning division

algebras over these fields.

Corollary 3. 4 Let E be a Henselian valued field of characteristic p > 0 and D

a nondegenerate tame semiramified division p-algebra over E. Then, the following

statements are equivalent :

(1) D is cyclic.

(2) D is a tensor product of cyclic algebras.

(3) D is nicely semiramified.

(4) ΓD/ΓE is cyclic.

In such a case, we have exp(D) = deg(D) (hence D is indecomposable) and all purely

inseparable maximal subfields of D are simple (i.e. of the form E[x] for some x ∈ D∗)

Proof. (1) ⇒ (2) Clear.

(2) ⇒ (3) By Proposition 2.5.

(3) ⇒ (4) Obvious (since D is nondegenerate).

(4) ⇒ (1) Since D is tame semiramified, then D̄ is a Galois field extension of Ē with

Gal(D̄/Ē) isomorphic to ΓD/ΓE . Therefore, the inertial lift of D̄ over E in D is a

cyclic maximal subfield of D.

Assume these conditions hold, then by [JW90, Lemma 5.15] exp(D) = exp(ΓD/ΓE) =

(ΓD : ΓE) = deg(D). Moreover, in this case, if K is a purely inseparable maximal

subfield of D, then K is totally ramified over E (because D is defectless over E and

D̄ is separable over Ē). D being nondegenerate, then by Proposition 3.2 ΓK/ΓE is

cyclic. Let x ∈ K∗ with v(x) + ΓE generating ΓK/ΓE, then K = E[x].

Corollary 3. 5 Let E be a Henselian valued field of characteristic p > 0 and D
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a nondegenerate tame semiramified division p-algebra over E. Then, the following

statements are equivalent :

(1) D is cyclic.

(2) GD is cyclic.

(3) D is nicely semiramified.

Proof. (1) ⇔ (2) This follows by Corollary 3.4 and Proposition 2.9.

(1) ⇔ (3) By Corollary 3.4.

Proposition 3. 6 Let E be a Henselian valued field and D a tame semiramified

division algebra of prime power degree over E. Then, the following statements are

equivalent.

(1) D is degenerate.

(2) There is an inertial subfield M of D such DM is the tensor product of two (non-

trivial) nicely semiramified division algebras.

(3) There is an inertial subfield M of D such DM is the tensor product of two (non-

trivial) cyclic nicely semiramified division algebras.

(4) There is an inertial subfield M of D such DM is the tensor product of two (non-

trivial) cyclic nicely semiramified division algebras D1 and D2 with ΓDi
/ΓM cyclic.

Proof. (2) ⇒ (1) Assume there is an inertial subfield M of D such DM = D1⊗M D2,

where Di are non-trivial nicely semiramified division algebras. Then, by Proposition

2.6(3), ΓDM
/ΓM = ΓD1

/ΓM ⊕ΓD2
/ΓM . Let Li be a totally ramified maximal subfield

of Di (i = 1, 2). Since ΓLi
/ΓM = ΓDi

/ΓM , then by [Mor89, Theorem 1] L1 ⊗M L2

is a totally ramified maximal subfield of DM . So, DM is nicely semiramified with

rl(DM) ≥ 2.
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(1) ⇒ (4) If M is an inertial subfield of D such that DM is nicely semiramified with

radical length r ≥ 2, then we can write CM
D = (M1/M, σ1, a1)⊗M ...⊗M (Mr/M, σr, ar),

where Mi, σi and ai satisfy the conditions of [JW90, Theorem 4.4(iii)]. We have

CMM3...Mr

D = CM3...Mr

CM
D

, so CMM3...Mr

D
∼= (M1M3...Mr/M3...Mr, σ1, a1)⊗MM3..Mr

(M2M3...Mr/

M3...Mr, σ2, a2). Let Di := (MiM3...Mr/M3...Mr, σi, ai) (1 ≤ i ≤ 2), then by [JW90,

Theorem 4.4] Di are nicely semiramified and ΓDi
/ΓM are cyclic.

(4) ⇒ (3) and (3) ⇒ (2) Obvious.

Remark 3.7 Let E be a Henselian valued field of characteristic p > 0 and D a

tame semiramified division p-algebra. Then, Proposition 2.6 and Proposition 3.4, D

is degenerate if and only if there is an inertial subfield M of D such that DM is the

tensor product of more than two (non-trivial) cyclic tame division algebras.

(3.8) Let E be a Henselian valued field and D a tame division algebra over E, then

D is similar to a tensor product I ⊗E N ⊗E T , where I is an inertial central division

algebra over E, N is a nicely semiramified division algebra over E and T is a totally

ramified central division algebra over E (by [JW90, Lemma 5.15 and Lemma 6.2]). D

is semiramified if and only if T is trivial and N̄ splits Ī. Indeed, if D is semiramified,

then T will be inertially split, hence trivial. Moreover, in this case, by [JW90, Lemma

5.15] N̄ splits Ī. The converse follows also by [JW90, Lemma 5.15]. In what follows,

we aim to determine necessary and sufficient conditions for such tame semiramified

division algebra D to be nondegenerate.

Proposition 3. 9 Let E be a Henselian valued field, N a nicely semiramified divi-

sion algebra over E, I an inertial central division algebra over E and D the central
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division algebra over E similar to I ⊗E N with respect to Br(E). Assume that D is

semiramified with prime power degree. Then, D is nondegenerate if and only if for

any subfield K of N̄ , N̄/K is cyclic or ĪK /∈ Dec(N̄/K).

Proof. Let M be an inertial subfield of D. By [JW90, Lemma 5.15] we have

D̄ ∼= N̄ , so M is isomorphic to a subfield of N . Therefore, by Proposition 2.6(2) NM

is nicely semiramified. Moreover, since I is inertial, then by [JW90, Lemma 1.8] IM

is inertial (over M). Hence, by [JW90, Theorem 5.15] DM is nicely semiramified if

and only if ĪM̄ ∈ Dec(N̄/M̄) (see that N̄M̄ = N̄). So, D is nondegenerate if and only

if for any subfield K of N̄ , N̄/K is cyclic or ĪK /∈ Dec(N̄/K).

(3.10) We recall that for a crossed product A over a field E and a Galois maxi-

mal subfield L of A, we say that L is degenerate in A if there is an intermediate field

K of L/E such that :

(1) Gal(L/K) is the direct sum of two cyclic subgroups 〈σ1〉 and 〈σ2〉, and

(2) the centralizer CK
A decomposes into a tensor product of two cyclic algebras,

split by the subfields K1 and K2 of L fixed respectively by σ2 and σ1 (i.e. CK
A =

(K1/K, σ1, a1) ⊗K (K2/K, σ2, a2) for some a1, a2 ∈ K∗) [BM00, Definition 0.12].

Proposition 3. 11 Let E be a Henselian valued field, N a nicely semiramified divi-

sion algebra of prime power degree over E, I an inertial central division algebra over

E such that N̄ is a maximal subfield of Ī, and D the central division algebra over E

similar to I ⊗E N with respect to Br(E). Then, D is semiramified. Furthermore, D

is degenerate if and only if N̄ is degenerate in Ī.
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Proof. Since N̄ is a maximal subfield of Ī, then by [JW90, Lemma 5.15] D is

semiramified. Suppose that D is degenerate and let M be an inertial subfield of

D such that DM is nicely semiramified with rl(DM) ≥ 2. As previously seen in

the proof of Proposition 3.9, IM is inertial ; NM is nicely semiramified and DM

is similar to IM ⊗M NM , so again by [JW90, Lemma 1.8 and Lemma 5.15] ĪM̄ ∈

Dec(N̄/M̄). Let r = rk(Gal(N̄/M̄))(= rk(Gal(DM/M̄)) = rl(DM)), and write

N̄ = K1 ⊗M̄ ... ⊗M̄ Kr, where Ki/M̄ are cyclic field extensions (1 ≤ i ≤ r). Since

ĪM̄ ∈ Dec(N̄/M̄), then ĪM̄ = (K1/M̄, σ1, a1) ⊗M̄ ... ⊗M̄ (Kr/M̄, σr, ar), where σi is

a generator of the cyclic field extension Ki/M̄ and ai ∈ M̄∗. Let L = K3...Kr, then

ĪL = (K1L/L, σ1, a1) ⊗L (K2L/L, σ2, a2). So, N̄ is degenerate in Ī.

Conversely, assume that N̄ is degenerate in Ī and let L be an intermediate field of

N̄/Ē such that ĪL = (L1/L, τ1, b1) ⊗L (L2/L, τ2, b2), where L1 ⊗L L2 = N̄ , τi is a

generator of the cyclic field extension Li/L and bi ∈ L∗. Let M be the inertial lift of

L over E in D, then ĪM̄ ∈ Dec(N̄/M̄) and rl(DM) = rk(Gal(N̄/M̄)) = 2. So, D is

degenerate.

Proposition 3. 12 Let E be a Henselian valued field, D a tame semiramified division

algebra of prime power degree over E, and L ’the’ inertial lift of D̄ over E in D. Then,

D is degenerate if and only if L is degenerate in D.

Proof. If D is degenerate, then by Proposition 3.6 there is an inertial subfield

M of D such that CM
D is a tensor product of two cyclic nicely semiramified division

algebras D1 and D2 with ΓDi
/ΓM cyclic. Write Di = (Mi/M, σi, ai) (1 ≤ i ≤ 2),

where Mi are inertial cyclic field extensions of E with Galois group generated by

σi, and ai ∈ M∗. Clearly, this implies that M1 ⊗M M2 is a degenerate maximal

subfield of CM
D . Moreover, by comparing the cardinalities, we have M̄1 ⊗M̄ M̄2 = D̄.
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So, M1 ⊗M M2 is isomorphic to L (because, M̄ = M̄1 ⊗M̄ M̄2 = D̄), whence L is

degenerate in D.

Conversely, assume that L is degenerate in D and let K be a subfield of L satisfying

the conditions of (3.10). Write CK
D = (K1/K, σ1, a1) ⊗K (K2/K, σ2, a2), where K1

and K2 are the subfields of L fixed by σ2 and σ1 respectively and a1, a2 ∈ K∗,

and let Di = (Ki/K, σi, ai) (i = 1, 2). By Proposition 2.6(2 and 3) CK
D and Di

are semiramified. Moreover, Ki is a cyclic inertial maximal subfield of Di, so again

by Proposition 2.6(4) Di is nicely semiramified and ΓDi
/ΓK is cyclic. Hence, by

Proposition 2.6(3) CK
D is nicely semiramified with radical length r = 2. Therefore, D

is degenerate.

Proposition 3. 13 Let E be a Henselian valued field and D a tame semiramified

division algebra of prime power degree over E. If K is a subfield of D with (ΓK : ΓE)

maximal, then K is a maximal subfield of D. In particular, if K is totally ramified

over E and D is nondegenerate, then D is cyclic.

Proof. By Proposition 2.6(2) CK
D is semiramified. Since (ΓK : ΓF ) is maximal,

then (ΓCK
D

: ΓK) = 1. Hence, CK
D = K. So, K is a maximal subfield of D. If K is

totally ramified over E, then by Corollary 2.4 D is nicely semiramified. If, we suppose

in addition that D is nondegenerate, then by Corollary 3.5 D is cyclic.

Remark 3.14 Let F be a graded field and D a graded central division algebra

over F . As for the valuative case, we say that D is degenerate if there is an inertial

graded subfield M of D such that DM is nicely semiramified with rl(DM) ≥ 2. One

can then use the same arguments as in Proposition 3.2 to show that for an inertially

split graded central division algebra D over F , D is degenerate if and only if there is
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a graded subfield K of D such that ΓK/ΓF is non-cyclic. One can also see that there

are analogous graded versions for all the results we are given in this work.

Lemma 3. 15 Let E be a Henselian valued field and D a tame central division algebra

of prime power degree over E. Then, D is degenerate if and only if GD is degenerate.

Proof. Suppose that GD is degenerate and let K be an inertial graded subfield of

GD such that GDK is nicely semiramified with rl(GDK) ≥ 2. Let M be the inertial

lift of K0 over E in D. Then, G(DM) ∼= GDK . So, by Lemma 2.2, DM is nicely

semiramified. Moreover, we have rl(DM) = rl(GDK) ≥ 2. Hence, D is degenerate.

Conversely, suppose that D is degenerate and let L be an inertial subfield of D

such that DL is nicely semiramified with rl(DL) ≥ 2. Then, clearly GDGL is nicely

semiramified and rl(GDGL) = rl(DL) ≥ 2.

Proposition 3. 16 Let F be a graded field, D a semiramified graded division algebra

of prime power degree over F , (L, v) an immediate valued field extension of Frac(F )

(for its canonical valuation) and HL the henselization of L with respect to v. Then,

the following statements are equivalent.

(1) D is degenerate.

(2) Cq(D) ⊗Frac(F ) HL is degenerate.

(3) D0HL is degenerate in Cq(D) ⊗Frac(F ) HL.

(4) D0L is degenerate in Cq(D) ⊗Frac(F ) L.

(5) D0Frac(F ) is degenerate in Cq(D).

Proof. By [Mor89, Theorem 1] Cq(D)⊗Frac(F ) HL is a division algebra (of center

HL). Since L is an immediate valued field extension of Frac(F ), then so is HL.
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Therefore, GHL ∼= F and G(Cq(D) ⊗Frac(F ) HL) ∼=g D. So, (1) ⇔ (2) follows by

Lemma 3.15.

(2) ⇔ (3) By Proposition 3.12.

(1) ⇒ (5) By the graded version of Proposition 3.6 there is an inertial graded subfield

M of D such that CM
D is a tensor product of two cyclic nicely semiramified graded

division algebras (Mi/M, σi, ai), where Mi are inertial cyclic graded field extensions

of M with Galois group generated by σi, and ai ∈ M∗. So, up to an isomorphism, we

have :

C
Frac(M)
Cq(D) = CM

D ⊗M Frac(M) = ((M1/M, σ1, a1) ⊗M (M2/M, σ2, a2)) ⊗M Frac(M)

= ((M1/M, σ1, a1) ⊗M Frac(M)) ⊗Frac(M) ((M2/M, σ2, a2) ⊗M Frac(M))

= (Frac(M1)/Frac(M), σ1, a1) ⊗Frac(M) (Frac(M2)/Frac(M), σ2, a2)

By the graded version of Proposition 2.6(3), we have M1⊗MM2 = D0M , so Frac(M1)⊗Frac(M)

Frac(M2) = D0Frac(F ) (see that D0Frac(F ) = D0Frac(M)). Moreover, it is clear

that Frac(M1) [resp. Frac(M2)] is the subfield of D0Frac(F ) fixed by σ2 [resp. by

σ1]. This shows that D0Frac(F ) is degenerate in Cq(D).

(5) ⇒ (4) and (4) ⇒ (3) Obvious.

Corollary 3. 17 Let E be a field, K a non-cyclic abelian field extension of E with

prime power dimension, G the Galois group of K over E, S a basis of G, U a

nondegenerate matrix of US(G, K∗), Z the center of the generic abelian crossed prod-

uct (K, G, U) and L an immediate field extension of Z (for its canonical valuation),

then (K, G, U) ⊗Z L is semiramified but not nicely semiramified. In particular, if

char(E) = p and G is a p-group, then (K, G, U) ⊗Z L is not a tensor product of

cyclic algebras. If p = 2 and exp((K, G, U) ⊗Z L) = 2, then (K, G, U) ⊗Z L has an

involution of the first kind but is not a tensor product of 2-symbols.
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Proof. We have seen in [BM00, Theorem 1.1] that there is a graded field F and

a semiramified graded division algebra D over F such that (K, G, U) = Cq(D).

Moreover, by [BM00, Proposition 0.13], U is nondegenerate (with respect to K/E

or equivalently to D0Frac(F )/Frac(F )) if and only if D0Frac(F ) is nondegenerate

in Cq(D). So, by Proposition 3.16 D is nondegenerate. Therefore, D cannot be nicely

semiramified (because ΓD/ΓF (∼= G) is non-cyclic). The rest follows by Corollary 2.5.

Corollary 3. 18 [AS, Theorem 3.2] Let E be a field of characteristic p > 0, K a

finite dimensional non-cyclic abelian field extension of E with a Galois p-group G, S

a basis of G and U a nondegenerate matrix of US(G, K∗), then the generic abelian

crossed product (K, G, U) is non-cyclic.

Remark 3.19 (1) Let F be a graded field with support ΓF ; E = F0 ; M a finite-

dimensional abelian field extension of E with Galois group G ; S a basis of G ; ∆ a

totally ordered abelian group that contains ΓF with ordering extending that of ΓF ;

ǫ : ∆ → G a group epimorphism with kernel ΓF and (U, B) a cocycle of Z2
S(G, M∗).

We have seen in the preliminaries how to construct the semiramified graded division

algebra (MF, ǫ, G, U, B). Assume that U is nondegenerate in M/E and let L be an im-

mediate field extension of Frac(F ). One can easily see that Corollary 3.17 is still true

if we replace the generic abelian crossed product (K, G, U) by Cq((MF, ǫ, G, U, B)).

More generally, let F be a graded field and D a semiramified graded division alge-

bra over F . Let xi ∈ D∗ such that (gr(xi) + ΓF )r
i=1 is a basis of ΓD/ΓF and let

uij = xixjx
−1
i x−1

j and U = (uij)1≤i,j≤r. Then, by [BM00, Proposition 0.13] U is

nondegenerate with respect to D0/F0 if and only if D0Frac(F ) is nondegenerate in

Cq(D). Hence, by Proposition 3.16, U is nondegenerate with respecto to D0/F0 if

and only if D is nondegenerate. It is easily seen that we can replace (K, G, U) in
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Corollary 3.17 by Cq(D) where D is a nondegenerate semiramified graded division

algebra.

(2) Let E be a field, (D, v) a defectless valued finite-dimensional division algebra over

E and HE the henselization of E with respect to the restriction of v to E. We say

that D is tame over E if D ⊗E HE is so over HE. In particular, if we suppose that

E is the center of D, then D is tame over E if and only if GE is the center of GD.

Indeed, one can easily see that GE = GHE and GD = G(D ⊗E HE). In the same

way, we can define nondegenerate valued central division algebras over a field E (and

generalize many results of this paper) without assuming that E is Henselian.

(3) In [McK05] the author defined what she called strongly degenerate matrices.

The reader can see that many results of this paper can be proved for non-strongly-

degenerate tame semiramified division algebras. In particular, this can be done for

Corollary 3.17 and all the results of next sections, but we dont know if there exist

really a non-strongly-degenerate tame semiramified division algebra over a Henselian

valued field that is degenerate or if the two definitions (strongly degenerate and de-

generate) coincide.

4 Subfields of nondegenerate tame semiramified division al-

gebras

Lemma 4. 1 Let F be a graded field and D a nondegenerate semiramified graded

division algebra of prime power degree pn over F with rk(Gal(D0/F0)) ≥ 2. Let

d ∈ D∗ such that dp ∈ F . Then, d ∈ D0F
∗. If in addition p = char(F ), then d ∈ F ∗.
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Proof. We will use the same argument as in the proof of [AS78, Lemma 3.1]. Let

xi ∈ D∗ such that (gr(xi) + ΓF )r
i=1 is a basis of ΓD/ΓF . Then, D = D0F [x1, ..., xr].

Let qi = ord(gr(xi) + ΓF ), σi = θD(gr(xi) + ΓF ), where θD is the group isomorphism

of [B95, p.4278] (see also, [HW(2)99, (2.2), p.86]) and I = {m̄ = (m1, ..., mr) ∈ IN r

| 0 ≤ mi < qi for all 1 ≤ i ≤ r}. Then, we can write d = axm̄, where a ∈ D0F
∗

and m̄ ∈ I. Suppose by contradiction that m̄ 6= 0 and let Dm̄
0 be the subfield

of D0 fixed by σm̄. Since dp ∈ F ∗, then (σm̄)p(= θD(gr(dp) + ΓF ) = idD0
. So,

[D0 : Dm̄
0 ] = p. Let Nm̄ be the norm of D0/D

m̄
0 . Then, (axm̄)p = Nm̄(a)(xm̄)p ∈ F ∗.

Since rk(Gal(D0/F0)) ≥ 2, then there is some 1 ≤ j ≤ r such that 〈σm̄, σj〉 is non-

cyclic. We have Nm̄(a)(xm̄)p = xj(Nm̄(a)(xm̄)p)x−1
j = (xjNm̄(a)x−1

j )(xj(x
m̄)px−1

j ) =

Nm̄(σj(a))Nm̄(ujm̄)(xm̄)p = Nm̄(σj(a)ujm̄)(xm̄)p. So, Nm̄(σj(a)a−1ujm̄) = 1. There-

fore, by Hilbert 90 Theorem, there is some b ∈ D0 such that σj(a)a−1ujm̄ = σm̄(b)b−1.

But this is not possible since D is nondegenerate. Hence, m̄ = 0. Remark that D0 is

separable over F0, so D0F is tame over F . Therefore, if char(F ) = p, then d ∈ F ∗.

Proposition 4. 2 Let E be a Henselian valued field and D a nondegenerate tame

semiramified division algebra of prime power degree over E. If rk(ΓD/ΓE) ≥ 2, then

D has no (non-trivial) totally ramified subfield (over E).

Proof. Suppose first that char(Ē) = p > 0 and deg(D) is a power of p. If K is a

totally ramified subfield of D, then GK is a purely wild graded field extension of GE.

So, for any x ∈ GK, x[GK:GE] ∈ GE. Hence, by Lemma 4.1, x ∈ GE. So, GK = GE.

This proves K = E.

Now, assume char(Ē) does not divide deg(D). Suppose that K is a non-trivial totally

ramified subfield of D. Let x ∈ GK∗ such that gr(x) /∈ ΓGE . If ord(gr(x)+ΓGE) = ps

(for some s ≥ 1), then xps

∈ GE (since GE[x] is totally ramified over GE). Therefore,
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by Lemma 4.1, xps−1

∈ D̄GE. A contradiction (since we will have ps−1gr(x)+ΓGE =

ΓGE).

Theorem 4. 3 Let E be a Henselian valued filed of residue characteristic p > 0, D a

nondegenerate tame semiramified division algebra of degree a power of p with ΓD/ΓE

non-cyclic, and K a normal subfield of D. Then, K is a Galois inertial field extension

of E. So, there is a subgroup H of Gal(D̄/Ē) such that Gal(K/E) ∼= Gal(D̄/Ē)/H.

In particular, if K is a Galois maximal subfield of D, then Gal(K/E) ∼= Gal(D̄/Ē).

Proof. Let K be a normal subfield of D, then by Theorem 1.4, GK is a normal

graded field extension of GE. Let L be the graded subfield of GK elementwise

invariant by Gal(GK/GE), then by Proposition 1.3 L is a purely wild graded field

extension of GE. Therefore, by Lemma 4.1, L = GE. Hence, again by Proposition

1.3, GK is a Galois graded field extension of GE. It follows by Corollary 1.8, that

K is a Galois field extension of E. Since [GK : GE] is a power of p and GK is tame

over GE, then GK is inertial over GE. So, K is inertial over E. The rest is obvious.

Corollary 4. 4 Let E be a Henselian valued filed of residue characteristic p > 0 and

D a nondegenerate tame semiramified division algebra of degree a power of p, then D

is cyclic if and only if ΓD/ΓE is cyclic.

Proof. Suppose that D is cyclic and let K be a cyclic maximal subfield of D, then

by Theorem 4.3 Gal(K/E) ∼= Gal(D̄/Ē). Moreover, since D is tame semiramified,

then Gal(D̄/Ē) ∼= ΓD/ΓE, so ΓD/ΓE is cyclic. Conversely, if ΓD/ΓE is cyclic, then

’the’ inertial lift of D̄ over E in D is a cyclic maximal subfiled of D.

Corollary 4. 5 [S78, Theorem 3.2] Let E be a field of characteristic p > 0, K a
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non-cyclic abelian field extension of E with dimension a power of p, G the Galois

group of K over E, S a basis of G, U a nondegenerate matrix of US(G, K∗), and

L a Galois subfiled of the generic abelian crossed product (K, G, U), then there is a

subgroup H of G such that Gal(L/E) ∼= G/H. In particular, if L is a Galois maximal

subfield of (K, G, U), then Gal(L/E) ∼= G.

Proposition 4. 6 Let E be a Henselian valued field and D a nondegenerate tame

semiramified division algebra of prime power degree over E. Assume rk(ΓD/ΓE) ≥

2, and let K be an elementary abelian subfield of D. Then, K is inertial over E.

Therefore, D is an elementary abelian crossed product if and only if Gal(D̄/Ē) is

elementary abelian.

Proof. Since K is an elementary abelian field extension of E, then we can write

K = K1 ⊗E K2 ⊗E ... ⊗E Kr, where Ki are cyclic field extensions of E with [Ki : E]

prime. By Proposition 4.2, Ki cannot be totally ramified over E. Hence Ki is iner-

tial over E. So, K is inertial over E. If K is in addition a maximal subfield of D,

then D̄(= K̄) is elementary abelian over Ē. Conversely, suppose that Gal(D̄/Ē) is

elementary abelian and let M be the inertial lift of D̄ over E in D, then M is an

elementary abelian maximal subfield of D.

Remark 4.7 Let F be a graded field and D a semiramified graded division alge-

bra of degree q2 over F , where q is a prime. Suppose Gal(D0/F0) is cyclic and let

x ∈ D∗ such that gr(x)+ΓF generates ΓD/ΓF , then F [x] is a totally ramified maximal

graded subfield of D. Hence, T = F [xq] is a totally ramified graded subfield of D

with [T : F ] = q. If we assume that F0 contains a primitive qth root of unity, then T

is a cyclic graded field extension of F . Let σ be the F0-automorphism of D0 defined
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by σ(d) = xqdx−q, and let M0 be the subfield of D0 fixed by σ, then let M = M0F .

Obviously, M [xq ] is a graded subfield of D. Since M [resp. T ] is inertial [resp. totally

ramified] over F , then M [xq ] = M ⊗F T . So, D has an elementary abelian maximal

graded subfield. Hence HCq(D) has an elementary abelian maximal subfield. This

shows that Proposition 4.6 is not true if deg(D) = q2 and ΓD/ΓE is cyclic.

Proposition 4. 8 Let E be a Henselian valued field, D a nondegenerate tame semi-

ramified division algebra of prime power degree over E, and K a subfield of D. If

Gal(D̄/K̄) is non-cyclic, then K is inertial over E.

Proof. Let M be the inertial lift of K̄ over E in K. Clearly, CM
D is a nondegenerate

tame semiramified division algebra (over M) and K is a totally ramified subfield of

CM
D . So, by Proposition 4.2, K = M .

Proposition 4. 9 Let E be a Henselian valued field and D a nondegenerate tame

semiramified division algebra of prime power degree over E. Assume rk(ΓD/ΓE) ≥ 3

and let K be an abelian subfield of D, then K is inertial over E.

Proof. Write K = K1⊗E K2⊗E ...⊗E Kr, where Ki are cyclic field extensions of E.

Let Ni be the inertial lift of K̄i over E in Ki. Obviously, Ni is cyclic over E. So, K̄i

is cyclic over Ē. Therefore, D̄ cannot be cyclic over K̄i (since rk(Gal(D̄/Ē)) ≥ 3).

So, by Proposition 4.8 Ki is inertial over E.

Lemma 4. 10 Let E be a Henselian valued field and D a nondegenerate tame semi-

ramified division algebra of prime power degree over E. Consider x ∈ D∗ such that

v(x) 6= ΓE. Then, Gal(D̄/E[x]) is cyclic. In particular, if exp(ΓD/ΓE) is prime, then

E[x] is a maximal subfield of D.
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Proof. Let M be the inertial lift of E[x] over E in E[x]. Clearly, E[x] is a non-

trivial totally ramified subfield of CM
D . So, by Proposition 4.2, Gal(D̄/M̄) is cyclic. If

exp(ΓD/ΓE) = p is a prime, then so is exp(Gal(D̄/Ē)). Hence, card(Gal(D̄/E[x])) ≤

p. See that we have [E[x] : E] > [E[x] : Ē] = [D̄ : Ē][D̄ : E[x]]−1 ≥ deg(D)p−1.

Hence, [E[x] : E] = deg(D).

Let H be a non-abelian group. We say that H is a quaternion group if H is of

order 8 and is generated by two elements a and b satisfying the following conditions

a4 = b4 = 1, a2 = b2 and ba = a−1b. If K/E is a normal [resp., Galois] field extension

with a quaternion Galois group, we say that K is a quaternion (normal [resp., Galois])

field extension of E.

Theorem 4. 11 Let E be a Henselian valued field, p a prime integer and D a non-

degenerate tame semiramified division algebra of degree pn (n ∈ IN∗) over E. Assume

exp(ΓD/ΓE) = p and let K be a subfield of D, then the following statements hold :

(1) if K is not maximal in D, then K is inertial over E.

(2) if K is a non-quaternion normal maximal subfield of D, then K is either cyclic

with dimension ≤ p2 or inertial over E.

Remark that in the case of (1) and in the last case of (2) K is elementary abelian

over E.

Proof. (1) By Lemma 4.10.

(2) Since K is normal over E, then in the same way as seen in the proof of Theorem 4.3,

we prove that K is a Galois tame field extension of E. We will show first that if p 6= 2

and K is a Galois maximal subfield of D, then Gal(K/E) is abelian. Suppose by con-
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tradiction that Gal(K/E) is not abelian, then by Theorem B.11 in comments below

(or also by [Ha59, theorem 12.5.4, p. 190]) Gal(K/E) has a non-normal subgroup H .

Let L be the subfield of K elementwise fixed by H . Then, L is a non-normal field ex-

tension of E. Hence, by Proposition 4.8 both Gal(D̄/K̄) and Gal(D̄/L̄) are non-trivial

cyclic groups. Moreover, since exp(Gal(D̄/Ē)) = exp(ΓD/ΓE) = p, then Gal(D̄/K̄)

and Gal(D̄/L̄) are of order p. We have L̄ ⊆ K̄, so necessarily L̄ = K̄. Let M be the

inertial lift of L̄ over E in L. Then, up to an isomorphism, M is also the inertial lift of

K̄ over E in K. So, K is totally ramified over M , and obviously ΓK/ΓM(= ΓK/ΓE)

is cyclic of order p. Hence, p ≤ [K : L] ≤ [K : M ] = (ΓK : ΓM) = p. So, L = M . But

this is not true because L is not normal over E. Therefore, Gal(K/E) is abelian.

Assume now that p = 2 and let’s prove that K is an abelian field extension of E. Sup-

pose by contradiction that K is a non-abelian Galois maximal subfield of D. Then,

in the same way as above, we show that all subgroups of Gal(K/E) are normal. So,

by [Ha59, Theorem 12.5.4, p. 190] Gal(K/E) is the direct product of a quaternion

group and an abelian group of exponent 2. Write Gal(K/E) = H1 ×H2, where H1 is

a non-trivial quaternion group and H2 is a non-trivial abelian group of exponent 2,

and let K1 [resp., K2] be the subfield of K elementwise invariant by H2 [resp., H1],

then K = K1⊗E K2, but by (1) above both K1 and K2 are inertial over E. Hence, K

is an abelian field extension of E. A contradiction. This shows that K is necessarily

an abelian field extension of E.

Remark that if deg(D) > p2 and Gal(K/E) is abelian, then by Proposition 4.9 K is

inertial over E. Moreover, if deg(D) ≤ p2 and K is a non-cyclic abelian field extension

of E, then K = K1 ⊗E K2, where Ki are cyclic field extension of degree p over E. So,

again by (1) above both K1 and K2 (and hence K) are inertial over E.
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(4.12) Let F be a graded field and K a Galois finite-dimensional graded field exten-

sion of F . Then, K0 is a Galois field extension of F0. Indeed, let σ ∈ Gal(K/K0F ) and

τ ∈ Gal(K/F ). For any a ∈ (K0F )∗, we have gr(τ−1(a)) = gr(a). So, τ−1(a) = ca for

some c ∈ K0. Hence, τ ◦ σ ◦ τ−1(a) = a. Therefore, τ ◦ σ ◦ τ−1 ∈ Gal(K/K0F ). This

shows that Gal(K/K0F ) is a normal subgroup of Gal(K/F ). So, K0F is a Galois

graded field extension of F . Hence, by [HW(1)99, Remark 3.1] K0 is a Galois field

extension of F0. In the same way, we prove that if L is a graded field extension of F

in K such that L0 = K0, then L is a Galois graded field extension of F . Therefore,

by Corollary 1.8 if E is a Henselian valued field, N a tame Galois finite-dimensional

field extension of E, and M is a field extension of E in N such that M̄ = N̄ , then M

is a Galois field extension of E.

Definition 4.13 Let G be an abelian group and H a non-trivial cyclic subgroup

of G. We say that H is maximally cyclic in G if there is no cyclic subgroup H ′ of G

such that H ⊂ H ′.

Let E be a Henselian valued field and D a nondegenerate tame semiramified divi-

sion algebra of prime power degree over E. We recall that we have previously seen in

the proof of Theorem 4.3 and also in the proof of Theorem 4.11 that if K is a normal

field extension of E, then K is a Galois field extension of E.

Proposition 4. 14 Let E be a Henselian valued field, D a nondegenerate tame semi-

ramified division algebra of prime power degree over E, and K a normal subfield of D

such that Gal(D̄/K̄) is cyclic. If Gal(D̄/K̄) is maximally cyclic in Gal(D̄/Ē), then

the following statements hold :

(1) If deg(D) is odd, then K is an abelian field extension of E.
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(2) If deg(D) is a power of 2 and ΓD/ΓE is non-cyclic, then K is either a quaternion

or an abelian field extension of E.

Therefore, if rk(ΓD/ΓE) ≥ 3 and K is not a quaternion field extension of E, then

K is inertial over E.

Proof. (1) Suppose by contradiction that Gal(K/E) is non-abelian. Then, by The-

orem B.11, there is a non-normal subgroup H of Gal(K/E). Let L be the subfield

of K elementwise invariant by H . By Proposition 4.8, Gal(D̄/L̄) is cyclic (indeed,

otherwise L would be inertial -hence normal- over E). Since Gal(D̄/K̄) is maxi-

mally cyclic in Gal(D̄/Ē) and Gal(D̄/K̄) ⊆ Gal(D̄/L̄), then K̄ = L̄. So, by (4.12)

Gal(K/L) is a normal subgroup of Gal(K/E). A contradiction.

(2) In the same way as above we prove that all subgroups of Gal(K/E) are nor-

mal. Therefore, if K is non-abelian over E, then by [Ha59, Theorem 12.5.4, p.190]

Gal(K/E) = H1 × H2, where H1 is a quaternion group and H2 is an abelian group

of exponent 2. Let K1 [resp., K2] be the subfield of K elementwise invariant by H2

[resp., H1]. Then, up to an isomorphism, we have K = K1 ⊗E K2. Assume that

K̄i 6= Ē (for both i = 1, 2), then Gal(D̄/K̄i) (i = 1, 2) are non-cyclic (because we

have Gal(D̄/K̄) ⊂ Gal(D̄/K̄i) and Gal(D̄/K̄) is maximally cyclic in Gal(D̄/Ē)).

Therefore, by Proposition 4.8, K1 and K2 (and hence K) are inertial over E. But

this contradicts the fact that K is non-abelian over E. Therefore, K̄1 or K̄2 is trivial.

This means that K1 or K2 is totally ramified over E. So, by Proposition 4.2, either

K1 or K2 is trivial. Remark that we cannot have K = K1 because K is non-abelian

over E. Hence, K(= K2) is a quaternion field extension of E.

The rest of the proposition follows by Proposition 4.9.

Corollary 4. 15 Let E be a Henselian valued field and D a nondegenerate tame
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semiramified division algebra of prime power degree over E. Assume deg(D) is odd

and char(Ē) does not divide deg(D) and let K be a Galois maximal subfield of D. If

(ΓK : ΓE) = exp(ΓD/ΓE), then K is abelian over E and rk(ΓD/ΓE) ≤ 2.

Proof. Since D is nondegenerate, then ΓK/ΓE is cyclic. Moreover, since K is a

maximal subfield of D, then Gal(D̄/K̄) ∼= ΓK/ΓE . Hence, Gal(D̄/K̄) is maximally

cyclic in Gal(D̄/Ē). So, by Proposition 4.14 K is abelian over E and rk(ΓD/ΓE) ≤ 2

(because K is not inertial over E).

(4.16) As a consequence of Corollary 4.15, under the hypotheses of Corollary 4.15,

if rk(ΓD/ΓE) ≥ 3, x ∈ D∗ with ord(v(x) + ΓE) = exp(ΓD/ΓE), and L is a maximal

subfield of D that contains x, then L cannot be Galois over E.

Proposition 4. 17 Let F be a graded field, D a nondegenerate semiramified graded

division algebra of prime power degree pr over F with rk(ΓD/ΓF ) ≥ 3, and K a

Galois graded subfield of D such that [K : F ] < pdeg(D)(exp(ΓD/ΓF ))−1. Then, K

is inertial over F .

Proof. We will show that Gal(K/F ) is abelian. Our Proposition follows then

by Proposition 4.9 -applied to HCq(D)- . Suppose that Gal(K/F ) is not abelian

and suppose that [K : F ] is minimal. By Proposition 4.8 Gal(D0/K0) is cyclic.

So, [K0 : F0] ≥ [D0 : F0](exp(ΓD/ΓF ))−1. Remark that necessary (ΓK : ΓF ) = p.

Indeed, if (ΓK : ΓF ) 6= p, then there exists an intermediate graded field P such that

K0F ⊂ P ⊂ K. Since P0 = K0 and K is Galois over F , then by (4.12) P is also

a Galois graded field extension of F . It follows by the minimality of [K : F ] that

Gal(P/F ) is abelian, hence P is inertial over F . But this is not true (since K0F ⊂ P ).
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So, (ΓK : ΓF ) = p. Therefore, [K : F ] ≥ pdeg(D)exp(ΓD : ΓF )−1. A contradiction.

Corollary 4. 18 Let E be a Henselian valued field and D a nondegenerate tame

semiramified division algebra of prime power degree pr over E. Assume char(Ē)

does not divide deg(D) and suppose K is a Galois subfield of D with [K : E] <

pdeg(D)exp(ΓD : ΓE)−1. Then, K is inertial over E.

Definition 4.19 Let E be a Henselian valued field and K an abelian field extension

of E. We say that K is nice over E if there is an inertial field extension M of E

and a totally ramified field extension T of E such that K = M ⊗E T . We define nice

abelian graded field extensions in a similar way.

Proposition 4. 20 Let E be a Henselian valued field and K a tame abelian field

extension of E. Then, K is nice if and only if GK is nice.

Proof. If K is nice, then K = M⊗E T , where M is inertial and T is totally ramified

over E. So, by the graded version of [Mor89, Theorem 1] GK = GM ⊗GE GT .

Conversely, suppose that GK is nice. Then, GK = K̄GE⊗GE T ′ where T ′ is a totally

ramified graded field extension of GE. Let M be the inertial lift of K̄ over E in K and

let u1, ..., ur be homogeneous elements of T ′ such that ΓT ′/ΓGE = 〈gr(u1) + ΓGE〉 ⊕

... ⊕ 〈gr(ur) + ΓGE〉. By Proposition 1.5, there are xi ∈ K such that x̃i = ui and

G(E[xi]) = GE[ui]. In particular, E[xi] are totally ramified over E, hence by [Mor89,

Theorem 1] T := E[x1]⊗E ...⊗E E[xr] is a totally ramified field extension of E. Once

again, by applying [Mor89, Theorem 1] (and by comparing the dimensions), we have

K = M ⊗E T (up to an isomorhism).

Lemma 4. 21 Let E be a Henselian valued field and K a nice cyclic field extension
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of prime power dimension over E. Then, K is either inertial or totally ramified over

E.

Proof. Let M [resp. T ] be an inertial [resp. totally ramified] field extension of E

such that K = M ⊗E T . Then, Gal(K/E) = Gal(M/E) ⊕ Gal(T/E). Remark that

Gal(K/F ) is cyclic with prime power order. So, necessaraly Gal(M/E) or Gal(T/E)

is a trivial group. Therefore, either M or T is trivial.

Lemma 4. 22 Let E be a Henselian valued field with valuation v and D a semiram-

ified division algebra of degree n over E. Assume Ē contains a primitive nth root of

unity. Then, the following statements are equivalent :

(1) D has an abelian maximal subfield K = M ⊗E T , where M [resp. T ] is a cyclic

inertial [resp. a cyclic totally ramified] field extension of E.

(2) There is a cyclic subfield M of D inertial over E and an element u of CM
D such

that v(u) + ΓE generates ΓCM
D

/ΓE and u[D̄:M̄ ] ∈ E.

Proof. (1) ⇒ (2) By Proposition 2.6 CM
D is semiramified (over M), so [D̄ : M̄ ] =

(ΓCM
D

: ΓM). Moreover, K is a totally ramified maximal subfield of CM
D , so [D̄ : Ē] =

(ΓK : ΓM) = (ΓT : ΓE) = [T : E]. Since T is cyclic over E, then ΓT /ΓE(∼= Gal(T/E))

is cyclic. Let x ∈ T ∗ such that ΓT /ΓE = 〈v(x) + ΓE〉, then GT = GE[x̃] and the

minimal polynomial of x̃ over Frac(GE) is X [T :E] − x̃[T :E]. So, by Proposition 1.5

there is u ∈ T such that T = E[u], u[T :E] ∈ E∗ and v(u) + ΓE = v(x) + ΓE .

(2) ⇒ (1) Since u[D̄:M̄ ] ∈ E∗, then [E[u] : E] ≤ [D̄ : M̄ ]. Moreover, since CM
D is

semiramified and v(u) + ΓE generates ΓCM
D

/ΓE, then D̄ is a cyclic field extension of

M̄ and [D̄ : M̄ ] = card(〈v(u) + ΓE〉) ≤ (ΓE[u] : ΓE) ≤ [E[u] : E]. Hence, E[u] is

totally ramified over E. Moreover, since ΓE[u]/ΓE is cyclic and Ē contains a primitive
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nth root of unity, then E[u] is cyclic over E. Therefore, K := M ⊗E E[u] is an abelian

maximal subfield of D.

Proposition 4. 23 Let E be a Henselian valued field with valuation v and D a non-

degenerate tame semiramified division algebra of prime power degree over E. Then,

the following statements are equivalent.

(1) D has a nice abelian maximal subfield.

(2) D has an abelian maximal subfield K = T ⊗E M , where T is cyclic totally ramified

over E and M is cyclic inertial over E.

(3) D has a nice cyclic maximal subfield.

(4) D has a cyclic inertial maximal subfield.

(5) D has a non-trivial subfield which is totally ramified over E.

(6) Gal(D̄/Ē) is cyclic.

If Ē contains a primitive deg(D)th root of unity, then the above conditions are

equivalent to the following :

(7) There a cyclic subfield M of D inertial over E and an element u of CM
D such that

v(u) + ΓE generates ΓCM
D

/ΓE and u[D̄:M̄ ] ∈ E.

Proof. (1) ⇒ (6) Let K be a nice maximal subfield of D. If K is inertial over E,

then K̄ = D̄. So, Gal(D̄/Ē) is cyclic. If K is not inertial over E, then D contains a

non-trivial totally ramified subfield. So, by Proposition 4.2, Gal(D̄/Ē)(∼= ΓD/ΓE) is

cyclic.

(6) ⇒ (3) Clear (indeed, the inertial lift of D̄ over E in D is a nice cyclic maximal

subfield of D).

(3) ⇒ (2) By Lemma 4.21.

(2) ⇒ (1) and (4) ⇔ (6) Obvious.
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(5) ⇒ (6) By Proposition 4.2.

(6) ⇒ (5) Let d ∈ D∗ such that v(d)+ΓE generates ΓD/ΓE, then E[d] is a non-trivial

totally ramified subfield of D.

If Ē contains a primitive deg(D)th root of unity, then (2) ⇔ (7) follows by Lemma

4.22.

5 Indecomposable division algebras

Lemma 5. 1 Let E be a Henselian valued field and D a nondegenerate tame semi-

ramified division algebra of prime power degree over E. Assume D = D1 ⊗E D2,

where Di (i = 1, 2) are non-trivial central division algebras over E, and let Li be a

maximal subfield of Di. Then, L̄i = D̄i.

Proof. Since Di are non-trivial, then rk(ΓD/ΓE) ≥ 2. Indeed, if ΓD/ΓE is cyclic,

then D is nicely semiramified. So, by [JW90, Lemma 5.15] exp(D) = exp(ΓD/ΓE) =

deg(D). Hence, D is indecomposable. A contradiction. Moreover, by Proposition

4.2, D̄i 6= Ē (for otherwise, all subfields of Di will be totally ramified over E).

Let L1 be a maximal subfield of D1. Suppose by contradiction that L̄1 6= D̄1, then

rk(Gal(D̄1⊗ĒD̄2/L̄1)) ≥ 2 (for if σ ∈ Gal(D̄1/L̄)\{idD̄1
} and τ ∈ Gal(D̄2/Ē)\{idD̄2

},

then σ ⊗ idD̄2
and idD̄1

⊗ τ are non-comparable elements of Gal(D̄1 ⊗Ē D̄2/L̄1)),

so rk(Gal(D̄/L̄1)) ≥ 2. Hence, by Proposition 4.8, L1 is inertial over E. So, by

Proposition 2.6(1) D1 is semiramified. Hence, L̄1 = D̄1. The contradiction obtained

here shows that L̄1 = D̄1. In the same way, we prove that if L2 is a maximal subfield

of D2, then L̄2 = D̄2.

Theorem 5. 2 Let E be a Henselian valued field and D a nondegenerate tame semi-
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ramified division algebra of prime power degree over E. Then, D is indecomposable.

Proof. As seen above in the proof of Lemma 5.1, if ΓD/ΓE is cyclic, then D is

indecomposable. Assume that rk(ΓD/ΓE) ≥ 2 and suppose D = D1⊗E D2, where D1

and D2 are non-trivial central division algebras over E. Choose a subfield K of Di

with (ΓK : ΓE) maximal (among all subfields of D1 and D2). We can suppose i = 1.

For an arbitrary element x2 of D2, K[x2] is a subfield of D. So, by Proposition 3.2,

ΓK[x2]/ΓE is cyclic (with prime power order). Hence, the subgroups of ΓK[x2]/ΓE are

totally ordered by inclusion. In particular, we have ΓE[x2]/ΓE ⊆ ΓK/ΓE (we can not

have ΓK/ΓE ⊂ ΓE[x2]/ΓE because (ΓK : ΓE) is maximal). So, ΓD2
/ΓE is cyclic. Let

y ∈ D2 such that v(y)+ΓE generates ΓD2
/ΓE (v being the extension of the valuation

of E to D) and let L2 be a maximal subfield of D2 that contains y. By Lemma 5.1

L̄2 = D̄2. Moreover, we have ΓL2
/ΓE = ΓD2

/ΓE . Hence, D2 = L2. A contradiction.

Corollary 5. 3 Let E be a field, K a finite dimensional non-cyclic abelian field ex-

tension of E with Galois group G, S a basis of G, U a nondegenerate matrix of

US(G, K∗), Z the center of the generic abelian crossed product (K, G, U) and L an im-

mediate field extension of Z for its canonical valuation. Assume card(G) = pn, where

p is a prime positive integer and n is an arbirary positive integer, then (K, G, U)⊗Z L

is an indecomposable division algebra.

Remark 5.4 Recently, Kelly L. Mckinnie has constructed tame semiramified inde-

composable division p-algebras of arbitrary degree and of exponent p (for p 6= 2)

[McK05, Corollary 6.15]. Using the same arguments and Theorem 5.2 -instead of

[McK05, Corollary 5.4]-, we get examples of tame semiramified indecomposable di-
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vision algebras of prime exponent q and of degree qn for any prime q 6= 2 and any

positive integer n (even for q 6= char(Ē)).

Appendix

Claim A. 1 Let E/F be an algebraic graded field extension and g a homogenizable

irreducible polynomial of F [X]. Assume g has a root x ∈ E\{0} and let fx,Frac(F ) be

the minimal polynomial of x over Frac(F ). Then, g = afx,Frac(F ) for some a ∈ F ∗.

In particular, x ∈ E∗.

Proof. Since x is a root of g, then fx,Frac(F ) divides g in Frac[X]. Let h ∈

Frac(F )[X] such that g = hfx,Frac(F ). Obviously, we can write h = b−1h′ [resp.

fx,Frac(F ) = c−1f ′] with h′, f ′ ∈ F [X] and b, c ∈ F . Let λ ∈ ∆F (where ∆F is

the divisible hull of ΓF ) such that g ∈ (F [X](λ))h. It follows from the equality

(bc)g = h′f ′ that (bc)mg = h′
mf ′

m, where (bc)m, h′
m and f ′

m are the components of

greater grade of bc, h′ and f ′, respectively. Since g is irreducible in F [X], then either

h′
m or f ′

m is in F . Assume that h′
m ∈ F , then deg(g) = deg(f ′

m) ≤ deg(fx,Frac(F )).

So, deg(g) = deg(fx,Frac(F )) (since fx,Frac(F ) divides g). If f ′
m ∈ F , then deg(g) =

deg(h′
m) ≤ deg(h). So, deg(fx,Frac(F )) = 0. But this is not true. See that we can write

g = a0 + a1X + ... + anXn, where n is a positive integer and ai ∈ F ∗ for all 0 ≤ i ≤ n

(Indeed, write g = d0 + d1X + ... + dnX
n, where di ∈ F and write di =

∑
(di)γ,

where (di)γ ∈ Fγ̄. Since g is homogeneous (in F [X](λ)), then we can consider only

the (di)γ where gr((di)γX
i) = gr(g)). Let g′ = a−1

n g. Then, g′ = fx,Frac(F ) (since

g′(x) = 0, deg(g′) = deg(fx,Frac(F ))). So, g = anfx,Frac(F ). In particular, fx,Frac(F ) is

homogeneous in F [X](λ). So, x ∈ E∗ (by [HW(1)99, Proposition 2.2 and corollary
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2.5]).

B Normal subgroups

Lemma B. 1 Let p be a prime positive integer and G a p-group, generated by two

noncommutative elements x and y such that ord(x) = p. Then either 〈x〉 (i.e. the

cyclic subgroup of G generated by x) or 〈y〉 is a non normal subgroup of G.

Proof. Let pm = ord(y), then for every 0 < k < p, 0 < k′ < pm, xk 6= yk′

. Indeed,

otherwise we will have 〈x〉 = 〈xk〉 ⊆ 〈y〉, which contradicts the noncommutativity of x

and y. If 〈x〉 and 〈y〉 were both normal in G, then there would exist positive integers

r and s with 1 < r < p and 1 < s < pm such that yxry−1 = x and x−1ysx = y. There-

fore (yxry−1)y = x(x−1ysx), hence yxr = ysx. Thus xr−1 = ys−1. But this is not true.

In what follows, we proceed by contradiction to prove that if p is an odd prime

integer and G is a non abelian p-group, then necessarily G has a subgroup H which

is not normal in G.

B.2. Let G be a non abelian p-group such that all subroups of G are normal (in

G). We may assume that G has minimal cardinal. It follows from Lemma B.1, that

card(G) > p2. Let Z(G) be the center of G and Gc := {αβα−1β−1| α, β ∈ G} be the

commutator of G.

Claim B. 3 Under the hypotheses of (B.2), we have Gc ⊆ Z(G).
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Proof. Since card(G) > 1, then by [L84, theorem 6.4, p. 25], Z(G) 6= {1}. If

G/Z(G) has a non normal subgroup A, then H := {α ∈ G| αZ(G) ∈ A} would

be a non normal subgroup of G. A contradiction. Therefore, by the minimality of

card(G), G/Z(G) is necessarily abelian. So, Gc ⊆ Z(G).

Claim B. 4 Under the hypotheses of (B.2), we have card(Gc) = p.

Proof. Assume that card(Gc) > p and consider a subgroup G′ of Gc with card(G′) =

p. Since the cardinal of G is minimal, then either G/G′ is abelian or G/G′ has a sub-

group A which is not normal in G/G′. See that G/G′ cannot be abelian since otherwise

we would have Gc ⊆ G′. Also, if there was a non-normal subgroup A of G/G′, then

H := {α ∈ G| αG′ ∈ A} would be a non normal subgroup of G. A contradiction.

Claim B. 5 Under the hypotheses of (B.2), if x and y are two non-commutative

elements of G, then every element z of G can be written in the form z = axmyn,

with a ∈ Z(G), 0 ≤ m, n < p. Thus, card(G/Z(G)) = p2. Precisely, G/Z(G) ∼=

ZZ/pZZ × ZZ/pZZ.

Proof. Since G/〈x〉 and G/〈y〉 are abelian, then Gc ⊆ 〈x〉 ∩ 〈y〉. Let pr =

card(〈x〉/Gc) and ps = card(〈y〉/Gc). Remark that card(G) being minimal, then

G = 〈x, y〉 (i.e. G is generated by x and y). Let u = xyx−1y−1, then xpy = upyxp =

yxp ( since u ∈ Gc and card(Gc) = p.) So xp ∈ Z(G). By symmetry, we have also

yp ∈ Z(G). Therefore, every element of G can be written in the form axmyn, with

a ∈ Z(G) and 0 ≤ m, n < p. Thus, the elements of G/Z(G) can be written as x̄mȳn,

with 0 ≤ m, n < p (where x̄ = xZ(G) and ȳ = yZ(G).) So, card(G/Z(G)) ≤ p2.

Remark that G/Z(G) can not be cyclic since otherwise G would be abelian. Hence

card(G/Z(G)) = p2 and G/Z(G) ∼= ZZ/pZZ × ZZ/pZZ.
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Claim B. 6 Under the hypotheses of (B.2), if p is an odd prime integer and if we

consider the map φ : G → G, defined by φ(z) = zp, then φ is a group homomorphism

and Gp := φ(G) ⊆ Z(G).

Proof. Let x, y ∈ G and let u = xyx−1y−1. It is straightforword that (xy)p =

uu2..up−1xpyp = (u
p−1

2 )pxpyp = xpyp (since u
p−1

2 ∈ Gc and card(Gc) = p). So, φ is a

group homomorphism. Since xpy = upyxp = yxp, then φ(G) ⊆ Z(G).

Obviously, Under the hypotheses of Claim B.6, G/ker(φ) ∼= Gp.

Claim B. 7 under the hypotheses of Claim B.6, we have ker(φ) ⊆ Z(G).

Proof. If ker(φ) 6⊆ Z(G), then one can choose two non-commutative elements x

and y of G with x ∈ ker(φ). Since G = 〈x, y〉 and ord(x) = p, then by Lemma B.1,

either 〈x〉 or 〈y〉 is not normal in G. A contradiction.

Claim B. 8 Under the hypotheses of (B.2), Z(G) is cyclic.

Proof. Let x and y be two non-commutative elements of G, and consider w ∈ G

with ord(w) ≥ p. Then x̄ȳ = ȳx̄ in G/〈w〉. Hence u := xyx−1y−1 ∈ 〈w〉. In

particular, this is true for 1 6= w ∈ Z(G). Therefore, Z(G) is cyclic (for if Z(G) were

not cyclic, then it would have a decomposition Z(G) = 〈w1〉 × 〈w2〉 × .. × 〈wk〉 with

ord(wi) ≥ p (1 ≤ i ≤ k) and k > 1. In particular, we have 〈w1〉 ∩ 〈w2〉 = {1}, hence

necessarily u = 1. But this is not true since x and y are non-commutative.)

Claim B. 9 Under the hypotheses of Claim B.6, ker(φ) = Gc.
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Proof. Since G/ker(φ) is abelian (otherwise G would have a non normal subgroup),

then Gc ⊆ ker(φ). Moreover, by Claim B.7, we have ker(φ) ⊆ Z(G). So ker(φ) is

cyclic (of exponent p). So ker(φ) = Gc.

Claim B. 10 Under the hypotheses of Claim B.6, G/Gp is cyclic with cardinal p.

Proof. Since Gp ∼= G/ker(φ), then card(G/Gp) = p, so G/Gp is cyclic.

Since Gp ⊆ Z(G) and G/Gp is cyclic, then G is abelian. But this contradicts the

hypotheses of Claim B.6. Therefore, we have the following Theorem.

Theorem B. 11 Let p > 2 be a prime integer and G a non abelian p-group. Then

G has a non normal subgroup.

C Cyclic graded p-algebras

We recall first the following facts concerning cyclic graded simple algebras. All these

results follow from analogous ones proved in the ungraded case (it suffices to use the

canonical embedding GBr(F ) → Br(Frac(F )), defined by [D] 7→ [D ⊗F Frac(F )]) :

(C.1) Let F be a graded field and L/F a finite-dimensional cyclic graded field ex-

tension of degree n, then the following assertions hold (for arbitrary a, b ∈ F ∗) :

(1) (L/F, σ, a) = (L/F, σt, at), for any positive integer t coprime to n.

(2) (L/F, σ, a) ⊗F (L/F, σ, b) is similar to (L/F, σ, ab) with respect to GBr(F ).
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(C.2) (1) Let L/F be a finite-dimensional cyclic graded field extension with Ga-

lois group generated by σ, then the mapping a 7→ [(L/F, σ, a)] (a ∈ F ∗) induces a

group isomorphism F ∗/NL/F (L∗) → GBr(L/F ).

(2) Let N/F be a cyclic graded field extension with Galois group generated by τ such

that F ⊆ L ⊆ N and let s = [N : L] and a ∈ F ∗, then (N/F, τ, as) is similar to

(L/F, σ, a) with respect to GBr(F ).

Theorem C. 3 Let F be a graded field with characteristic p > 0 and a a non-zero

homogeneous element of F such that a1/p /∈ F . If D is a non-trivial graded central

division algebra split by F [a1/p], then there is a cyclic graded field extension L of

dimension p over F such that D = (L/F, σ, a), where σ is a generator of Gal(L/F ).

Proof. Since deg(D) = p and F [a1/p] splits D, then we can assume F [a1/p] is a

maximal graded subfield of D. Let x := a1/p and consider the graded F -automorphism

Φ : D 7→ D, defined by z 7→ xzx−1. Since x /∈ F , then Φ 6= idD. So, φ = Φ − idD

is a non-zero graded F -space homomorphism of D. Clearly, we have φp = 0. Let r

be the greater positive integer such that φr 6= 0 and let z ∈ D∗ such that φr(z) 6= 0.

Put v = φr−1(z), w = φr(z) and b = w−1v. One can easily check that φ(b) = b + 1.

Therefore, L := F [b] is a cyclic graded field extension of F with Galois group generated

by σ := φ/L, and D = (L/F, σ, a).

Theorem C. 4 Let F be a graded field with characteristic p > 0, a a non-zero ho-

mogeneous element of F and A a non-trivial graded central simple algebra which

satisfies [A] ∈ GBr(F [a1/pe

]/F ) and [A] /∈ GBr(F [a1/pf

]/F ) for all f < e, then

[A] = [(N/F, σ, a)], where N/F is a cyclic graded field extension of dimension pe with

Galois group generated by σ.
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Proof. Assume first that F [a1/pe

] has dimension pe over F . We will proceed by

induction on e. The case e = 1 was proved in Theorem C.3 above. Assume this

is true for e < n and let e = n. By the induction hypothesis there is a cyclic

graded field extension M of dimension pn−1 over F [a1/p] such that A ⊗F F [a1/p] ∼

(M/F [a1/p], σ, a1/p), where σ is a generator of the Galois group of M/F [a1/p]. Clearly,

Frac(M) is a normal field extension of Frac(F ) with Gal(Frac(M)/Frac(F )) =

Gal(Frac(M)/Frac(F [a1/p])). Moreover if N ′ is the tame closure of F in M , then

by [HW(1)99, Proposition 3.7 and Definition 3.8] Frac(N ′) is the separable closure

of Frac(F ) in Frac(M). Therefore by [Karp89, Proposition 7.7, p.283] Frac(M) =

Frac(N ′)⊗Frac(F ) Frac(F [a1/p]) (up to an isomorphism). This shows that Frac(N ′)

is a cyclic field extension of Frac(F ), hence by [HW(1)99, Theorem 3.11] N ′ is a

cyclic graded field extension of F (with Galois group generated by σ/N ′). Let K be

a cyclic field extension of F0 that contains N ′
0 such that [K : N ′

0] = p (see [D82,

Lemma 2, p. 107]) and let N = KF (i.e. the graded field extension of F gener-

ated by K). By, [HW(1)99, Remark 3.1] N is a cyclic inertial graded field exten-

sion of F with Galois group generated by some τ such that τ/N ′ = σ/N ′ . We have

A ⊗F F [a1/p] = [(M/F [a1/p], σ, a1/p)] = [(NF [a1/p]/F [a1/p], τ, a)] = [(N/F, τ, a) ⊗F

F [a1/p]]. So, [A] − [(N/F, τ, a)] ∈ GBr(F [a1/p]/F ) and a1/p /∈ F . Hence, again

by Theorem C.3, [A] = [(N/F, τ, a)] + [(T/F, θ, a)], where T/F is a cyclic graded

field extension of dimension p with galois group generated by θ. We have either,

N ∩ T = F or T ⊆ N . For the first case, we consider the graded subfield L of

N ⊗F T elementwise fixed by α := τpn−1

⊗ θ−1. By [D82, Lemma 9, p. 75] we have

[(Frac(N)/Frac(F ), τ, a)] + [(Frac(T )/Frac(F ), θ, a)] = [(Frac(L)/Frac(F ), α, a)].

So, [(N/F, τ, a)]+[(T/F, θ, a)] = [(L/F, α, a)] (this follows from the canonical embed-

ding GBr(F ) → Br(Frac(F )) defined by [D] 7→ [D ⊗F Frac(F )]).
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Now, if we suppose that T ⊆ N , then there exists a positive integer t coprime to

p such that τ/T = θt. Since 1 + tpn−1 and pn are coprime, then there is a posi-

tive integer s such that s(1 + tpn−1) ≡ 1(mod pn). Hence, by (C.1 and C.2) above

[(T/F, θ, a)] = [(T/F, θt, at)] = [(N/F, τ, atpn−1

)]. So, [A] = (1 + tpn−1)[(N/F, τ, a)] =

(1 + tpn−1)[(N/F, τ s, as)] = [(N/F, τ s, a)].

If F [a1/pe

] has dimension pf < pe over F , then F [a1/pe

] = F [b1/pf

], where a = bpe−f

.

It follows by the above that [A] = [(N ′/F, σ′, b)], where N ′/F is a cyclic graded field

extension with dimension pf . We can then apply (C.2(2)) to conclude.

Corollary C. 5 Let F be a graded field with characteristic p > 0, A a graded central

division algebra of degree pe over F . Assume that A has a simple purely wild maximal

graded subfield, then A is cyclic.

Theorem C. 6 Let F be a graded field with characteristic p > 0 and D a graded

central division algebra of degree a power of p over F . Then, D is cyclic if and only

if it has a simple purely wild maximal graded subfield.

Proof : If D is cyclic, then we can write D = (L/F, σ, a), where L is a a cyclic

maximal graded subfield of D, σ is a generating element of the Galois group Gal(L/F )

and a is a nonzero homogeneous element of F . Let n be the degree of D, then by

definition, there is a nonzero homogeneous element x of D such that D = ⊕n
i=1Lxi,

with xn = a and xyx−1 = σ(y) for all y ∈ L. Hence F [x] is a simple purely wild

maximal graded subfield of D. The converse follows by Corollary C.5.

The author would like to thank Pr. J.P. Tignol and Pr. A. Wadsworh for their

help.
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23(1995), pp 4275-4300.
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